
Description of some of Professor Milton’s Achievements 
 
Developing the theory of composite materials. Prof. Milton is one of the 
world’s leaders working in the theory of composites. This is exemplified by his 
book “The theory of composites”, which is a virtual encyclopedia on the subject. 
While an undergraduate at Sydney University he developed the first 
comprehensive set of bounds on the complex dielectric constant of composite 
materials- these essentially bound the energy absorption  and refractive index 
(how much the composite bends light) [1,2,3,6,7]. They are now known as the 
Bergman-Milton bounds (Bergman independently and at the same time derived 
some of the bounds). Prof. Milton with Drs. Berryman and Gibiansky and Prof. 
Lakes later generalized the bounds to the complex elastic moduli of two-phase 
composites [49,51,63,69]. 
  
Prof. Milton gave the first mathematical proof that isotropic materials which get 
fatter as they are stretched can exist [46].  With Prof. Cherkaev he addressed the 
grand question of what elasticity tensors are realizable [60]. Elasticity tensors, 
which determine the elastic response of bodies, can be represented by 
symmetric positive 6 by 6 matrices- Milton and Cherkaev showed that every 
such matrix can be realized by an appropriate composite of a very stiff material 
and a very compliant material. A key to the construction was introducing a new 
class of materials, called pentamodes (google pentamodes) which are like fluids 
in that they only resist one loading (which is compression for fluids), but unlike 
fluids this loading can be a mixture of compression and shear. Pentamodes have 
been built by the group of Martin Wegener, and are a key element in some of the 
cloaking designs proposed by the group of  Andrew Norris. In 2012, before they  
built pentamodes the group of Wegener in the paper, “Tailored 3D Mechanical 
Metamaterials Made by Dip-in Direct-Laser-Writing Optical Lithography” wrote: “In 
addition, the “holy grail” of mechanical materials, namely pentamode materials, that 
can be seen as the mother of all materials, might become accessible as well. 
Pentamodes, suggested by Milton and Cherkaev in 1995, are solids that behave like 
fluids with a very small effective shear modulus.” 
 
In elementary physics textbooks it is mentioned that the sign of the “Hall 
coefficient” (which measures the transverse voltage when a current flows 
through a material, with a magnetic field applied perpendicular to the current) 
determines the sign of the charge carrier. This is based on simple minded 
reasoning based on the direction of the force on a free electron moving in a 
magnetic field.  Profs. Briane and Milton obtained a counterexample [100,108]: 
one could combine three materials, all with positive Hall coefficient, to get a 
composite with negative Hall coefficient. Recently the group of Martin Wegener 
simplified the design to one material plus void, and have physically constructed  
the world’s first “Hall effect reversal material”.   
 
. It is well known that convex sets can be represented as intersections of half planes 
(in two-dimensions) or half spaces (in higher dimensions). This is the famous 
Legendre transform. Profs. Francfort and Milton [52] showed that the set which is 
the range of effective tensors as the geometry varies over all configurations, can 
similarly be characterized by minimums of energies and complementary energies. 



The new transform is called a “W-transform” and is  key to finding the possible 
range of elasticity tensors of 3d-printed materials [157]. 
 
Prof. Milton obtained a complete characterization, for two-dimensional, two-
phase composites of two isotropic phases, of the set of all possible functions that 
the (matrix valued) effective conductivity can have as a function of the 
component conductivities [24]. He showed that any such composite can be 
mimicked by an appropriate hierarchical laminate composite. Prof. Milton and 
Ms. Clark (then his graduate student) showed that one could also characterize 
the possible functions of two-dimensional polycrystals as functions of the matrix 
valued conductivity of the single crystal from which the polycrystal is built [54]. 
 
There is a long history of exact (microstructure independent) relations satisfied 
by the effective tensors of composites. Prof. Milton and collaborators derived 
some [33,44,47,48 58,62,64,66,67], but a comprehensive theory, which 
encompassed all exact relations, was missing. A key advance was made by 
Grabovsky who obtained algebraic conditions for an exact relation to hold for 
layered composites. This enabled Prof. Milton, and (then) Drs. Grabovsky and 
Sage to obtain algebraic conditions which ensured a candidate exact relation 
held for all composite geometries, not just laminate ones [68,72]. 
 
Development of new types of continued fractions and hierarchical 
decompositions of  subspace collections. While seeking bounds on the 
effective tensors of multicomponent  materials, Prof. Milton realized that the 
analytic technique of using fractional linear transformations to obtain bounds on 
Stieltjes functions had a natural counterpart at the level of the subspaces of fields 
involved in the problem. This led to an entirely new method for obtaining 
bounds, the field equation recursion method [25,26,42], and associated with this 
was an expansion of the effective tensor as a new type of continued fraction, 
involving matrices of varying dimension at each level in the fraction. 
 
 
 
Accelerated algorithm for computing the fields in periodic composites 
using Fast Fourier Transforms. In 1994 Moulinec and Suquet found an efficient 
scheme for computing the fields in periodic composites. It was based on series 
expansions for the fields and fast Fourier transforms. Using an alternative series 
expansion Prof. Milton and Dr. Eyre [71] obtained a vastly accelerated Fast 
Fourier transform scheme for computing the fields. The enhancement was 
particularly great when the contrast in the phases was high. 
 
 Solving long standing conjectures. In 1961 Eshelby made a famous 
conjecture- that among all inclusion shapes only the ellipsoid has the property 
that the elasticity field is uniform inside the inclusion when the applied field is 
uniform. It is unclear whether he meant for all uniform applied fields (the “weak 
conjecture”) or for a single uniform applied field (the “strong conjecture”). In 
2006 Professors Milton and Kang [92,101] and (independently) Dr. Liping Liu 
proved the weak conjecture. In these papers Professors Milton and Kang also 
proved the related conjecture 1951 conjecture of Polya and Szego that the 



inclusion whose polarization tensor has minimal trace for a given volume would 
necessarily take the shape of a sphere. Profs. Ammari, Capdeboscq, Kang, Lee, 
Milton and Zribi also made progress on the Eshelby strong conjecture [117]. 
 
In 1985 Mortola and Steffe conjectured a complicated formula for the effective 
conductivity of a four phase checkerboard. In 2001 (using quite different 
derivations) Prof. Milton [77] and (independently) Profs. Craster and Obnosov 
proved this conjecture. In 1980 Prof. Milton conjectured a phase interchange 
inequality [2] that applied to the effective conductivity of an isotropic mixture of 
two isotropic phases. An almost complete proof of this inequality was obtained 
in 1989 by Profs. Avellaneda, Cherkaev, Lurie, and Milton [34]. (A small error 
was later corrected by Profs. Nesi and Zhikov in 1991, completing the proof). 
 
Correlating the response of materials at different frequencies. The Kramers 
Kronig relations are well known relations that determine how much a material 
can “bend light” given one knows much it absorbs light over all frequencies. An 
experimentalist Dr. Mantese, working at General Motors, had mentioned to 
Professor Milton that he thought that the absorption could always be adjusted 
outside the measured frequency interval to obtain agreement with the Kramers 
Kronig relations, for any set of measured data in the frequency interval. Prof. 
Milton with Drs. Mantese and Eyre [65] showed this is not the case: there exist 
rigorous bounds that correlate the measurements in any given frequency 
window and which provide a natural generalization of the Kramers-Kronig 
relations to frequency band limited experimental data. Profs. Milton and Lakes 
with Dr. Eyre also correlated the viscoelastic moduli at a set of frequencies [78].  
  
Characterizing the response of networks.  It is important to know what 
responses of discrete networks are possible- the classic example is the 
characterization of Foster of the responses of two-terminal electrical networks, 
which is an important tool in electrical synthesis and design. Prof. Milton, with 
then postdocs Dr. Guevara Vasquez and Onofrei obtained a complete 
characterization (within linear elasticity) of  the dynamic response of discrete 
multiterminal networks of springs and masses [123].  Profs. Milton and 
Seppecher introduced an entirely new type of network (with the elements being 
triangles joined by cylinders) that is appropriate for Maxwell’s equations at fixed 
frequency, and they completely characterized the possible responses of such 
networks [113,118]. Profs. Milton and Seppecher also completely characterized 
the response at fixed frequency of multiterminal electrical, acoustic, and 
elastdynamic discrete networks [105].  
 
Pioneering work on superlensing. In 1993 and 1994, Profs. McPhedran and 
Milton and Dr. Nicorovici obtained some striking results [50,56, see also 89]. For the 
two-dimensional quastistatic equations of electromagnetism (quasistatic meaning 
that the wavelength is long compared to the body) they found that a circular shell 
(annulus) having a dielectric constant of -1, surrounding a circular core, would be 
invisible to any applied fields if the core was empty and if the core was not empty 
would respond the same way as a solid circle of material of much larger radius: the 
shell acts to magnify the core. In the method of images it is well known that if a point 
source is placed outside a circle of material then the field outside the inclusion is 
exactly that of the point source plus an “image source” located inside the circle of 



material. But if this correspondence held, then the “image source” would appear 
outside the annulus. This seemed interesting to us, so in that paper we explored this, 
taking the physical limit as the loss in the shell tends to zero, and found that on one 
side of the “image source” it appeared as if there was an actual source there, but that 
on the other side of the “image source” there appeared oscillations, now called 
anomalous localized resonance. These results are evident from the equations and 
numerical simulations in [56], but more attention should have been drawn to them: 
the phenomena--point image sources with regions of anomalous resonance on one 
side of them—is the key mechanism that explains the bold claim of Sir John Pendry 
in 2000 that a slab having dielectric constant -1 (and magnetic permeability -1) 
would be a perfect lens…not subject to the diffraction limit. Later we recognized that 
Pendry’s paper, despite receiving over 10,000 citations and being the basis for the 
award of the million dollar Kavli prize, is fundamentally flawed. For dipole sources less 
than a distance d/2 from the lens, where d is the lens thickness, the transmission is zero 
not one [96]. For sources at distances between d/2 and d from the lens the 
anomalously resonant fields obscure the image [89,96]. See the slides  
http://www.maths.dur.ac.uk/events/Meetings/LMS/104/talks/1072milt.pdf  
for more historical remarks.    
 
Work on neutral inclusions and cloaking.  Neutral inclusions are “invisible” to 
applied fields in certain directions: one can insert them in a homogeneous 
medium without disturbing the surrounding field. Prof. Milton and Dr. Serkov 
[76] obtained a variety of interesting neutral inclusions in two-dimensions of 
one conducting material surrounded by an appropriately shaped shell. In a 
different direction, as mentioned in the preceding section Profs. McPhedran, 
Milton and Dr. Nicorovici found that an annulus having a dielectric constant of -1 
could be invisible to all applied fields [56, see also 89]. 
 
More stunning was the result of Prof. Milton and Dr. Nicorovici [91] that any 
finite collection of polarizable dipoles, or indeed dipole sources producing a 
finite amount of power would become invisible if they were appropriately close 
to this annulus, no matter what the applied field. The same held true for a 
polarizable dipole (or dipole power source) appropriately close to the Pendry 
superlens. This “cloaking due to anomalous resonance” attracted considerable 
attention. A beautiful numerical demonstration of it was given in [97]. Profs. 
Ammari, Ciralo, Kang, Lee, and Milton [135,142] showed that this cloaking 
occurs for a wide variety of sources, not just discrete ones.     
 
Profs. Briane, Milton, and Willis, investigated [93] whether the “transformation 
optics” approach to cloaking could be carried through to elastic waves. They 
found that the equations transformed to the Willis equations (coupling 
momentum with strain, and stress with acceleration). Materals with anisotropic 
effective mass density would be required and they obtained simple models 
exhibiting this surprising behavior. Later Prof. Milton found an explicit model 
exhibiting a Willis type behavior [98]. 
 
A different sort of cloaking was devised by Prof. Milton and (then) Drs. Guevara 
Vasquez and Onofrei [111,112,124,130]. This was active exterior cloaking.  A few 
appropriately designed sources (designed according to incident wave, and 
designed so they did not radiate into the far field) generated a quiet zone, within 



which the object to be cloaked could be placed. Many interesting generalizations 
by many authors followed. 
  
Novel variational principles. Energy minimization variational principles have 
proved to be an important tool in analysis, dating back to pioneering work of 
Dirichlet and Thompson (and are particularly useful for bounding  the response 
of bodies, among other things). Building upon the work of Cherkaev and 
Gibiansky (who treated the “quasistatic case”- when the wavelength is long 
compared to the body), Profs. Bouchitte, Milton, Seppecher and Willis [107,119] 
derived for the first time power dissipation minimization principles appropriate 
to the equations of acoustics, electromagnetism and elastodynamics (wave 
equations in elastic media) at fixed frequency in an inhomogeneous  body, when 
at least one of the component material is at least slightly lossy (absorbs energy), 
or alternatively when the frequency is complex (so the fields grow with time). 
Prof. Milton also generalized the variational principles of Cherkaev and 
Gibiansky to other non self-adjoint problems (non-symmetric in a sense) such as 
conduction in a magnetic field where the conductivity matrix becomes non-
symmetric [37], which Profs. Briane and Milton [121,126] used to obtain bounds. 
 
Work on inverse problems. In 1982 Prof. Milton working with Profs. McKenzie 
and McPhedran and Phan Thien [13,12] realized that bounds on the effective 
properties of composites could be used in an inverse way to find information 
about the geometry of the composite, in particular the volume fractions of the 
phases. More recently Prof. Milton and collaborators have used many of the 
techniques developed to bound the response of composites, to now bound the 
response of inhomgeneous bodies. In turn these bounds can be used in an 
inverse fashion to bound the volume fractions of the phases from measurements 
of the fields at the boundary [128,129,131,132,140,144,148]. This could have 
useful medical applications, for example to determine the size of a breast cancer.  
 
Extending the theory of compostes to other areas of science. This is the title 
of my new book where many breakthrough ideas are presented. These include 
rewriting the equations of Physics in a canonical form that illuminates the 
connection with the theory of composites. In particular, Schrodinger’s equation 
can be desymmetrized, and this desymmetrized form has the advantage that 
iterative Fast Fourier Transform (FFT) methods for solving it can be done by just  
doing the FFT on the coordinates of 2 electrons, rather than all electrons.  
 
New sorts of function, superfunctions, are introduced. These generalize the 
normal concept of function and the basic objects are subspace collections. There 
are natural rules for addition, subtraction, multiplication, division and 
substitution of these. They have practical uses: substitution at the subspace level 
can lead to faster iterative Fast Fourier Transform methods for the fields in a 
composite. 
 
 It is recognized that the problem of determining the response of bodies, for 
conductivity, Maxwell’s equations, elastic and elastodynamic equations, and  
acoustic equations, among others, can be reformulated as a problem in the 
abstract theory of composites, and therefore many the tools of composites can 



be mapped over to the response of bodies. This response is governed by the 
Dirichlet to Neumann (DtN) map, that maps surface potentials to surface fluxes   
(suitably interpreted for the different physical problems). It is the analog of the 
effective tensor in composites, and one consequence of the abstract theory of 
compostes is that there is an integral representation formula for the DtN map as 
a function of  the moduli of the component materials in the body. This leads to 
new prospective methods for imaging what is inside bodies.  It has obvious 
importance to medical imaging, geophysical prospecting, and homeland security.  
 
The book also generalizes the notion of conservation laws, to what are called 
boundary field equalities and inequalities. Subject to some constraints on the 
moduli inside a body, boundary equalities and inequalities are identities or 
inequalities satisfied by the fields and fluxes at the surface. 
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