
NOTES ON RIEMANN’S ZETA FUNCTION

DRAGAN MILIČIĆ

1. Gamma function

1.1. Definition of the Gamma function. The integral

Γ(z) =

∫ ∞

0

tz−1e−tdt

is well-defined and defines a holomorphic function in the right half-plane {z ∈ C |
Re z > 0}. This function is Euler’s Gamma function.

First, by integration by parts

Γ(z + 1) =

∫ ∞

0

tze−tdt = −tze−t

∣

∣

∣

∣

∞

0

+ z

∫ ∞

0

tz−1e−t dt = zΓ(z)

for any z in the right half-plane. In particular, for any positive integer n, we have

Γ(n) = (n− 1)Γ(n− 1) = (n− 1)!Γ(1).

On the other hand,

Γ(1) =

∫ ∞

0

e−tdt = −e−t

∣

∣

∣

∣

∞

0

= 1;

and we have the following result.

1.1.1. Lemma.

Γ(n) = (n− 1)!

for any n ∈ Z.

Therefore, we can view the Gamma function as a extension of the factorial.

1.2. Meromorphic continuation. Now we want to show that Γ extends to a
meromorphic function in C. We start with a technical lemma.

1.2.1. Lemma. Let cn, n ∈ Z+, be complex numbers such such that
∑∞

n=0 |cn|
converges. Let

S = {−n | n ∈ Z+ and cn 6= 0}.

Then

f(z) =

∞
∑

n=0

cn

z + n

converges absolutely for z ∈ C−S and uniformly on bounded subsets of C−S. The

function f is a meromorphic function on C with simple poles at the points in S and

Res(f,−n) = cn for any −n ∈ S.
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Proof. Clearly, if |z| < R, we have |z + n| ≥ |n − R| for all n ≥ R. Therefore, we
have | 1

z+n
| ≤ 1

n−R
for |z| < R and n ≥ R. It follows that for n0 > R, we have

∣

∣

∣

∣

∞
∑

n=n0

cn

z + n

∣

∣

∣

∣

≤
∞
∑

n=n0

|cn|

|z + n|
≤

∞
∑

n=n0

|cn|

n−R
≤

1

n0 −R

∞
∑

n=n0

|cn|.

Hence, the series
∑

n>R
cn
z+n

converges absolutely and uniformly on the disk {z |

|z| < R} and defines there a holomorphic function. It follows that
∑∞

n=0
cn
z+n

is a meromorphic function on that disk with simple poles at the points of S in
{z | |z| < R}. Therefore,

∑∞
n=0

cn
z+n

is a meromorphic function with simple poles
at the points in S. Therefore, for any −n ∈ S we have

f(z) =
cn

z + n
+

∑

−m∈S−{n}

cm

z +m
=

cn

z + n
+ g(z)

where g is holomorphic at −n. This implies that Res(f,−n) = cn. �

Going back to Γ, we have

Γ(z) =

∫ ∞

0

tz−1e−t dt =

∫ 1

0

tz−1e−t dt+

∫ ∞

1

tz−1e−t dt.

Clearly, the second integral converges for any complex z and represents an entire
function. On the other hand, since the exponential function is entire, its Taylor
series converges uniformly on compact sets in C, and we have

∫ 1

0

tz−1e−t dt =

∫ 1

0

tz−1

(

∞
∑

p=0

(−1)p

p!
tp

)

dt

=
∞
∑

p=0

(−1)p

p!

∫ 1

0

tp+z−1 dt =
∞
∑

p=0

(−1)p

p!

1

z + p

for any z ∈ C. Therefore,

Γ(z) =

∫ ∞

1

tz−1e−t dt+

∞
∑

p=0

(−1)p

p!

1

z + p

for any z in the right half-plane. By 1.2.1, the right side of this equation defines a
meromorphic function on the complex plane with simple poles at 0,−1,−2,−3,− · · · .
Hence, we have the following result.

1.2.2. Theorem. The function Γ extends to a meromorphic function on the complex

plane. It has simple poles at 0,−1,−2,−3, · · · . The residues of Γ are −p are given

by

Res(Γ,−p) =
(−1)p

p!

for any p ∈ Z+.

This result combined with the above calculation immediately implies the follow-
ing functional equation.

1.2.3. Proposition. For any z ∈ C we have

Γ(z + 1) = zΓ(z).
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1.3. Another functional equation. Let Re z > 0. Then

Γ(z) =

∫ ∞

0

tz−1e−tdt.

Let Re p > 0 and Re q > 0. Then, by change of variable t = u2, we get

Γ(p) =

∫ ∞

0

tp−1e−tdt = 2

∫ ∞

0

e−u2

u2p−1du.

Analogously we have

Γ(q) = 2

∫ ∞

0

e−v2

v2q−1dv.

Hence, it follows that

Γ(p)Γ(q) = 4

∫ ∞

0

∫ ∞

0

e−(u2+v2)u2p−1v2q−1du dv,

and by passing to the polar coordinates by u = r cosϕ, v = r sinϕ, we have

Γ(p)Γ(q) = 4

∫ ∞

0

∫ π
2

0

e−r2r2(p+q)−1 cos2p−1 ϕ sin2q−1 ϕdr dϕ

=

(

2

∫ ∞

0

e−r2r2(p+q)−1 dr

)

·

(

2

∫ π
2

0

cos2p−1 ϕ sin2q−1 ϕdϕ

)

= 2Γ(p+ q)

∫ π
2

0

cos2p−1 ϕ sin2q−1 ϕdϕ.

We put s = sin2 ϕ in the integral. Then we have

2

∫ π
2

0

cos2p−1 ϕ sin2q−1 ϕdϕ =

∫ 1

0

sq−1(1− s)p−1ds.

If we define

B(p, q) =

∫ 1

0

sp−1(1− s)q−1ds

for Re p > 0, Re q > 0, we get the identity

B(p, q) = B(q, p) =
Γ(p)Γ(q)

Γ(p+ q)
.

Here B is Euler’s Beta function.
Let x ∈ (0, 1). Then we have

Γ(x)Γ(1 − x) =
Γ(x)Γ(1 − x)

Γ(1)
= B(x, 1 − x) =

∫ 1

0

sx−1(1 − s)−xds.

Moreover, if we change the variable s = u
u+1 , the integral becomes

∫ 1

0

sx−1(1 − s)−xds =

∫ ∞

0

ux−1

(u + 1)x−1

(

1−
u

u+ 1

)−x
du

(u+ 1)2

=

∫ ∞

0

ux−1

1 + u
du.

1.3.1. Lemma. For y ∈ (0, 1) we have
∫ ∞

0

u−y

1 + u
du =

π

sinπy
.
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Proof. We cut the complex plane along the positive real axis. On this region we

define the function z 7−→ z−y

1+z
with the argument of z−y equal to 0 on the upper

side of the cut. This function has a first order pole at z = −1 with the residue
e−πiy.

C


C
R


-1

-1-1


ε


If we integrate this function along a path which goes along the upper side of the
cut from ǫ > 0 to R, then along the circle CR of radius R centered at the origin,
then along the lower side of the cut from R to ǫ and finally around the origin along
the circle Cǫ of radius ǫ, by the residue theorem we get
∫ R

ǫ

u−y

1 + u
du+

∫

CR

z−y

1 + z
dz − e−2πiy

∫ R

ǫ

u−y

1 + u
du −

∫

Cǫ

z−y

1 + z
dz = 2πie−πiy.

First we remark that for z 6= 0 we have

|z−y| = |e−y log z | = e−yRe(log z) = e−y log |z| = |z|−y.

Hence, the integrand in the second and fourth integral satisfies
∣

∣

∣

∣

z−y

1 + z

∣

∣

∣

∣

≤
|z|−y

|1 + z|
≤

|z|−y

|1− |z||
.

Hence, for small ǫ we have
∣

∣

∣

∣

∫

Cǫ

z−y

1 + z
dz

∣

∣

∣

∣

≤ 2π
ǫ1−y

(1− ǫ)
;

and for large R we have
∣

∣

∣

∣

∫

CR

z−y

1 + z
dz

∣

∣

∣

∣

≤ 2π
R1−y

(R − 1)
;

Clearly, this implies that
∫

CR
→ 0 as R → ∞ and

∫

Cǫ
→ 0 as ǫ → 0. This implies

that
(

1− e−2πiy
)

∫ ∞

0

u−y

1 + u
du = 2πie−πiy.
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It follows that
(

eπiy − e−πiy
)

∫ ∞

0

u−y

1 + u
du = 2πi

and finally
∫ ∞

0

u−y

1 + u
du =

π

sinπy
.

�

This lemma implies that

Γ(x)Γ(1 − x) =
π

sinπ(1 − x)
=

π

sinπx
.

for x ∈ (0, 1). Since both sides are meromorphic, it follows that the following result
holds.

1.3.2. Proposition. For all z ∈ C, we have

Γ(z)Γ(1− z) =
π

sinπz
.

Since z 7−→ sinπz is an entire function, the right side obviously has no zeros. So,
Γ(z) = 0 is possible only at points where z 7−→ Γ(1− z) has poles. Since the poles
of Γ are at 0,−1,−2, · · · , it follows that poles of z 7−→ Γ(1 − z) are at 1, 2, 3, · · · .
At these points Γ(n+ 1) = n! 6= 0. Therefore, we proved the following result.

1.3.3. Theorem. The function Γ has no zeros.

2. Zeta function

2.1. Meromorphic continuation. Riemann’s zeta function ζ is defined by

ζ(z) =

∞
∑

n=1

1

nz

for Re z > 1. In that region the series converges uniformly on compact sets and
represents a holomorphic function.

If we consider the expression for the Gamma function

Γ(z) =

∫ ∞

0

tz−1e−tdt

for Re z > 0, and change the variable t into t = ns for n ∈ N, we get

Γ(z) = nz

∫ ∞

0

sz−1e−nsds,

i.e., we have
Γ(z)

nz
=

∫ ∞

0

tz−1e−ntdt

for any n ∈ N and Re z > 0. This implies that, for Re z > 1, we have

Γ(z)ζ(z) =

∞
∑

n=1

∫ ∞

0

tz−1e−ntdt

=

∫ ∞

0

tz−1

(

∞
∑

n=1

e−nt

)

dt =

∫ ∞

0

tz−1 e−t

1− e−t
dt =

∫ ∞

0

tz−1

et − 1
dt.

This establishes the following integral representation for the zeta function.
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2.1.1. Lemma. For Re z > 1 we have

Γ(z)ζ(z) =

∫ ∞

0

tz−1

et − 1
dt.

This integral can be split in to two parts

Γ(z)ζ(z) =

∫ ∞

0

tz−1

et − 1
dt =

∫ 1

0

tz−1

et − 1
dt+

∫ ∞

1

tz−1

et − 1
dt.

Clearly, the second integral converges for all z ∈ C and therefore represents an
entire function which we denote by F .

On the other hand, the function z 7−→ 1
ez−1 has a simple pole at 0 with residue

1. Therefore,
1

ez − 1
=

1

z
+G(z)

where G is an meromorphic function with first order poles at 2mπi with integer
m 6= 0. It follows that

1

ez − 1
=

1

z
+

∞
∑

n=0

cnz
n

for any |z| < 2π. By Cauchy’s estimates, if we fix 0 < r < 2π, it follows that
|cn| ≤

M
rn

for some M > 0. In particular, there exists M > 0 such that |cn| ≤
M
2n

for all n ∈ Z+.
This implies that, for Re z > 1, since the above series converges uniformly on

[0, 1], we have

∫ 1

0

tz−1

et − 1
dt =

∫ 1

0

tz−2dt+

∫ 1

0

(

∞
∑

n=0

cnt
z+n−1

)

dt

=
1

z − 1
+

∞
∑

n=0

cn

∫ 1

0

tz+n−1dt =
1

z − 1
+

∞
∑

n=0

cn

z + n
.

Therefore, we have

Γ(z)ζ(z) = F (z) +
1

z − 1
+

∞
∑

n=0

cn

z + n
.

By 1.2.1, the right side is a meromorphic function, holomorphic for any complex z

different form z = 1, 0,−1,−2, . . . . Hence, z 7−→ Γ(z)ζ(z) extends to a meromor-
phic function in the complex plane with simple pole at 1 and either simple poles or
removable singularities at z = 0,−1,−2, . . . depending if cn 6= 0 or cn = 0. Since Γ
has no zeros, z 7−→ 1

Γ(z) is an entire function. This implies that the zeta function

ζ extends to a meromorphic function in the complex plane.
Since Γ(1) = 1, ζ has a simple pole at 1 with residue equal to 1. Moreover, since

Γ has simple poles at z = 0,−1,−2, . . . by 1.2.2, the function 1
Γ has simple zeros

there. It follows that ζ has removable singularities at z = 0,−1,−2, . . . . Therefore,
we established the following result.

2.1.2. Theorem. The zeta function ζ is a meromorphic function with simple pole

at 1. The residue at this pole is 1.
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2.2. The functional equation. In this section we prove the following result.

2.2.1. Theorem. For any z ∈ C, we have

ζ(z) = πz−12z sin
(πz

2

)

Γ(1− z)ζ(1− z).

To establish this functional equation we first establish a variant of 2.1.1.
Let C be a path sketched in the following figure.

C

-1


ε


2πi


-2πi


We cut the complex plane along positive real axis and consider the integral
∫

C

wz−1

ew − 1
dw.

Here we fix the argument of w to be 0 on the top side of the cut and 2π on the
bottom. Clearly, the integrand is holomorphic on the complement of the positive
real axes except at zeros of the denominator of the integrand, i.e., at the points
2mπi for m ∈ Z.

If the radius ǫ of the arc Cǫ is less than 2π, it follows immediately from the
Cauchy theorem that this integral doesn’t depend on ǫ and the distance of the
horizontal lines from the positive real axis. Therefore, to evaluate it we can let ǫ

and that distance tend to 0.
First we remark that for w 6= 0 we have

|wz | = |ez logw| = eRe(z logw) = eRe z log |w|−Im z arg(w) = |w|Re ze− Im z arg(w).

Since the argument is in [0, 2π], for a fixed z, we see that |wz | < M |w|Re z for some
positive constant M .

We can estimate the integral over Cǫ as
∣

∣

∣

∣

∫

Cǫ

wz−1

ew − 1
dw

∣

∣

∣

∣

≤ MǫRe z

∫ 2π

0

1

|eǫeiφ − 1|
dφ.

Since w 7−→ ew − 1 has a simple zero at the origin, ew − 1 = wg(w) where g is
holomorphic near the origin and g(0) = 1. It follows that

|ew − 1| ≥
1

2
|w|
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for small w. Hence, we have
∣

∣

∣

∣

∫

Cǫ

wz−1

ew − 1
dw

∣

∣

∣

∣

≤ 4πMǫRe z−1

for small ǫ. In particular, if Re z > 1, we see that the integral over Cǫ tends to 0
as ǫ → 0.

Hence, by taking the limit as ǫ goes to zero, and the horizontal lines tend to the
real axis, we get
∫

C

wz−1

ew − 1
dw =

∫ ∞

0

tz−1

et − 1
dt− e2π(z−1)i

∫ ∞

0

tz−1

et − 1
dt

=
(

1− e2πiz
)

∫ ∞

0

tz−1

et − 1
dt = −2ieiπz sin(πz)

∫ ∞

0

tz−1

et − 1
dt

= −2ieiπz sin(πz)Γ(z)ζ(z)

by 2.1.1. This implies that

−2ieiπz sin(πz)Γ(z)ζ(z) =

∫

C

wz−1

ew − 1
dw

for any path C we considered above and Re z > 1. Clearly, the right integral
makes sense for arbitrary complex z, hence this equality is an equality of mero-
morphic functions on C. This yields the following result, which is another integral
representation of ζ as a meromorphic function.

2.2.2. Lemma. For any z ∈ C, we have

sin(πz)Γ(z)ζ(z) =
i

2
e−iπz

∫

C

wz−1

ew − 1
dw.

On the other hand, we can calculate using the residue theorem the integral
along the path γ drawn in the following figure. There the outside square passes
thru points (2m+ 1)πi and −(2m+ 1)πi.

-1


2πi


-2πi


2mπi


2(m+1)πi


-2mπi


-2(m+1)πi


γ
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We have
∫

γ

wz−1

ew − 1
dw = 2πi

m
∑

n=1

(

(2πn)z−1ei
π(z−1)

2 + (2πn)z−1e3i
π(z−1)

2

)

= 2zπzieiπ(z−1)
(

ei
π(z−1)

2 + e−i
π(z−1)

2

)

m
∑

n=1

nz−1

= −2z+1πzieiπz cos

(

π(z − 1)

2

) m
∑

n=1

1

n1−z

= −2z+1πzieiπz sin
(πz

2

)

m
∑

n=1

1

n1−z
.

Now we want to estimate the integral along the sides of the square for Re z < 0.
For a fixed z, we see as before that there exists M > 0, such that on the right
vertical side of the square the integrand satisfies the estimate

∣

∣

∣

∣

wz−1

ew − 1

∣

∣

∣

∣

≤ M
|w|Re z−1

|ew − 1|
.

Moreover, we have

|ew − 1| ≥ ||ew| − 1| = |eRew − 1|

for any w, hence we have
∣

∣

∣

∣

wz−1

ew − 1

∣

∣

∣

∣

≤ M
|w|Re z−1

|eRew − 1|
≤ M

|Rew|Re z−1

|eRew − 1|

and the right side of the square. This expression clearly tends to zero faster than
1

Rew as Rew → +∞. Hence, the integral over the right side tends to zero as the
square grows.

On the left side of the square we have the same estimate
∣

∣

∣

∣

wz−1

ew − 1

∣

∣

∣

∣

≤ M
|Rew|Re z−1

|eRew − 1|
.

Since Rew is negative in this case, for large |Rew| we have
∣

∣

∣

∣

wz−1

ew − 1

∣

∣

∣

∣

≤ 2M |Rew|Re z−1.

Since Re z < 0, this bound goes to zero faster that 1
|Rew| . On the other hand, the

length of the side of the square is 2|Rew|. Hence, the integral along the left side
also tends to zero as the square grows.

It remains to treat the top and bottom side. As before, we see that on these
sides we have

∣

∣

∣

∣

wz−1

ew − 1

∣

∣

∣

∣

≤ M
|w|Re z−1

|ew − 1|
≤ M

| Imw|Re z−1

|ew − 1|
.

On the other hand, the function w 7−→ |ew − 1| on the horizontal lines tends to
∞ as Rew → +∞ and to 1 as Rew → −∞. Hence it is bounded from below.
Moreover, since it is periodic with period 2πi, shifting the line up and down by 2πi
doesn’t change that bound. Hence, in our estimates we can assume that

1

|ew − 1|
≤ C
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on top and bottom sides of all squares. This implies that
∣

∣

∣

∣

wz−1

ew − 1

∣

∣

∣

∣

≤ MC| Imw|Re z−1

on top and bottom sides of all squares. Since Re z < 0 and the length of these sides
is 2| Imw|, we see that the integrals over these sides tend to zero as the squares
grow.

Hence, for Re z < 0, as the squares grow, i.e., as m tends to infinity, the integral
over the sides of the square tends to 0 and the integral along γ converges to the
integral along the path C from 2.2.2. In addition, the sum on the right side of the
above expression converges to the series for ζ(1 − z), i.e., we have

−2ieπiz sin(πz)Γ(z)ζ(z) = −2z+1πzieiπz sin
(πz

2

)

ζ(z − 1).

Hence, we have

sin(πz)Γ(z)ζ(z) = 2zπz sin
(πz

2

)

ζ(1 − z).

This yields

2 sin
(πz

2

)

cos
(πz

2

)

Γ(z)ζ(z) = 2zπz sin
(πz

2

)

ζ(1 − z).

and

cos
(πz

2

)

Γ(z)ζ(z) = 2z−1πzζ(1− z).

for all z ∈ C. By substituting 1− z for z we get

2−zπ1−zζ(z) = cos

(

π(1 − z)

2

)

Γ(1− z)ζ(1 − z)

and finally

ζ(z) = 2zπz−1 sin
(πz

2

)

Γ(1− z)ζ(1 − z)

what completes the proof of the theorem.

2.3. Euler product formula. Let P be the set of all prime numbers in N. Assume
that P = {p1, p2, . . . } written in the natural ordering. For anym ∈ N, let Sm be the
subset of N consisting of all integers which are not divisible by primes p1, p2, . . . , pm.
Then we claim that, for Re z > 1, we have

ζ(z)
m
∏

k=1

(

1−
1

pzk

)

=
∑

n∈Sm

1

nz
.

Clearly, p1 = 2, and we have

(

1−
1

2z

)

ζ(z) =

∞
∑

n=1

1

nz
−

∞
∑

n=1

1

(2n)z
=
∑

n∈S1

1

nz
.

So, the statement holds for m = 1.
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Assume that the statement holds for m. Then, by the induction assumption, we
have

(

1−
1

pzm+1

)

ζ(z)

m
∏

k=1

(

1−
1

pzk

)

=

(

1−
1

pzm+1

)

∑

n∈Sm

1

nz

=
∑

n∈Sm

1

nz
−
∑

n∈Sm

1

(pm+1n)z
=

∑

n∈Sm+1

1

nz
.

This establishes the above claim. Therefore, we see that as m tends to ∞ we get
the formula

ζ(z)

∞
∏

k=1

(

1−
1

pzk

)

= 1,

i.e., the following result holds.

2.3.1. Theorem (Euler product). For Re z > 1 we have

ζ(z) =
∏

p∈P

1
(

1− 1
pz

) .

The factors in Euler products are nonzero and holomorphic for Re z > 0.
The above observation lead Euler to a proof that the set P is infinite. The

finiteness of P would imply that the Euler product is holomorphic for Re z > 0,
contradicting the fact that ζ has a pole at 1.1

The Euler product formula implies that ζ has no zeros for Re z > 1.

2.4. Riemann hypothesis. Since ζ has no zeros for Re z > 1, and Γ has no zeros
at all by 1.3.3, we see from the functional equation 2.2.1 that the only zeros of ζ
for Re z < 0 come from zeros of the function z 7−→ sin

(

zπ
2

)

at points −2,−4, . . . .
These are called the trivial zeros of ζ.

It follows that all other zeros of ζ have to lie in the strip 0 ≤ Re z ≤ 1. It is
called the critical strip.

1Actually, Euler didn’t use complex variables. One can show that finiteness of primes would

contradict the fact that harmonic series diverge.
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-2
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 0


Riemann conjectured that all zeros of ζ in the critical strip lie on the critical line
Re z = 1

2 . This is the Riemann hypothesis.
Hadamard and de la Valée-Poussin proved that there are no zeros of ζ on the

boundary of the critical strip (i.e., for Re z = 0 and Re z = 1). This implies the
Prime Number Theorem conjectured by Gauss.


