1. Determine if there exists an entire function such that
 \[f\left(\frac{1}{n}\right) = f\left(-\frac{1}{n}\right) = \frac{1}{n} \]
 for all \(n \in \mathbb{N} \).

2. Let \(f \) be an entire function. Suppose that in its power series expansions
 \[f(z) = \sum_{n=0}^{\infty} c_n(z-a)^n \]
 for any \(a \in \mathbb{C} \), at least one coefficient is equal to zero (where \(n \) can depend on \(a \)). Show that \(f \) is a polynomial.

3. Suppose that \(f \) and \(g \) are entire functions such that \(|f(z)| \leq |g(z)| \) for all \(z \in \mathbb{C} \). What conclusions can you draw?

4. Let \(f(z) = 1 - \cos z \).

 (i) Find all zeros of this function;

 (ii) find the multiplicities of these zeros.

In the next three problems we develop the basic facts about Laurent series. A Laurent series
 \[\sum_{n=-\infty}^{\infty} c_n(z-a)^n \]
around \(a \in \mathbb{C} \) is the sum of the series
 \[\sum_{n=0}^{\infty} \frac{c_{-n}}{(z-a)^n} \text{ and } \sum_{n=0}^{\infty} c_n(z-a)^n. \]

The first series is called the principal part and the second the regular part of the Laurent series.

5. Let
 \[\sum_{n=-\infty}^{\infty} c_n(z-a)^n \]
be a Laurent series. Let
 \[r = \limsup_{n \to \infty} |c_{-n}|^{\frac{1}{n}} \quad \text{and} \quad R = \frac{1}{\limsup_{n \to \infty} |c_n|^{\frac{1}{n}}} \]
Then the Laurent series converges absolutely in the open annulus \(\{ z \in \mathbb{C} \mid r < |z - a| < R \} \) and diverges for \(|z - a| < r \) and \(|z - a| > R \). If the above annulus is nonempty, the function
\[
f(z) = \sum_{n=-\infty}^{\infty} c_n (z - a)^n
\]
is holomorphic in the annulus.

6. Let \(f \) be a holomorphic function in the open annulus \(\{ z \in \mathbb{C} \mid r < |z - a| < R \} \). Let \(\gamma \) be a positively oriented circle centered at \(a \) of radius \(\rho \) such that \(r < \rho < R \). Put
\[
c_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{(z - a)^{n+1}} \, dz
\]
for any \(n \in \mathbb{Z} \). Show that
\[
f(z) = \sum_{n=-\infty}^{\infty} c_n (z - a)^n
\]
in the annulus (This series is called the Laurent series of \(f \)).

7. Let \(\Omega \) be a domain and \(a \in \Omega \). Let \(f \) be a function holomorphic in \(\Omega - \{a\} \). Let \(D(a, R) \) be an open disk in \(\Omega \). Then \(f \) can be represented by its Laurent series
\[
f(z) = \sum_{n=-\infty}^{\infty} c_n (z - a)^n
\]
on the punctured disk \(D'(a, R) \). Show:
(a) \(a \) is a removable singularity if and only if \(c_n = 0 \) for all \(n < 0 \);
(b) \(a \) is a pole of order \(m \) if and only if \(c_{-m} \neq 0 \) and \(c_n = 0 \) for \(n < -m \);
(c) \(a \) is an essential singularity if and only if infinitely many \(c_n \) are different from 0 for \(n < 0 \).

8. Let
\[
f(z) = \sin \left(\frac{z}{z + 1} \right).
\]
(i) Determine all isolated singularities of \(f \) and their type;
(ii) find the Laurent expansions of \(f \) at these singularities;
(iii) find the residues of \(f \) at these singularities.

9. Evaluate the integral
\[
\int_{-\infty}^{\infty} \frac{x \cos x}{x^2 - 2x + 10} \, dx
\]
using the residue theorem.

10. Evaluate the integral

\[\int_{0}^{2\pi} \frac{\cos^2 3\phi}{1 - 2a \cos \phi + a^2} d\phi \]

where \(a \) is a complex number such that \(|a| < 1 \), using the residue theorem.