Math 3220-3 Take Home Midterm 3, April 10, 2021 Show all work!

Name:

Problem 1. If F is a differentiable real function defined in a convex open set $U \subset \mathbb{R}^{n}$, such that $\partial_{1} F(x)=0$ for every $x \in U$, prove that F depends only on x_{2}, \ldots, x_{n}.

Problem 2. Let $F: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ be a map given by $F=\left(F_{1}, F_{2}\right)$ where

$$
F_{1}(x, y)=e^{x} \cos (y) \quad \text { and } \quad F_{2}(x, y)=e^{x} \sin (y)
$$

for any $(x, y) \in \mathbb{R}^{2}$. Then:
(i) Find the image of F.
(ii) Calculate the differential $F^{\prime}(x, y)$ and show that it is invertible at any point in \mathbb{R}^{2}.
Thus, by the inverse function theorem, F is locally invertible, i.e., for any $(x, y) \in \mathbb{R}^{2}$ there are open neighborhoods U of (x, y) and V of $F(x, y)$ such that $F: U \longrightarrow V$ is a bijection.

Show that F is not a bijection globally, i.e, F is not a bijection of \mathbb{R}^{2} onto the image of F.

Problem 3. Let f be a function on \mathbb{R} defined by

$$
f(x)=x+2 x^{2} \sin \left(\frac{1}{x}\right)
$$

for $x \neq 0$ and $f(0)=0$. Show that
(i) f is continuous on \mathbb{R};
(ii) f is differentiable on \mathbb{R};
(iii) the derivative f^{\prime} is not continuous at 0 ;
(iv) $f^{\prime}(0)=1$;
(v) for any $\epsilon>0$, the restriction of f to $(-\epsilon, \epsilon)$ is not injective.

This shows that, even for $n=1$, the conclusions of inverse function theorem do not hold if f^{\prime} is not continuous.

Hint: To prove (v), first show that a continuous function f cannot be injective in neighborhoods of local maxima and minima.

These must be critical points of f, i.e. zeros of f^{\prime}.
Then show that for every $\epsilon>0$ the interval $(-\epsilon, \epsilon)$ contains infinitely many critical points of f.

A critical point x of f is a maximum or minimum if $f^{\prime \prime}(x) \neq 0$.

Therefore, it is enough to show that there is an $\epsilon>0$ such that there are no $x \in(-\epsilon, \epsilon)$ such that $f^{\prime}(x)=0$ and $f^{\prime \prime}(x)=0$.

To prove this observe that the derivatives f^{\prime} and $f^{\prime \prime}$ are linear functions in $A=\sin \left(\frac{1}{x}\right)$ and $B=\cos \left(\frac{1}{x}\right)$ with coefficients which are rational functions in x. Therefore, the equations $f^{\prime}(x)=0$ and $f^{\prime \prime}(x)=0$ are a linear system of two equations for A and B with rational function coefficients.

Explicitly solve this system for A and B. Then calculate $A^{2}+B^{2}$. From the result you should see that for small x this expression cannot be 1 , contradicting the choice of A and B. Therefore, we have a contradiction. Hence, for small x, f^{\prime} and $f^{\prime \prime}$ cannot simultaneously vanish at x.

Problem 4. Define

$$
F(x, y)=\left(e^{x} \cos y-1, e^{x} \sin y\right)
$$

for all $(x, y) \in \mathbb{R}^{2}$. Prove that $F=G_{2} \circ G_{1}$, where

$$
G_{1}(x, y)=\left(e^{x} \cos y-1, y\right) \text { and } G_{2}(u, v)=(u,(1+u) \tan v)
$$

are primitive in some neighborhood of $(0,0)$.

