Math 3220-3 Take Home Midterm 2, March 14, 2021 Show all work!

Name:

Problem 1. Let $\mathcal{C}\left(S^{1}\right)$ be the algebra of complex continuous functions on the unit circle $S^{1}=\{z \in \mathbb{C}| | z \mid=1\}$ in the complex plane. Consider the subalgebra \mathcal{A} of all functions

$$
f\left(e^{i \phi}\right)=\sum_{n=0}^{N} c_{n} e^{i n \phi}
$$

for real ϕ. Then \mathcal{A} separates points on S^{1} and vanishes at no point of S^{1}. Show that \mathcal{A} is not dense in $\mathcal{C}\left(S^{1}\right)$!

Problem 2. Let f be a continuous function on \mathbb{R} periodic with period 2π, given by $f(x)=|x|$ for $-\pi \leq x \leq \pi$. Using Bessel equality for its Fourier coefficients prove that

$$
\sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{4}}=\frac{\pi^{4}}{96}
$$

Problem 3. Let A be a linear map from \mathbb{R}^{n} into \mathbb{R}. Show that
(i) there is a unique vector $y \in \mathbb{R}^{n}$ such that $A(x)=(x \mid y)$ for all $x \in \mathbb{R}^{n}$;
(ii) $\|A\|=|y|$.

Problem 4. Let f be a function on \mathbb{R}^{2} defined by

$$
f(x, y)= \begin{cases}0 & \text { if }(x, y)=(0,0) ; \\ \frac{x y}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0)\end{cases}
$$

Prove
(i) f is not continuous at $(0,0)$;
(ii) The first partial derivatives of f exist at every point of \mathbb{R}^{2}.

Is f differentiable at $(0,0)$?

