Math 3220-3 Take Home Midterm 2, March 14, 2021 Show all work!

Name:

Problem 1. Let $\mathcal{C}(S^1)$ be the algebra of complex continuous functions on the unit circle $S^1 = \{z \in \mathbb{C} \mid |z| = 1\}$ in the complex plane. Consider the subalgebra \mathcal{A} of all functions

$$f(e^{i\phi}) = \sum_{n=0}^{N} c_n e^{in\phi}$$

for real ϕ . Then \mathcal{A} separates points on S^1 and vanishes at no point of S^1 . Show that \mathcal{A} is not dense in $\mathcal{C}(S^1)$!

Problem 2. Let f be a continuous function on \mathbb{R} periodic with period 2π , given by f(x) = |x| for $-\pi \le x \le \pi$. Using Bessel equality for its Fourier coefficients prove that

$$\sum_{n=0}^{\infty} \frac{1}{(2n+1)^4} = \frac{\pi^4}{96}$$

Problem 3. Let A be a linear map from \mathbb{R}^n into \mathbb{R} . Show that

- (i) there is a unique vector $y \in \mathbb{R}^n$ such that $A(x) = (x \mid y)$ for all $x \in \mathbb{R}^n$;
- (ii) ||A|| = |y|.

Problem 4. Let f be a function on \mathbb{R}^2 defined by

$$f(x,y) = \begin{cases} 0 & \text{if } (x,y) = (0,0);\\ \frac{xy}{x^2 + y^2} & \text{if } (x,y) \neq (0,0). \end{cases}$$

Prove

(i) f is not continuous at (0,0);

(ii) The first partial derivatives of f exist at every point of \mathbb{R}^2 . Is f differentiable at (0, 0)?