Problem 1. Let \(f \) be a periodic continuous function on \(\mathbb{R} \) with period \(2\pi \). Denote by
\[
\sum_{n \in \mathbb{Z}} c_n e^{inx}
\]
its Fourier series. Show that the following conditions are equivalent:
(i) the function \(f \) is infinitely differentiable;
(ii) for any \(k \geq 0 \) there exists \(M > 0 \) such that \(|c_n||n|^k \leq M\) for all \(n \in \mathbb{Z} \).
(Hint: Use Theorem 7.17 from Rudin!)

Problem 2. Let \(A \) be a linear map from \(\mathbb{R}^n \) into \(\mathbb{R} \). Show that
(i) there is a unique vector \(y \in \mathbb{R}^n \) such that \(A(x) = (x \mid y) \) for all \(x \in \mathbb{R}^n \);
(ii) \(\|A\| = |y| \).

Problem 3. If \(F \) is a differentiable real function defined in a convex open set \(E \subset \mathbb{R}^n \), such that \(\partial_1 F(x) = 0 \) for every \(x \in E \), prove that \(F \) depends only on \(x_2, \ldots, x_n \).

Problem 4. Let \(f \) be a function on \(\mathbb{R}^2 \) defined by
\[
f(x, y) = \begin{cases}
0 & \text{if } (x, y) = (0, 0); \\
x y & \text{if } (x, y) \neq (0, 0).
\end{cases}
\]
Prove
(i) \(f \) is not continuous at \(0 \);
(ii) The first partial derivatives of \(f \) exist at every point of \(\mathbb{R}^2 \).
Is \(f \) differentiable at \((0, 0) \)?