K compact space
$E(x)$ - all continuous functions $f: X \longrightarrow \mathbb{R}$.

$$
\begin{aligned}
& f \cdot g \in E(x) \\
& \quad(f+g)(x)=f(x)+g(x), x \in X \\
& f+g \in E(x) \\
& \quad(f \cdot g)(x)=f(x) \cdot g(x) \\
& f \cdot g \in E(x)
\end{aligned}
$$

To prove this we first reunatk the following fact
$x \longmapsto|f(x)|$ is also continuous (since 1.1 is a contimurons function, Let $x \in X$. Take M^{2} such that $|f(x)|<M$
then $(-\infty, M]$ is a neighborhood of $|f(x)|$. Hence, there exists a neighborhood $V \nexists x$ such that $y \in U \Longrightarrow|f(y)| \leqslant M$.

Now,

$$
\begin{aligned}
& |(f \cdot g)(x)-(f \cdot g)(y)|= \\
& |f(x) \cdot g(x)-f(y) \cdot g(y)|= \\
& =\mid(f(x)-f(y)) \cdot g(x)+(g(x)-g(y)|\cdot f(y)| \\
& \leqslant|f(x)-f(y)| \cdot|g(x)|+|g(x)-g(y)| \cdot|f(y)| \\
& \leqslant|f(x)-f(y)| \cdot|g(x)|+|g(x)-g(y)| \cdot M \\
& \leqslant|f(x)-f(y)| \cdot N+|g(x)-g(y)| \cdot M
\end{aligned}
$$

where $N>|g(x)|$.
By continuity of f and g
there exists a neighleorhood u of x such that

$$
\left.\begin{array}{rl}
& |f(x)-f(y)|<\frac{\varepsilon}{2 N} \\
& |g(x)-g(y)|<\frac{\varepsilon}{2 M} \\
f o r & y
\end{array}\right) .
$$

for $y \in U$.
Hence, $f \cdot g$ is continuous on X.
$\varphi(X)$ is closed under addition aud multiplication. since constant functions are contimnons on X, it is also

Closed under multiplication 4 by real numbers.
Norm satisfies
(1) $\|f\| \geqslant 0 \quad\|f\|=0 \Leftrightarrow f=0$.
(2) $\|\alpha \cdot f\|=|\alpha| \cdot\|f\|$

R
(3) $\|f+g\| \leqslant\|f\| \cdot\|g\|$
(4) $\|f \cdot g\| \leqslant\|f\| \cdot\|g\|$
$\varphi(X)$ is a normed algebra owed \mathbb{R},

Topology is given \&y metric

$$
d(f, g)=\|f-g\| .
$$

 $e([a, b])$ is a moAned algebra

Denote by A the subset of $e([a, b])$ which consists of rectrictious of polynomials

$$
P(x)=\sum_{n=0}^{N} a_{n} x^{\mu}
$$

to $[a, b]$ (N is the degree of P, aud it is atleitivas y). Since sin and product of polynomials are polynomials, the subset

At is a nulsalgelera of $C([a, b-7)$.
$\varphi([a, b])$ is a metric space with metric of $(f, g)=\|f \cdot g\|$.
\Rightarrow topological space.
Def. Let X be a topological space and Y a subset of X. We say that Y is hemse in X if $\bar{Y}=X$.

Example: \mathbb{R} with natural topology. \mathbb{Q} is dense in \mathbb{R}.

We are going to prove the follonsing theorem.

Weierstrass' theorem.
The subalgebra A is dense in $\varphi([a, b])$.

This implies the following: Let f be a continuous function on $[a, b]$. Let $\varepsilon>0$. Them there exists a polynomial P such that

$$
|f(x)-P(x)|<\varepsilon
$$

for all $x \in[a, b]$.
f can be uniformly approximated by polynomials.

