Continuous maps

\((X, U), (Y, V)\) topological spaces

\(f : X \rightarrow Y\)

A map \(f\) is continuous at \(x_0 \in X\) if for any neighborhood \(N\) of \(f(x_0)\), \(f^{-1}(N)\) is a neighborhood of \(x_0\).

\(f : X \rightarrow Y\) is a continuous map if it is continuous at all \(x \in X\).
Claim. $f : X \to Y$ is continuous if and only if for any open set $V \subseteq Y$, $f^{-1}(V)$ is open.

Proof. Assume that f is continuous. Let V be an open set in Y. If $V \cap f(x) = \emptyset$, $f^{-1}(V) = \emptyset$ is open.

If $V \cap f(x)$ is not empty, $f^{-1}(V) = \{ x \in X \mid f(x) \in V \}$ is not empty. If $x \in f^{-1}(V)$, $f(x)$ is in V. V is an open neighborhood of $f(x)$ \Rightarrow f is continuous at x \Rightarrow $f^{-1}(V)$ is a neighborhood of x.
\(f^{-1}(V) \) is a neighborhood of any of its points \(\Rightarrow f^{-1}(V) \) is open.

Assume that \(f \) satisfies \(V \) open in \(Y \) \(\Rightarrow f^{-1}(V) \) is open in \(X \) for all \(V \subseteq Y \).

Let \(x \in X \). Let \(N \) be a neighborhood of \(f(x) \). Then there exists open set \(V \) such that \(f(x) \in V \subseteq N \)

\[\Rightarrow x \in f^{-1}(V) \subseteq f^{-1}(N) \]

open

\(\Rightarrow f^{-1}(N) \) is a neighborhood of \(x \).
f is continuous at x.

Category of topological spaces

Objects - topological spaces
Morphisms - continuous maps

- Identity map is continuous
- Composition of continuous maps is continuous

\[
\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
\parallel & & \parallel \\
\downarrow{g} & & \downarrow{e} \\
\downarrow{g \circ f} & & \downarrow{z}
\end{array}
\]
Exercises:

1. If (X, d_X) and (Y, d_Y) are two metric spaces $f : X \rightarrow Y$ is continuous at x_0 if for any $\varepsilon > 0$ there exists $\delta > 0$ such that

$$d(x_0, x) < \delta \implies d(f(x_0), f(x)) < \varepsilon.$$

2. If Y has chaos topology any maps $f : X \rightarrow Y$ is continuous.

3. (X, U) topological space $Y \subset X$ subset $V = \{ Y \cap U \mid U \in U \}$ is a topology on Y, induced topology on Y.
compact sets
X topological space
Y ⊆ X subset. U family of open sets in X. U is an open cover of Y if
Y ⊆ ∪ U.
U ∈ U
A set C is compact if any open cover of C has a finite subcover.
(i.e. if U is an open cover there exists a finite subset of U such that F is a cover).
Lemma. Let C be a compact subset of X and $Z \subseteq C$ a closed set in X. Then Z is also compact.

Proof: Let U be an open cover of Z. Then $X \setminus Z$ is open. $U' = U \cup \{X \setminus Z\}$ is a cover of C. Since C is compact, U' has a finite subcover F of C.

If F is a subset of U it is a subcover of U which covers $C \Rightarrow$ covers Z. If F contains
\[S = (S \cup U) \cup \{x \in Z \} \]

\[C = U \cup U \cup (x \in Z) \quad \forall \in \mathcal{F} \cup U \]

\[\Rightarrow Z \subset U \cup U \quad \forall \in \mathcal{F} \cup U \]

\[\Rightarrow \mathcal{F} \cup U \text{ is a finite open cover of } Z. \text{ Hence } Z \text{ is compact.} \]

Example. \(X \) equipped with chaos topology - Any subset of \(X \) is compact.