Differentiable manifolds M -topological space $c = (v, \psi, n)$ U - open set in M q: U → Rⁿ homeomorphism of V onto open set $\varphi(v) \subset \mathbb{R}^n$ is a chart on M U is the domain of c m - dimension of C Troo charts c=(U, p, n) and c'=(U', p', n') are <u>compatible</u> if either UnU = \$ or $U \cap U' \neq \phi$ and

R" $\int \varphi^{1}(\upsilon')$ 2, 4(V) $\varphi'(U \cap U')$ y(unu) and the map $\varphi' \circ \varphi' : \varphi(\upsilon \land \upsilon') \longrightarrow \varphi'(\upsilon \land \upsilon')$ is C[∞] - diffeomorphism. An atlas on M is a collection compatible of chorts on M such that their domains are an open cover of M. Two atlases A and B on M are compatible if their union

3 is an atlas on M. Compatibility of atlases is au equivalence relation. Each equivalence class contains a largest element - the union of all atlases in this class. This is a saturated atlas. A differentiable manifold is a hansdorff topological space with a saturated atlas. A differentiable manifold is a locally compact space (each point has a compact meighborhood).

4 Variants : Assume that $\varphi' \varphi^{-1} \cdot \varphi(\upsilon \cap \upsilon') \longrightarrow \varphi'(\upsilon \cap \upsilon')$ is an analytic diffeomorphism (i.e functions are locally given By convergent power series). - analytic manifold. Replace R with C and assume that g'og are holomosphic diffeomorphisms (diff, in complex sense) - complex manifold. Let M, N be two manifolds F: M -> N a continuous map. Fis a differentiable

map if for any pair of charts

$$c = (U, \varphi, m)$$
 on M and $d = (V, \psi, n)$
on N such that $F(U) \subset V$

the map

$$\psi \circ F \circ \varphi^{-1} : \varphi(U) \longrightarrow \psi(V)$$

is a C[∞]-map (inf-differentiable)..
The category of differentiable
manifolds in the category with
objects which are differentiable
ananifolds and morphisms
which are differentiable maps.
Example. R-real line
 $c = (R, id, i)$ chart on R

6 Defines a structure of diff. manifold on R. A differentiable function f on a manifold M is a differentiable map f: M -> IR, C^M(M) - all differentiable functions on M - this is an algebra,