(1) Translations

If $T\left(x_{1}, \ldots, x_{m}\right)=\left(x_{1}+c_{1}, \ldots, x_{m}+c_{n}\right]$ for some $c \in \mathbb{R}^{n}$, we say that T is a translation Clearly

$$
\begin{aligned}
& T^{\prime}(x)=I \\
& J_{T}(x)=1
\end{aligned}
$$

and the change of variables formula follows from 1-dimerusional case.
(2) Flips

Let i, j be two indices, $1 \leqslant i<j \leqslant m$. A flip is amp

$$
\begin{aligned}
& T\left(x_{1}, \ldots, x_{i}, \ldots, x_{j}, \ldots, x_{m}\right)= \\
& =\left(x_{2}, \ldots, x_{j}, \ldots, x_{i}, \ldots, x_{m}\right)
\end{aligned}
$$

Clearly,

$$
T^{\prime}(x)=\left[\begin{array}{cccc}
i & j \\
\hdashline \because & 00^{\prime} & 0 & 0 \\
\hdashline \therefore & 0 & 0 & 0 \\
\hdashline 0 & \ddots & \cdots & 0 \\
\hdashline & 0 & 0 & 0 \\
\hdashline 0 & 0 & 0 & 0
\end{array}\right] \dot{j}
$$

i.e., it is the identity matrix with $i^{\text {th }}$ and $j^{\text {th }}$ column switched. Therefore

$$
\begin{aligned}
& J_{T}(x)=\operatorname{det} T^{\prime}(x)= \\
& =-1 .
\end{aligned}
$$

Hence $\left|J_{T}(x)\right|=1$
and the change of variables formula follows from the independence of the
integral on the order of integration.

Now we want to describe arbitrary map T locally as a comp ositiou of "simpler" maps, First, composing it with translations, we can assume that $0 \in V$ and $0 \in V$ and

$$
T(0)=0 .
$$

Assume that

$$
\begin{aligned}
& T\left(x_{1}, \ldots, x_{m}\right)= \\
& \left(x_{11}, \ldots, x_{m-1}, \alpha_{m}(x), \ldots, \alpha_{m}(x)\right)
\end{aligned}
$$

with $\alpha_{i}: U \rightarrow \mathbb{R}$ continuously differentiable. Then, if $m=1$, Tins arbitrary; and if $m=n, T$ is a primitive map. We shall now discuss internuerinte cases,

First, since $T(0)=0$,

$$
\alpha_{i}(0)=0 \text { for } m \leq i \leq x .
$$

Moxeowe, we have

$$
\left.T^{\prime}(x)=\left[\begin{array}{cc:c}
1 & 0 & 0 \\
0 & 1 & 0 \\
\partial_{a_{m}}(x) & & \ldots \\
\vdots & & \partial_{m} \alpha_{m}(x) \\
\partial_{1} \alpha_{m}(x) & \ldots & \ldots
\end{array}\right] \partial_{m} \alpha_{m}(x)\right]
$$

hence

mot all coefficients in this column can vanish at 0 !
Therefore, there exists $k, m \leqslant k \leqslant n$, such that $\left(\partial_{m} \alpha_{k}\right)(0) \neq 0!$

Let F be the flip which switches x_{m} aud x_{k}. Then $S=F \circ T$ is a continuously differentiable
bijection such that

$$
\begin{aligned}
& S\left(x_{1}, \ldots, x_{n}\right)=F\left(T\left(x_{1}, \ldots, x_{m}\right)\right)= \\
& =\left(x_{1}, \ldots, x_{m-1}, \alpha_{k}(x), \ldots, \alpha_{m}(x), \ldots \alpha_{m}(x)\right) \\
& \beta_{m}(x) \ldots . . . \beta_{m}(x)
\end{aligned}
$$

ie.

$$
\begin{aligned}
& S\left(x_{1}, \ldots, x_{\mu}\right)=\left(x_{1, \ldots, x_{m, y}} \beta_{\mu}(x) \ldots, \beta_{\mu}(x)\right) \\
& \text { and } \partial_{m} \beta_{m}(0)=\partial_{\mu} \alpha_{k}(0) \neq 0 \text {. }
\end{aligned}
$$

Moreover,

$$
T=F \cdot S
$$

Therefore, T is a composition of a flip and a map S which has the additional property $\left(\partial_{m} \beta_{m}\right)(0) \neq 0$.

