Second reduction

Assume that for any $a \in V$ there exists an open neighborhood V_{a} of $a, V_{a} \subset V$ such that the formula holds for functions $f \in C_{0}\left(\mathbb{R}^{n}\right)$ such that
supp $f \subset V_{a}$.
Let $f \in C_{0}\left(\mathbb{R}^{x}\right)$ with $K=\operatorname{supp} f \subset V$,
Then $\left(V_{a} ; a \in K\right)$ is an open cover of K. Let $\left(\varphi_{1}, \ldots, \varphi_{m}\right)$ be a partition of unity subordinated to the cover $\left(V_{a} ; a \in K\right)$.
Then

$$
\begin{aligned}
& \sum_{i=1}^{m} \varphi_{i}(y)=1 \text { for } y \in K . \\
\Rightarrow & f(y)=\sum_{i=1}^{m} \varphi_{i}(y) f(y)= \\
= & \sum_{i=1}^{m}\left(\varphi_{i} f\right)(y), \quad y \in \mathbb{R}^{n}
\end{aligned}
$$

Put $f_{i}=f \cdot \varphi_{i}$.
Them supp $f_{i} \subset V_{a_{i}}$ for some $a_{i} \in K$.
By the assumption, we have

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}} f_{i}(T(x))\left|J_{T}(x)\right| d x= \\
& \quad=\int f_{i}(x) d x
\end{aligned}
$$

for $1 \leq i \leq m$. Hence

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}} f(x) d x=\int \sum_{i=1}^{m} f_{i}(x) d x= \\
= & \sum_{i=1}^{m} \int_{\mathbb{R}^{m}} f_{i}(x) d x= \\
= & \sum_{i=1}^{m} \int_{\mathbb{R}^{m}} f_{i}(T(x))\left|J_{T}(x)\right| d x \approx
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{\mathbb{R}^{x}} \sum_{i=1}^{m} f_{i}(T(x))\left|J_{T}(x)\right| d x= \\
& =\int_{\mathbb{R}^{m}} f(T(x))\left|J_{J}(x)\right| d x
\end{aligned}
$$

So, the formula hooks for.
(This is a typical seample of reducing a global statement to local using partition of unity.)

Primitive maps
Let $G: U \rightarrow V, U$ and V open in \mathbb{R}^{n}. Then

$$
G(x)=\left(G_{1}(x), \ldots, G_{m}(x)\right)
$$

where

$$
G_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}, 1 \leq i \leq n .
$$

We say that G is primitive if there exists $m, 1 \leqslant m \leqslant m$, such that $G_{i}\left(x_{1}, \ldots, x_{n}\right)=x_{i}$ for $1 \leqslant i \leqslant n, i \neq m$.
I_{m} this case $G_{m}(x)=g(x)$ is a function on U. Assume, in addition, that
G is a continuously differentiable bijection of U onto V. Then

$$
G^{\prime}(x)=\left[\begin{array}{cccc}
1 & 0 & 0 \\
0 & \ddots & 0 \\
\partial_{g}(x) & \cdots & \partial_{m} g(x) & \ldots \\
0 & \vdots & 0 & 0 \\
0 & 0 . & 1
\end{array}\right]
$$

Hence, we have

$$
J_{G}(x)=\operatorname{det} G^{\prime}(x)=\partial_{\mu} g(x) .
$$

Assume that $J_{G}(x) \neq 0$ on U. Then we have

$$
\partial_{m} g(x) \neq 0
$$

on U,
Let f be a continuous
finmetion with compact support in V, Them foG is a continuous furuetion with compact support in V.
Moreover, we have

$$
\int f(G(x))\left|J_{G}(x)\right| d x=
$$

$\iint_{\ldots}\left(S f\left(G_{G}(x)\right)\left|\partial_{m g} g(x)\right| d x_{m}\right) d x \ldots d x$ since the result doesn't depend on order of integration.
Fix $x_{1}, \ldots, x_{m-1}, x_{m+1}, \ldots x_{m}$. Then $\gamma\left(x_{m}\right)=g\left(x_{1}, \ldots, x_{m}, \ldots, x_{m}\right)$ is a differentiable function onaropen set in \mathbb{R}

$$
\gamma^{\prime}\left(x_{m}\right)=\left(\partial_{m} g\right)\left(x_{1}, \ldots, x_{m}, \ldots, x_{m}\right)
$$

Put

$$
\varphi\left(x_{m}\right)=f\left(x_{1}, \ldots, x_{m}, \ldots x_{n}\right) .
$$

Then

$$
\varphi\left(\gamma\left(x_{m}\right)\right)=f\left(x_{1}, \ldots, g(x), \ldots x_{m}\right)
$$

Hence, by 1-dime. version of change of variables formula, we know that

$$
\begin{aligned}
& \int f\left(x_{1}, \ldots, x_{m-1}, g\left(x_{1}, \ldots, x_{m}, \ldots, x_{m}\right) \ldots, x_{m}\right) \\
& \left|J_{G}\left(x_{1}, \ldots, x_{m-1}, x_{m}, \ldots x_{m}\right)\right| d x_{m}= \\
= & \int \varphi\left(\gamma\left(x_{m}\right)\right)\left|\gamma^{\prime}\left(x_{m}\right)\right| d x_{m}= \\
= & \int \varphi\left(x_{m}\right) d x_{m}= \\
= & \int f\left(x_{1}, \ldots, x_{m}, \ldots, x_{m}\right) d x_{m}
\end{aligned}
$$

Plugging this in the plerions expression we get

$$
\begin{aligned}
& \int f(G(x))\left|J_{G}(x)\right| d x= \\
& =\int f(x) d x
\end{aligned}
$$

Hence, the change of vasiabler formula holds for primitive maps.

