Recall of Linear Algebra
V linear space over \mathbb{R}
(1) inner ptoduct on V
(.1.) $: V \times V \longrightarrow \mathbb{R}$
(1) linear in both vasiables
(2) $(u \mid v)=(v \mid n)$ symultiy

$$
u, v \in V
$$

(3) $(n \mid n) \geqslant 0,(u \mid n)=0 \Leftrightarrow u=0$.

Theorem (Cauchy-Schwart t imequality)
Let $m_{1} v \in V$. Them

$$
\frac{|(n \mid v)| \leqslant\|u\| \cdot\|v\| .}{\|n\|=(n \mid u)^{1 / 2}} \text { of } u
$$

Can assume that $n, v \neq 0$.
Consider the function

$$
\begin{aligned}
& \mathbb{R} \ni t \longmapsto(t u+v \mid t u+v) \geqslant 0 \\
& (t u+v \mid t u+v)=t^{2}(u \mid u)+ \\
& 2 t(u \mid v)+(v \mid v)= \\
& =\|u\|^{2} t^{2}+2(u \mid v) t+\|v\|^{2}
\end{aligned}
$$

This is a quadratic polynomial

$$
t \longmapsto a t^{2}+b t+c
$$

$a>0$, Graph:
since

$$
a t^{2}+b t+c \geqslant 0
$$

The red case cannot happen Hence the quadratic equation

$$
a t^{2}+b t+c=0
$$

has at most one real
zero

$$
x_{11 x_{2}}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
\Rightarrow b^{2}-4 a c \leq 0
$$

$$
\Rightarrow b^{2} \leqslant 4 a c
$$

$$
\begin{aligned}
& Y(u \mid v)^{2} \leqslant \not X\|u\|^{2} \cdot\|v\|^{2} \\
& \| u \mid v) \mid \leqslant\|u\| \cdot\|v\|,
\end{aligned}
$$

Let $u_{1} v \in V$

$$
\begin{aligned}
& \|u+v\|^{2}=(u+v \mid u+v)= \\
= & \|u\|^{2}+2\left(u(v)+\|v\|^{2} \leq\right. \\
\leqslant & \left.\|u\|^{2}+2\|u\| \cdot\|v\|\right)+\|v\|^{2}= \\
= & (\|u\|+\|v\|)^{2}
\end{aligned}
$$

Taking square root we get

$$
\|u+v\| \leqslant\|u\|+\|v\|
$$

(trinegle inequality for norm).

$$
\begin{aligned}
d(M, v) & =\|M-v\| \\
d: V \times V & \rightarrow \mathbb{R}
\end{aligned}
$$

is a metric on V.
V is a metric space.
Example: $V=\mathbb{R}^{n}$

$$
(x \mid y)=\sum_{i=1}^{n} x_{i} y_{i}
$$

inner product in \mathbb{R}^{n}

$$
\|x\|=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}
$$

$$
\begin{aligned}
& d(x, y)=\|x-y\|= \\
&=\sqrt{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}}
\end{aligned}
$$

Euclidean distance in \mathbb{R}^{n} It is a metic on \mathbb{R}^{n} which defines the "natural" topology of \mathbb{R}^{n}.

Open set O in \mathbb{R}^{n}

For all $x \in O$
(T11) there exists $\varepsilon>0$ such that

$$
B(x, v)=\left\{y \in \mathbb{R}^{n} \mid\|x-y\|<\varepsilon\right\}
$$

is $\operatorname{sen} 0$ 。

