X, Y metric spaces
d_{x}, d_{y} metric
$f: X \longrightarrow Y$ is continuous if for any $x \in X$ and $\varepsilon>0$ there exists $\delta_{x}>0$ such that

$$
d_{x}(x, y)<\delta_{x} \Longrightarrow d_{Y}(f(x), f(y))<\varepsilon
$$

$f: X \rightarrow Y$ is uniformly continuous if for any $\varepsilon>0$ there exist $\delta>0$ such that

$$
d_{x}(x, y)<\delta \Rightarrow d_{y}(f(x), f(y))<\varepsilon .
$$

f uniformly continuous \Longrightarrow f is continuous
Converse is false $\left(e^{x}: \mathbb{R} \rightarrow \mathbb{R}\right)$.

Theorem:
X compact metric space
$f: X \rightarrow Y$ is a continurans function. Then f is uniformly continuous, ie. for any $\varepsilon>0$ there exists $\delta>0$ such that

$$
x, y \in X, d_{x}(x, y)<\delta \Longrightarrow d_{r}\left(f(x)_{f} f(y)\right)<\varepsilon .
$$

Proof: Since $f: X \rightarrow Y$ is continuous, for any $\varepsilon>0$ and $x \in X$ there exists $\delta_{x}>0$ such that

$$
d(x, y)<\delta_{x} \Longrightarrow d_{Y}(f(x), f(y))<\varepsilon / 2
$$

$P_{\text {ut }} U_{x}=\left\{y \left\lvert\, d(x, y)<\frac{\delta_{x}}{2}\right.\right\}$,
them $\left\{U_{x} ; x \in X\right\}$ is an open
cover of X_{0}. Let $x_{1}, \ldots, x_{n} \in X$ be such that $\left\{U_{x i} j 1 \leq i \leq m\right\}$ is a finite subcover. Let $\delta_{0}=$ $\operatorname{vain} \delta_{x_{i}}$. Take $\delta<\frac{\delta_{0}}{2}$.
Let $x \in X$. Then $x \in U_{x_{i}}$, hence $d\left(x, x_{i}\right)<\frac{\delta_{x_{i}}}{2}$,
Let $y \in K$ such that $d(x, y)<\delta$.
Them $d\left(y, x_{i}\right)<d(y, x)+d\left(x_{,}, x_{i}\right)<$

$$
\begin{aligned}
& <\delta+\frac{\partial_{x_{i}}}{2}<\frac{\delta_{i}}{2}+\frac{\partial_{x_{i}}}{2} \leqslant \delta_{x_{i}} \\
& \Rightarrow \quad d_{Y}\left(f(x), f\left(x_{i}\right)\right)<\varepsilon / 2 \\
& \quad d_{Y}\left(f(y), f\left(x_{i}\right)\right)<\varepsilon / 2 \\
& \Rightarrow \quad d_{Y}(f(x), f(y)) \leqslant d_{Y}\left(f(x), f\left(x_{i}\right)\right)+ \\
& d_{Y}\left(f\left(x_{i}\right), f(y)\right)<\varepsilon
\end{aligned}
$$

Integration in \mathbb{R}^{n}
Let f be a function on a topological space X. Let $u=\left\{u\right.$ open $\left.x, f l_{v}=0\right\}$ be the family of all open sets on which f restricts to 0 . Then the minion of all elements in u is in u, i.e., u contains a largest element with respect to the partial ordering given by inclusion.
Therefore, there exists the largest open set V
in X such that $f l_{V}=0$. The complement $X-V$ is a Closed set, werich we call the support of f and denote by supp.
Let X be a hausdorff space. Denote by $C_{0}(X)$ the set of all continuous functions $f: X \rightarrow \mathbb{R}$ such that supp f is compact.
Claim: $C_{0}(X)$ is a vector space.

$$
\begin{aligned}
& \quad f \in C_{0}(X), \alpha \in \mathbb{R}, \alpha f \in C_{0}(X) . \\
& f, g \in C_{0}(X) \\
& 0=X-(\operatorname{supp}(f) \cup \operatorname{supp}(g)) \quad x \in U, x \notin \operatorname{senpp}(f) \\
& X \notin \operatorname{supp}(g), f(x)=0, g(x)=0 \Rightarrow
\end{aligned}
$$

$$
\begin{aligned}
& (f+g)(x)=f(x)+g(x)=0 \\
& \left.\Rightarrow(f+g)\right|_{v}=0 \\
& \operatorname{supp}(f+g) \subseteq X \cup V=\operatorname{supp}(f) \operatorname{supp}(g) \\
& \text { couppact }
\end{aligned}
$$

$\operatorname{supp}(f) \cup \operatorname{supp}(g)$ is compact

$$
\operatorname{supp}(f+g) \subset \operatorname{supp}(f) \cup \operatorname{supp}(g)
$$ closed comprect

$\Rightarrow \operatorname{supp}(f+g)$ is comppact,

