inner product

$$e_{m}(x) = e^{inx} \quad n \in \mathbb{Z}$$

$$(e_{m}|e_{m}) = 0 \quad \text{if } m \neq m$$

$$(e_{m}|e_{m}) = 1$$

$$\|f\| = (f|f)^{1/2}$$

$$\|f\| = \max \quad |f(x)|$$

$$x \in [o_{j}z\pi]$$
another norm
$$2\pi$$

$$\|f\|^{2} = (f|f) = \frac{1}{2\pi} \int |f(x)|^{2} dx \leq \frac{1}{2\pi} \int \|f(x)\|^{2} dx = \|f(x)\|^{2}$$

L

 $\mathcal{C}_{\text{per}}(\mathbb{R}) = \frac{1}{2\pi} \int f(\mathbf{k}) \overline{g(\mathbf{x})} d\mathbf{x}$

 \mathcal{D} $||f|| \leq ||| f||$ These norms define two different metric on Cper (R) (and -different topologies). $B(f,z) = \{g \mid | ||g - f || < \varepsilon \}$ $\underline{B}(f_{12}) = fd | ||d - f|| < \xi$ By the above inequality $B(f_{1}\varepsilon) \subset B(f_{1}\varepsilon)$ for any & and E. If U is open set for topology given by 11.11 any fe U has a meighborhood B(f, E) CU, ⇒ B(f, E) < U ⇒ U is open

3 in topology defined by III. III Topology defined by III. III has more open sets - it is finer than the topology defined by 11.11. e-n, e-m+1, ..., en span a vector Aubspace V of Eper (TR) consisting of trig polynomials Par Zakeikx (k=-m As we remarked, for a function fe Cpes(IR) $\|f - \sum_{k=-m}^{m} (f|e_k) e_k\|$ < || f - P || for any PEU.

Let
$$e \ge 0$$
. By Stone - Weierstrass,
there exists a trig polynomial
 $P = \sum_{k=-m}^{m} \alpha_k e_k$ such that
 $\|[f - P]\|| < \varepsilon$,

This implies that
$$\|f - P\| < \varepsilon$$
.

Therefore, for that
$$n$$

 $N = \frac{N}{k} + \frac{1}{k} + \frac{1}{$

for any NZM (nince P is in the subspace spanned by
$$(e_{kj}-N \le k \le N)$$
.
Therefore, we have the sequence

of partial sums $S_{N}: N \longrightarrow \sum (f|e_{k})e_{k}$

such that continuous functions (SN) converge to f, i.e., d (SN, f) < z for N>m. $(lim S_N = f)$ this is the metric defined by the norm II. II (and not the "uniform" morm III.III - this is not mniform convergence). We have, by Pythagora's theorem, $\|f\|^{2} = \|f - \sum_{k=1}^{N} (f|e_{k})e_{k}\|^{2} +$

+
$$\|\sum_{k=-N}^{N} (f|e_k)e_k\|^2 = \frac{1}{k=-N}$$

= $\|[f - \sum_{k=-N}^{N} (f|e_k)e_k\|^2 + \sum_{k=-N}^{N} |(f|e_k)|^2$
 $\sum_{k=-N}^{N} |(f|e_k)|^2$ has positive terms,
 $k=-N$
it is increasing as $N \rightarrow \infty$ and
bounded by Bessel inequality.
 \Rightarrow converges!
By taking the limit, we get
 $\|f\|^2 = \sum_{k=-N}^{\infty} |(f|e_k)|^2$.

This is the Bessel equality.

•

Assume that
$$f \in C_{per}(R)$$
 has
continuous derivative, Then
 $(f'|e_m) = \frac{1}{2\pi} \int f'(x) e^{-inx} dx =$
 $= \frac{1}{2\pi} \left[f(x) e^{-inx} \right]_{0}^{2\pi} + \frac{in}{2\pi} \int f(x) e^{-inx} dx$
 $= \frac{1}{2\pi} \left[f(x) e^{-inx} \right]_{0}^{2\pi} + \frac{in}{2\pi} \int f(x) e^{-inx} dx$
 $= 0$
 $= in (f|e_m)$
by integration by parts.
 $|(f'|e_m)| = n |(f|e_m)|,$
If f is twice continuously
differentiable
 $|(f''|e_m)| = n |(f'|e_m)| =$
 $n^2 |(f|e_m)|,$

 \heartsuit By Bessel iniquality, $\sum_{n=1}^{\infty} |(f(e_n))|^2 \leq ||f||^2$ $\Rightarrow \|(f|e_n)\| \leq \|f\|$ for any me I (or by direct estimate) $\implies |(t_n|e^n)| \leq ||t_n||$ for all mEZ. $n^{2}((f|e_{m})) \leq ||p^{u}||.$ $|(fle^{w})| \leq \frac{w_{5}}{\|f_{w}\|}$

for m to.

Since
$$\sum_{k=1}^{\infty} \frac{1}{n^2}$$
 is convergent
by integral test,
 $\sum_{m=-\infty}^{\infty} 1(f!e_m)|_{m=-\infty}$
is convergent
 $F(x) = \sum_{m=-\infty}^{\infty} (f!e_m) e_m$
is absolutely convergent,
 $F(x) - \sum_{m=-N}^{\infty} (f!e_m) e_m|_{m=-N}$

 $\leq \sum_{\substack{m \geq N+1 \\ m \geq N+1}}^{\infty} |(p|e_m)| < \varepsilon$

for large N. Therefore, the above

convergence is uniform.
This implies that
$$F$$
 is
a continuous function,
Uniform convergence (with
respect to norm III, III) implies
the convergence with respect to
norm II, II. Hence
 $F = \sum_{m=-\infty}^{\infty} (fle_m)e_m = f !$
Therefore use proved that
the Fourier series of f
converge to f minformly

if f introice differentiable!