Problem 1 (20 points). Prove that
\[1 \leq \int_{-1}^{1} \frac{1}{1 + x^{2n}} \, dx \leq 2 \]
for all \(n \in \mathbb{N} \).

Solution: Since \(0 \leq x^{2n} \leq 1 \) for \(x \in [-1, 1] \), we have
\[1 \leq 1 + x^{2n} \leq 2 \]
and
\[\frac{1}{2} \leq \frac{1}{1 + x^{2n}} \leq 1 \]
for \(x \in [-1, 1] \). This implies that
\[1 = \int_{-1}^{1} \frac{1}{2} \, dx \leq \int_{-1}^{1} \frac{1}{1 + x^{2n}} \, dx \leq \int_{-1}^{1} \, dx = 2. \]

Problem 2 (20 points). Let \(\{f_n\} \) be a sequence of integrable functions defined on a closed bounded interval \([a, b]\). If \(\{f_n\} \) converges uniformly on \([a, b]\) to a function \(f \), prove that \(f \) is integrable and
\[\int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} \int_{a}^{b} f_n(x) \, dx. \]

Solution: Let \(\epsilon > 0 \). Since \(\{f_n\} \) converge uniformly to \(f \), there exists \(N \) such that \(|f(x) - f_n(x)| < \epsilon \) for all \(x \in [a, b] \) for \(n \geq N \). Therefore,
\[f_n(x) - \epsilon \leq f(x) \leq f_n(x) + \epsilon \]
for all \(x \in [a, b] \). This implies that we have
\[\inf_{x \in [x_{i-1}, x_i]} f_n(x) - \epsilon \leq \frac{1}{2} \, dx \leq \sup_{x \in [x_{i-1}, x_i]} f_n(x) + \epsilon \]
for all \(x \in [x_{i-1}, x_i] \). Moreover, we have
\[\inf_{x \in [x_{i-1}, x_i]} f_n(x) - \epsilon \leq \inf_{x \in [x_{i-1}, x_i]} f(x) \leq \sup_{x \in [x_{i-1}, x_i]} f(x) \leq \sup_{x \in [x_{i-1}, x_i]} f_n(x) + \epsilon \]
for all \(x \in [x_{i-1}, x_i] \). If \(P \) is a partition of \([a, b]\), this implies that
\[
\inf_{x \in [x_{i-1}, x_i]} f_n(x)(x_{i+1} - x_i) - \epsilon(x_{i+1} - x_i) \leq \inf_{x \in [x_{i-1}, x_i]} f(x)(x_{i+1} - x_i)
\leq \sup_{x \in [x_{i-1}, x_i]} f(x)(x_{i+1} - x_i) \leq \sup_{x \in [x_{i-1}, x_i]} f_n(x)(x_{i+1} - x_i) + \epsilon(x_{i+1} - x_i).
\]
Summing over \(i \) we get
\[
L(f_n, P) - \epsilon(b - a) \leq L(f, P) \leq U(f, P) \leq U(f_n, P) + \epsilon(b - a).
\]
It follows that
\[
U(f, P) - L(f, P) \leq U(f_n, P) - L(f_n, P) + 2\epsilon(b - a)
\]
for any \(n \geq N \). Since \(f_n \) are integrable, we can find \(P \) such that
\[U(f_n, P) - L(f_n, P) < \epsilon. \]
Therefore, we get
\[U(f, P) - L(f, P) < \epsilon(2(b - a) + 1). \]
Since \(\epsilon \) is arbitrary, we see that \(f \) is integrable. Now we have
\[
\left| \int_a^b f(x) \, dx - \int_a^b f_n(x) \, dx \right| \leq \left| \int_a^b (f(x) - f_n(x)) \, dx \right|
\leq \int_a^b |f(x) - f_n(x)| \, dx \leq \epsilon(b - a)
\]
for \(n \geq N \). This implies that
\[
\lim_{n \to \infty} \int_a^b f_n(x) \, dx = \int_a^b f(x) \, dx.
\]

Problem 3 (20 points). Find
\[
\frac{d}{dx} \int_0^{2x} \sin t^2 \, dt.
\]

Solution: Let
\[
F(x) = \int_0^x \sin t^2 \, dt.
\]
Since \(\sin(t^2) \) is continuous function, by Second Fundamental Theorem of Calculus, \(F \) is a differentiable function and \(F'(x) = \sin(x^2) \). Hence, by chain rule we have
\[
\frac{d}{dx} F(2x) = F'(2x) \cdot 2 = 2 \sin(4x^2).\]
Problem 4 (20 points). Let \(f \) be a continuous function on the interval \([0, 1]\). Express
\[
\int_0^{\frac{\pi}{2}} f(\sin \theta) \cos \theta \, d\theta
\]
as an integral involving only the function \(f \).

Solution: The function \(\sin \theta \) is differentiable and its derivative \(\cos \theta \) is continuous, and therefore integrable on \([0, \frac{\pi}{2}]\). The image of \([0, \frac{\pi}{2}]\) under \(\sin \) is \([0, 1]\). Therefore, by the change of variables formula, we have
\[
\int_0^{\frac{\pi}{2}} f(\sin \theta) \cos \theta \, d\theta = \int_0^1 f(u) \, du.
\]

Problem 5 (20 points). Prove that
\[
\ln \left(\frac{a}{b} \right) = \ln a - \ln b
\]
for all \(a, b \in (0, +\infty) \).

Solution: Let \(x, y > 0 \). Then we have \(\ln(xy) = \ln x + \ln y \). Therefore, for \(x > 0 \), we have
\[
0 = \ln(1) = \ln \left(x \cdot \frac{1}{x} \right) = \ln(x) + \ln \left(\frac{1}{x} \right),
\]
and
\[
\ln \left(\frac{1}{x} \right) = -\ln x.
\]
This implies that
\[
\ln \left(\frac{a}{b} \right) = \ln \left(a \cdot \frac{1}{b} \right) = \ln a + \ln \left(\frac{1}{b} \right) = \ln a - \ln b
\]
for \(a, b > 0 \).