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Dragan Miličić and Wolfgang Soergel

Introduction

Let g be a complex semisimple Lie algebra, U (g) its enveloping algebra and Z (g)
the center of U (g). Let b be a fixed Borel subalgebra of g and n = [b,b] its nilpo-
tent radical. A Whittaker module is a finitely generated U (g)-module which is also
U (n)-finite and Z (g)-finite. The category of Whittaker modules contains as a full
subcategory the category of highest weight modules, and at the other extreme, the
category of nondegenerate Whittaker modules (for the precise definition see Sect. 4).
In his paper [5], Kostant shows that the category of nondegenerate Whittaker mod-
ules has an extremely simple structure. The main goal of this paper is to explain
Kostant’s result using geometric methods – we reprove it in Sect. 5.

Our idea was to use the localization theory of Beilinson and Bernstein [1] to
transfer the study of Whittaker modules to the study of a particular category of D-
modules on the flag variety X of g. As explained in the first four sections of the pa-
per, our methods actually work for arbitrary Whittaker modules. The localizations of
Whittaker modules are holonomic, what immediately implies that Whittaker mod-
ules are of finite length – this was proven before by McDowell [6]. He also proved
that any irreducible Whittaker module is a quotient of a “standard” Whittaker mod-
ule – these are a generalization of Verma modules. This leads to the natural problem
of determining multiplicities of irreducible constituents of standard Whittaker mod-
ules.

Our project was started at Mathematical Sciences Research Institute in Berkeley,
CA, in 1987–88, during a special year in representation theory. The first draft of
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this paper and some of the early results on the multiplicity questions were obtained
there. In particular, we realized at that time how simple is the geometric explanation
of Kostant’s result.

At that time, the success of the geometric approach to prove the Kazhdan-Lusztig
conjectures for Verma modules was based on the fact that the localizations of high-
est weight modules are holonomic modules with regular singularities – this made
the standard techniques used in the study of composition series questions (like the
decomposition theorem) applicable. We realized immediately that the localizations
of Whittaker modules have irregular singularities. Therefore, at that time, we were
unable to pursue the geometric analysis of the multiplicity problem any further. Still,
assuming that the decomposition theorem holds for arbitrary irreducible holonomic
modules, we were able to get a number of interesting conjectural statements about
the structure of the category of Whittaker modules. The most important of these
statements was later proved, by completely different algebraic methods, in [10].

Recently, Mochizuki proved the decomposition theorem in full generality and
made our old geometric approach rigorous [11]. Still, we decided to publish this
paper in more-or-less original form to stress the simplicity of Kostant’s result, de-
ferring the general case to a future publication.

We were informed by Joseph Bernstein that he was aware that Kostant’s result
follows easily from localization theory.

1 Twisted Harish-Chandra sheaves

Let K be a connected algebraic group with Lie algebra k and φ a morphism of K
into the group of inner automorphisms Int(g) of g such that its differential induces
an injection of k into g. Hence we can identify k with a subalgebra of g. We say that
(g,K) is a Harish-Chandra pair if K acts by finitely many orbits on the flag variety
X of g.

Fix a Harish-Chandra pair (g,K) in the following.
Let η : k −→ C be a morphism of Lie algebras, i.e., a linear form on k which

vanishes on [k,k].
An η-twisted Harish-Chandra module is a triple (π,ν ,V ) where:

(i) (π,V ) is a finitely generated U (g)-module;
(ii) (ν ,V ) is an algebraic K-module;

(iii) the differential of the K-action on V induces a U (k)-module structure on V such
that

π(ξ ) = ν(ξ )+η(ξ )

for any ξ ∈ k.

We denote by M f g(g,K,η) the category of all η-twisted Harish-Chandra modules.
Let h be the (abstract) Cartan algebra of g [8, §2]. Let Σ be the root system in h∗

and W the corresponding Weyl group. Let λ ∈ h∗ and θ ∈W ·λ . By a theorem of
Harish-Chandra, θ determines a maximal ideal Jθ in Z (g). Let Uθ be the quotient
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of U (g) by the ideal generated by Jθ . Then we denote by M f g(Uθ ,K,η) the full
subcategory of M f g(g,K,η) consisting of modules which are actually Uθ -modules,
i.e., they are annihilated by Jθ .

In [1], Beilinson and Bernstein construct, for each λ ∈ h∗, a twisted sheaf of dif-
ferential operators Dλ on the flag variety X of g. For any λ ∈ θ , the global sections
Γ (X ,Dλ ) of Dλ are equal to Uθ .

As above, one can define the category Mcoh(Dλ ,K,η) of coherent Dλ -modules
which also admit an algebraic action of K. Differentiation of the K-action gives
an action of the Lie algebra k, we assume that it satisfies a compatibility condition
analogous to (iii) (compare [4, Appendix B], [9, Section 4]). We call the objects of
Mcoh(Dλ ,K,η) η-twisted Harish-Chandra sheaves.

Clearly, the cohomology modules of η-twisted Harish-Chandra sheaves are η-
twisted Harish-Chandra modules. Moreover, the localization functor ∆λ given by
∆λ (V ) = Dλ ⊗Uθ

V for a Uθ -module V , maps η-twisted Harish-Chandra modules
into η-twisted Harish-Chandra sheaves.

Assume that Σ+ is the set of positive roots in Σ such that at any point x ∈ X it
determines the nilpotent radical of the corresponding Borel subalgebra bx. Let ρ be
the half-sum of roots in Σ+. We say that λ ∈ h∗ is antidominant if αˇ(λ ) is not a
positive integer for any dual root αˇ of α ∈ Σ+. For antidominant and regular λ the
categories Mcoh(Dλ ,K,η) and M f g(Uθ ,K,η) are equivalent [8, 3.9].

The next result is proved exactly as in the non-twisted case [8, 6.1].

Lemma 1.1 Any η-twisted Harish-Chandra sheaf is holonomic.

Proof. Let FDλ be the natural degree filtration of Dλ .
Let V be an η-twisted Harish-Chandra sheaf.
First we claim that there exists a good filtration {Fn V | n ∈ Z+} of V with

the additional property that all Fn V are K-equivariant. By twisting by a homo-
geneous OX -module O(ν), for a weight ν in the weight lattice of Σ , we can as-
sume that λ is regular and antidominant. Then V = Γ (X ,V ) is a finitely generated
Uθ -module with algebraic action of K. This implies that it is generated by a finite-
dimensional K-invariant subspace U . Since by the equivalence of categories we have
V = Dλ ⊗Uθ

V , the images Fp V of the morphisms

Fp Dλ ⊗CU −→ V

define an exhaustive Dλ -module filtration of V by K-equivariant coherent OX -
submodules. It is evident that this is a good filtration of V .

By the K-equivariance of the filtration we see that ξ ·Fp V ⊂ Fp V for any ξ ∈
k ⊂ Γ (X ,Dλ ). This implies that the symbols of ξ ∈ k annihilate GrV . Since they
vanish on the conormal bundle to any K-orbit in X , the characteristic variety Ch(V )
of V is contained in the union of conormal bundles of K-orbits in X . Dimension
of the conormal bundle to any K-orbit in X is equal to dimX . Since the number of
orbits is finite, the dimension of the union of all such conormal bundles is also equal
to dimX . This implies that dimCh(V )≤ dimX . ut
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In particular, this implies that twisted Harish-Chandra sheaves are of finite length.
In addition we get the following consequence.

Corollary 1.2 Any η-twisted Harish-Chandra module is of finite length.

Proof. Assume that λ ∈ θ is antidominant. Then the localization ∆λ (V ) of any
module V in M f g(Uθ ,K,η) is in Mcoh(Dλ ,K,η). Since this Harish-Chandra sheaf
is of finite length by the above remark, and V = Γ (X ,∆λ (V )) [8, 3.6], the assertion
follows from the exactness of Γ and the fact that global sections of an irreducible
Dλ -module are irreducible or zero [8, 3.8], [7, L.4.1]. ut

The first example of the twisted Harish-Chandra modules was discussed in [4,
Appendix B] in relation with localization theory of Harish-Chandra modules for
semisimple Lie groups with infinite center.

The second example is related to Whittaker modules [5]. In this case, K = N. We
discuss it in more details in Sect. 4.

2 A category of n-finite modules

Let N be the full subcategory of the category of g-modules consisting of modules
which are

(i) finitely generated U (g)-modules;
(ii) Z (g)-finite;

(iii) U (n)-finite.

Let θ = W · λ be a Weyl group orbit in h∗ and Jθ the corresponding maximal
ideal in Z (g).

Let N
θ̂

be the full subcategory of N consisting of modules annihilated by some
power of Jθ , and Nθ the full subcategory of N consisting of modules annihilated
by Jθ . Since (i) and (ii) imply that the annihilator in Z (g) of an object in N is of
finite codimension, we have the following result.

Lemma 2.1 N =
⊕

θ⊂h∗Nθ̂
.

In other words, every object in N is a direct sum of finitely many objects in different
N

θ̂
.
Let V be a U (n)-finite module. For η ∈ n∗ we put

Vη = {v ∈V | (ξ −η(ξ ))kv = 0, ξ ∈ n, for some k ∈ N}.

Then Vη 6= 0 implies η |[n,n] = 0 and V =
⊕

η∈n∗Vη [3, Ch. VII, §1, no. 3,
Prop. 9.(i)]. If V and W are two U (n)-finite modules, it is easy to check that
Vη ⊗Wη ′ ⊂ (V ⊗W )η+η ′ for any η and η ′. Assume now that V ∈ N . Since the
adjoint action of n on g is nilpotent, we have g = g0. Hence, we conclude that the
natural map g⊗V −→ V given by ξ ⊗ v = ξ v maps g⊗Vη into Vη , i.e., Vη is
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a g-submodule. Denote by Nη the full subcategory of modules with the property
V =Vη . Then we have the following result.

Lemma 2.2 N =
⊕

η∈n∗Nη .

In other words, every object in N is a direct sum of finitely many objects in
different Nη . Put Nθ ,η = Nθ ∩Nη . Clearly, any irreducible object in N is in
some Nθ ,η .

Let V be an object in Nθ ,η . Then V ⊗C−η is a U (n)-finite module and clearly
V ⊗C−η = (V ⊗C−η)0, i.e., for any v ∈V ⊗C−η we have nk ·v = 0 for sufficiently
large k ∈N. Therefore, the n-action is the differential of an algebraic action of N on
V ⊗C−η . Using the natural isomorphism V −→ V ⊗C−η given by v 7→ v⊗ 1, we
get an algebraic representation of N on V with differential which differs from the
original action of n by η , i.e., V is in M f g(Uθ ,N,η). This leads us to the following
result.

Lemma 2.3 Nθ ,η = M f g(Uθ ,N,η).

In particular, the localization functor ∆λ maps Nθ ,η into Mcoh(Dλ ,N,η). Hence,
from 1.1 we deduce the following result.

Theorem 2.4 Localization ∆λ (V ) of a module V in Nθ is a holonomic Dλ -module.

In particular, localizations are Dλ -modules of finite length. This has the follow-
ing consequence originally proved in [6].

Theorem 2.5 Any module in N is of finite length.

Proof. By 2.1 we can assume that V is in N
θ̂

. Moreover, such V has a finite filtration
FV such that GrV is in Nθ . This reduces the proof to the case of V ∈ Nθ . Let
V ∈Nθ . By 1.2 and 2.3, we see that such V is of finite length. ut

3 Classification of irreducible twisted Harish-Chandra sheaves

Again, this is a simple variant of the results in the non-twisted case [8, §6]. Let
V be an irreducible object in M f g(Dλ ,K,η). Then its support is an irreducible
K-invariant subvariety of X . Therefore, it is the closure of a K-orbit Q in X . Let
i : Q−→ X be the natural inclusion. Then i is an affine immersion. The twisted sheaf
of differential operators Dλ on X induces the twisted sheaf of differential operators
(Dλ )

i =DQ,µ on Q where µ is the restriction of the specialization of λ +ρ to k∩bx
[4, Appendix A]. By Kashiwara’s equivalence of categories, the inverse image i!(V )
is an irreducible holonomic DQ,µ -module [8, §4]. By the compatibility condition
(iii), it is also a K-homogeneous OQ-module such that the differential of the K-
action differs from the action of k through DQ,µ by η . Since i!(V ) is holonomic,
i!(V ) is a connection on a dense open subset of Q and therefore a coherent O-
module there. Since it is also K-equivariant, it must be coherent everywhere on Q,
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hence it is a connection on Q. We put τ = i!(V ) and denote by I (Q,τ) the direct
image of τ in M (Dλ ,K,η). The module I (Q,τ) is called the standard Harish-
Chandra sheaf attached to (Q,τ). The standard Harish-Chandra sheaf I (Q,τ) has
a unique irreducible Harish-Chandra subsheaf L (Q,τ). The module L (Q,τ) is
isomorphic to V .

Moreover, the quotient I (Q,τ)/L (Q,τ) is a Harish-Chandra sheaf supported
in the boundary of the closure of the K-orbit Q.

It remains to describe all η-twisted irreducible DQ,µ -connections τ on the K-
orbit Q. Let x ∈ Q. Let Bx be the Borel subgroup of Int(g) with the Lie algebra
bx. Any K-homogeneous OQ-module is completely determined by the action of the
stabilizer Sx = φ−1(φ(K)∩Bx) in the geometric fiber at x. By the compatibility,
the irreducibility of τ implies also that it is irreducible as a K-homogeneous OQ-
module. Hence, the representation of Sx in the geometric fiber of τ is irreducible.
Moreover, its differential is a direct sum of a number of copies of the linear form
µ−η |(k∩bx) on k∩bx.

4 Whittaker modules

Let K = N. Let b be the unique Borel subalgebra of g containing n. Then N-orbits
are the Bruhat cells C(w), w ∈W , with respect to b, i.e., each cell C(w) consists of
all Borel subalgebras in relative position w with respect to b. Let bw be one of such
Borel subalgebras in C(w). Fix a Cartan subalgebra c of g contained in b∩bw. Let R
be the root system of (g,c) and R+ the set of positive roots determined by n. Denote
by s : h∗ −→ c∗ the specialization determined by b [8, §2]. Then nw = [bw,bw] is
spanned by the root subspaces corresponding to the roots in s−1(w(Σ+)).

Now we want to discuss the compatibility condition from the end of the last
section in this special case. Assume that a Bruhat cell C(w) admits an irreducible
N-homogeneous connection. First, n∩bw ⊂ nw, hence we have µ = 0. Also, since
the stabilizer of bw in N is unipotent, the only irreducible N-homogeneous OC(w)-
module on C(w) is OC(w). Therefore, a connection with the properties described in
Sect. 3 exists on C(w) if and only if η |(n∩nw) = 0. Moreover, it is isomorphic to
OC(w). By abuse of the notation, for α ∈ Σ we denote by gα the root subspace in
g corresponding to the root s−1α ∈ R. Then, the subalgebra n∩ nw is spanned by
the root subspaces gα for α ∈ Σ+ ∩w(Σ+). Hence, η |(n∩ nw) = 0 if and only if
η |gα = 0 for α ∈ Σ+∩w(Σ+).

Let Π be the set of simple roots in Σ corresponding to Σ+. The root subspaces
gα , α ∈Π , span a complement of [n,n] in n. Therefore, η |(n∩nw) = 0 if and only
if η |gα = 0 for α ∈Π ∩w(Σ+).

Let ` : W −→ Z+ be the length function on W with respect to the reflections sα ,
α ∈Π . Then, for any w ∈W , we have `(w) = dimC(w).

Let Θ ⊂ Π , and let WΘ be the subgroup of W generated by the reflections with
respect to α ∈Θ . The set of simple roots Θ determines also a standard parabolic
subalgebra pΘ containing b. Let PΘ be the corresponding parabolic subgroup in
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Int(g). Any PΘ -orbit in X is a disjoint union of Bruhat cells C(tv), t ∈WΘ , for some
v ∈W . In this way, we obtain a bijection between the PΘ -orbits in X and right WΘ -
cosets of W .

The following result is well known.

Lemma 4.1 The following conditions are equivalent:

(i) Θ ∩w(Σ+) = /0;
(ii) C(w) is the Bruhat cell open in one of the PΘ -orbits in X;

(iii) w is the longest element in one of the right WΘ -cosets of W.

Proof. By the above discussion, (ii) and (iii) are equivalent.
(ii)⇒(i) Fix a PΘ -orbit O and let C(w) be the Bruhat cell open in O. Then we

have
dimO = dimC(w) = `(w)> `(sα w), for any α ∈Θ .

Since `(v) = Card(Σ+ ∩ (−v(Σ+))) for any v ∈W [3, Ch. VI, §1, no. 6, Cor. 2 of
Prop. 17], this means that

Card(sα Σ
+∩ (−w(Σ+))) = Card(Σ+∩ (−sα w(Σ+)))< Card(Σ+∩ (−w(Σ+))),

for all α ∈Θ . Since sα permutes all roots in Σ+−{α}, it follows that α /∈ w(Σ+)
for all α ∈Θ and w satisfies (i).

(i)⇒(ii) Let ΣΘ be the root subsystem of Σ generated by Θ . Let T be the set of
roots in Σ+ which are not in ΣΘ . Since for any α ∈ Θ , sα permutes the positive
roots in Σ+−{α}, it follows that sα(T )⊂ Σ+. On the other hand, sα also permutes
roots in the complement of ΣΘ , i.e., sα(T )∩ΣΘ = /0. Therefore, sα(T ) = T . Since
WΘ is generated by the reflections with respect to Θ , we see that T is WΘ -invariant.

Assume that w ∈W satisfies (i). Then S = Σ+ ∩w(Σ+) is disjoint from Θ . We
claim that ΣΘ ∩S= /0. Assume that β ∈ΣΘ ∩S. Then β ∈Σ+, and it must be a sum of
roots from Θ . But Θ ⊂−w(Σ+), hence β ∈ −w(Σ+) and we have a contradiction.
It follows that S ⊂ T . Hence, t(S) ⊂ T ⊂ Σ+ for any t ∈WΘ . In particular, for any
t ∈WΘ , we have t(S)⊂ Σ+∩ tw(Σ+). It follows that

`(tw) = Card(Σ+∩ (−tw(Σ+))) = Card(Σ+)−Card(Σ+∩ tw(Σ+))

≤ Card(Σ+)−Card(S) = `(w)

for any t ∈WΘ , i.e., C(w) is the Bruhat cell of maximal dimension among the cells
contained in O. ut

Now, let
Θ = {α ∈Π | η |gα 6= 0}.

As we already remarked, a compatible irreducible connection exists on C(w) if and
only if Θ ∩w(Σ+) = /0. By 4.1, this is true if and only if C(w) is the open Bruhat
cell in one of PΘ -orbits in X . This leads to the following result.

For a Bruhat cell C(w) with the compatible irreducible connection OC(w) denote
by I (w,λ ,η) the corresponding standard η-twisted Harish-Chandra sheaf and by
L (w,λ ,η) the corresponding irreducible η-twisted Harish-Chandra sheaf.
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Theorem 4.2 The irreducible objects in the category Mcoh(Dλ ,N,η) are the mod-
ules L (w,λ ,η) where w ∈W is such that C(w) is an open Bruhat cell in a PΘ -orbit
in X.

We can also show, that for an antidominant λ , the “costandard” Harish-Chandra
sheaves M (w,λ ,η), which are obtained from standard Harish-Chandra sheaves
I (w,λ ,η) by an appropriate holonomic dualization process, correspond under lo-
calization to the “standard” Whittaker modules studied in [6]. We are going to dis-
cuss this in a subsequent paper.

As we mentioned in the introduction, the objects in Mcoh(Dλ ,N,η) have irreg-
ular singularities in general. This is clearly visible from the following example.

Let g= sl(2,C) and

N =

{(
1 0
x 1

) ∣∣∣∣ x ∈ C
}
.

The flag variety X of g is identified with P1. Let x be a point in X . The Borel
subalgebra bx in g is the stabilizer of the line in C2 determined by x. Therefore,
n is the nilpotent radical of b∞ and C ⊂ P1 is the open N-orbit in X . Let λ = −ρ .
Then D−ρ = DX is the sheaf of differential operators on X . The matrix(

1 0
x 1

)
∈ N

moves 0 into x. Hence it defines an isomorphism of N onto C. Also, if ∂ denotes
differentiation with respect to z considered as a vector field on C, then

ξ =

(
0 0
1 0

)
∈ n

corresponds to ∂ under the above isomorphism.
Let Iη be the standard η-twisted Harish-Chandra sheaf attached to the open

orbit. Then the restriction of Iη to C is isomorphic to the quotient of DC by the
left ideal generated by ∂ −η(ξ ). If η 6= 0, this is a connection on C which has an
irregular singularity at infinity.

5 The nondegenerate case

We say that η is nondegenerate if η |gα 6= 0 for α ∈Π . In this case Θ =Π and PΘ =
G. Let w0 be the longest element of the Weyl group W . By 4.2, in this case there
exists only one irreducible object Lλ = L (w0,λ ,η) in Mcoh(Dλ ,N,η). Since the
quotient of the corresponding standard Harish-Chandra sheaf Iλ by Lλ must be
supported in the complement of the big cell, it must be zero. Hence, we conclude
that Lλ is equal to the standard Harish-Chandra sheaf Iλ , i.e., Iλ is irreducible.
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Moreover, the space of global sections of Iλ is equal to the space R(C(w0)) of
regular functions on the affine variety C(w0). Therefore, from [8, 3.8], we see that
Γ (X ,Iλ ) is an irreducible Whittaker module for any antidominant λ ∈ h∗.

This also implies that in this case there exists a unique irreducible object in the
category Nθ ,η .

Now we want to describe these modules. Clearly, the function 1 on X determines
a global section of Iλ and it spans an n-stable subspace of Γ (X ,Iλ ) on which n
acts by η . Since Iλ is irreducible, this leads to an epimorphism of the coherent
Dλ -module Dλ ⊗U (n) Cη onto Iλ . Clearly, with the N-action given by the ten-
sor product of the natural action on Dλ with the trivial action on C, Dλ ⊗U (n)Cη

becomes an η-twisted Harish-Chandra sheaf. Moreover, since an orbit map from N
into C(w0) is an isomorphism, the restriction to the big cell C(w0) is an epimorphism
of the OC(w0)-module

(Dλ ⊗U (n)Cη) |C(w0)∼= DC(w0)⊗U (n)Cη
∼= OC(w0)⊗CC∼= OC(w0)

onto the irreducible connection Iλ |C(w0). Therefore, this is an isomorphism. It
follows that the kernel of the morphism of Dλ⊗U (n)Cη onto Iλ is supported on the
complement of the big cell. But as we remarked before, the only object which can
be supported there is 0. This implies that Dλ ⊗U (n)Cη = Iλ . This finally proves
the following result.

Theorem 5.1 Let η ∈ n be nondegenerate and λ ∈ h∗. Then the only irreducible
object in Mcoh(Dλ ,N,η) is Dλ ⊗U (n)Cη .

We also have an analogous result for Nθ ,η . It was originally proved by Kostant
in his work on Whittaker modules [5].

Theorem 5.2 Let η ∈ n be nondegenerate. Then the only irreducible module in
Nθ ,η is Uθ ⊗U (n)Cη .

Proof. Let λ ∈ θ be antidominant. Then

∆λ (Uθ ⊗U (n)Cη) = Dλ ⊗Uθ
(Uθ ⊗U (n)Cη) = Dλ ⊗U (n)Cη = Iλ .

Therefore, by [8, 3.6], we have

Γ (X ,Iλ ) = Uθ ⊗U (n)Cη

and this is the unique irreducible object in M f g(Uθ ,N,η). ut

A vector in a Whittaker module which spans an n-stable subspace is called a
Whittaker vector.

Corollary 5.3 All Whittaker vectors in Uθ ⊗U (n)Cη are proportional to 1⊗1.

Proof. By the preceding argument we see that Whittaker vectors correspond exactly
to N-invariant sections of Iλ . These sections are exactly constant functions on the
open cell C(w0). ut
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Since the global sections of Dλ clearly operate faithfully on global sections of
Iλ we get the following consequence [5].

Corollary 5.4 The action of Uθ on Uθ ⊗U (n)Cη is faithful.

Consider now an arbitrary object V in Mcoh(Dλ ,N,η). Its restriction onto the
big cell is an N-homogeneous connection. Since the stabilizer in N of an arbitrary
point in the big cell is trivial, this connection is equal to a sum of copies of the
irreducible connection on C(w0). Since the restriction is left adjoint to direct image,
this implies that there exists a natural morphism ϕ of V into a sum of copies of Iλ .
By the preceding discussion, since the kernel and the cokernel of ϕ are supported
in the complement of the big cell, they are equal to zero. This leads to the following
results which show the extreme simplicity of the categories Mcoh(Dλ ,N,η) and
Nθ ,η for nondegenerate η .

Theorem 5.5 Let η ∈ n be nondegenerate. Then all objects in Mcoh(Dλ ,N,η) are
finite sums of irreducible objects Dλ ⊗U (n)Cη .

Theorem 5.6 Let η ∈ n be nondegenerate. Then modules in Nθ ,η are finite sums of
irreducible modules Uθ ⊗U (n)Cη .

Now we want to describe the structure of the category Nη for a nondegenerate
η ∈ n∗.

We start with a simple technical result. The enveloping algebra U (g) has a nat-
ural structure of a left Z (g)⊗C U (n)-module given by left multiplication. The
following generalization of a classical result of Kostant must be well known.1

Lemma 5.7 U (g) is free as a Z (g)⊗C U (n)-module.

Proof. Let (Up(g); p ∈ Z+) denote the natural filtration of the enveloping algebra
U (g) of g.

Fix a Cartan subalgebra c and a nilpotent subalgebra n̄ opposite to n. Then
we have g = n⊕ c⊕ n̄, and by the Poincaré-Birkhoff-Witt theorem it follows that
U (g) = U (n)⊗C U (c)⊗C U (n̄) as a left U (n)-module for left multiplication.
Then we define a linear space filtration FU (g) of U (g) via

Fp U (g) = U (n)⊗C Up(c)⊗C U (n̄).

Clearly, the natural filtration of U (g) is finer than FU (g), i.e., Up(g) ⊂ Fp U (g)
for all p ∈ Z+.

We define a filtration on Z (g)⊗C U (n), by

Fp(Z (g)⊗C U (n)) = (Up(g)∩Z (g))⊗C U (n), p ∈ Z+.

In this way, Z (g)⊗C U (n) becomes a filtered ring. The corresponding graded ring
Gr(Z (g)⊗C U (n)) is equal to Gr(Z (g))⊗C U (n). The Harish-Chandra homo-
morphism γ : Z (g)−→U (c) is compatible with the natural filtrations and the ho-
momorphism Grγ is an isomorphism of GrZ (g) onto the subalgebra I(c) of all

1 One of us learned this argument to prove Kostant’s result from Wilfried Schmid in 1977.
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W -invariants in S(c) [3, Ch. VIII, §8, no. 5]. Therefore,

Gr(Z (g)⊗C U (n)) = I(c)⊗C U (n).

Let z ∈ Up(g)∩Z (g). Then, by the definition of the Harish-Chandra homomor-
phism, we have z− γ(z) ∈ nUp−1(g). Hence, we have

zUq(c)⊂ γ(z)Uq(c)+nUp−1(g)Uq(c)⊂ γ(z)Uq(c)+nUp+q−1(g)

⊂ γ(z)Uq(c)+Fp+q−1 U (g)⊂ Fp+q U (g)

for any q ∈ Z+. This implies first that

zFq U (g)⊂ Fp+q U (g), q ∈ Z+;

i.e., the filtration FU (g) is compatible with the action of Z (g)⊗C U (n). There-
fore, U (g) is a filtered Z (g)⊗C U (n)-module. Moreover, the corresponding
graded module is

GrU (g) = U (n)⊗C S(c)⊗C U (n̄)

with the obvious action of I(c)⊗C U (n). Since S(c) is a free I(c)-module by [3,
Ch. V, §5, no. 5, Thm. 4], it follows that GrU (g) is a free I(c)⊗C U (n)-module.

This easily implies that U (g) is a free Z (g)⊗C U (n)-module [2, Ch. III, §2,
no. 8, Cor. 3. of Thm. 1]. ut

Let U be a finite dimensional Z (g)-module. Consider it as a Z (g)⊗C U (n)-
module, where n acts by multiplication by η . Let

Iη(U) = U (g)⊗Z (g)⊗CU (n)U ;

we consider it as a U (g)-module by left multiplication in the first factor. By the
preceding lemma, the functor Iη from the category of finite-dimensional Z (g)-
modules into the category of U (g)-modules is exact. It maps finite-dimensional
Z (g)-modules into Z (g)-finite, finitely generated U (g)-modules. Moreover, since
the action of n on Iη(U) is the quotient of action on the tensor product U (g)⊗CU
where n acts on the first factor by the adjoint action, we see immediately that Iη(U)
is U (n)-finite. Hence, it is a Whittaker module. In addition, since the action of n on
U (g) is nilpotent, we conclude that Iη(U) is in Nη . Therefore Iη is an exact functor
from the category of finite-dimensional Z (g)-modules into the category Nη .

Assume that dimU = 1. Then a maximal ideal in Z (g) annihilates U . Hence, we
see that Iη(U) =Uθ ⊗U (n)Cη for some Weyl group orbit θ in h∗. Moreover, Iη(U)
is irreducible by 5.2.

By the exactness of the functor Iη , we immediately conclude that

length Iη(U) = dimU

for any finite-dimensional Z (g)-module U .
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On the other hand, for a Whittaker module V in Nη , let Wh(V ) denote the space
of all Whittaker vectors. Clearly, Wh(V ) is Z (g)-invariant.

Lemma 5.8 The functor Wh from the category Nη into the category of Z (g)-
modules is exact.

Proof. The subspace Wh(V ) of Whittaker vectors in V can be identified with the
module of n-invariants of V with respect to the ν-action. Therefore, it is enough
to prove that H1(n,V ) = 0 for any Whittaker module V , where the cohomology is
calculated with respect to the ν-action.

Consider first the case of irreducible Whittaker modules. As we remarked before
an irreducible Whittaker module (with ν-action) is isomorphic to the algebra of
regular functions R(C(w0)) on open cell C(w0) with the natural action of N. Since
an orbit map is an isomorphism of N onto the open cell, it is enough to know that
groups H i(n,R(N)) = 0 for i ≥ 1. This is a well-known fact (compare [9, Lemma
1.9], for example).

Consider now an arbitrary Whittaker module V . Let V ′ be an irreducible sub-
module of V and consider the exact sequence

0−→V ′ −→V −→V ′′ −→ 0.

From the long exact sequence of Lie algebra cohomology, we see that H i(n,V ) =
H i(n,V ′′) for i ≥ 1. Hence, by induction on the length of V , we conclude that
H i(n,V ) = 0 for i≥ 1. ut

By 5.3, we see that for any irreducible Whittaker module in Nη , the vector space
Wh(V ) is one-dimensional. Therefore, by induction on the length of Whittaker mod-
ules and using the exactness of Wh, we immediately get

dimWh(V ) = length(V )

for any V in Nη . In particular, Wh(V ) is finite-dimensional. Therefore, Wh is an
exact functor from the category Nη into the category of finite-dimensional Z (g)-
modules. It is easy to check that

HomU (g)(Iη(U),V ) = HomZ (g)(U,Wh(V )),

i.e., the functor Wh is the right adjoint of Iη .
Clearly, the linear map u 7−→ 1⊗u from U into Iη(U) is injective, and its image

is in Wh(Iη(U)). Since

dimWh(Iη(U)) = length Iη(U) = dimU,

it follows that the adjointness morphism U −→Wh(Iη(U)) is an isomorphism. Con-
versely, let V be a Whittaker module in Nη . Then we have the adjointness morphism
Iη(Wh(V )) −→ V . Let K be its kernel and C the cokernel. Then we have the exact
sequence
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0−→Wh(K)−→Wh(Iη(Wh(V )))−→Wh(V )−→Wh(C)−→ 0

and by the preceding remark, the third arrow is an isomorphism. Hence, Wh(K) = 0
and Wh(C) = 0, i.e., K = C = 0 and Iη(Wh(V )) −→ V is an isomorphism. There-
fore, we established the following result.

Theorem 5.9 Let η ∈ n∗ be nondegenerate. Then the functor Iη is an equivalence
of the category of finite dimensional Z (g)-modules with Nη . Its quasi-inverse is
the functor Wh.
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