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1. Introduction

This paper is the continuation of [12], in which we related two constructions of
representations of a connected semisimple Lie group with finite center G0. We fix
a maximal compact subgroup K0 ⊂ G0, which is unique up to G0-conjugacy. We
denote by K its complexification. As a matter of notation, we write g0, k0, for the
Lie algebras of real Lie groups G0, K0, and g, k, for the complexified Lie algebras
of real Lie groups G0, K0.

On the one hand, there are the admissible, finite length representations of G0

on complete, locally convex Hausdorff topological complex vector spaces that are
quasisimple in the sense of Harish-Chandra, modulo his notion of infinitesimal
equivalence; on the other hand, there are Harish-Chandra modules: finitely gener-
ated modules of the universal enveloping algebra U(g) with a compatible action of
K, on which Z(g), the center of U(g), acts by a character. The K-finite vectors of
a finite length admissible epresentation (π, V ) of G0 are dense in the representation
space V , and the space of C∞ vectors is sandwiched between the space of K-finite
vectors and the representation space V itself. The derivative of such representations
of G0 then sets up a bijection between representations of G0, modulo infinitesimal
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equivalence, and Harish-Chandra modules. In that sense, to understand represen-
tations of G0 turns into the problem of understanding Harish-Chandra modules.

In this paper, we give unified geometric proofs of various known, but widely
scattered results about Harish-Chandra modules. The point of departure is the
localization construction of Beilinson and Bernstein; representations of G0 will play
no role from here on.

Let X be the flag variety of g. For any point x ∈ X, let bx be the corresponding
Borel subalgebra of g. Also, let nx = [bx, bx]. We denote by h the abstract Cartan
algebra of g (compare [12]). The dual h∗ is spanned by the (abstract) root system
Σ of roots. It contains a set Σ+ of positive roots, which specializes at each point
x ∈ X to the roots corresponding to the root subspaces spanning nx.

To each λ ∈ h∗, Beilinson and Bernstein attach a twisted sheaf of differential
operators Dλ on the flag variety X. As discussed in [12], the maximal ideals of the
center Z(g) of the enveloping algebra U(g) of g are parametrized by the orbits of
the Weyl group W of of the root system Σ in h∗. Let θ be the orbit of some λ
in h∗. Denote by Uθ the quotient of U(g) by the two-sided ideal generated by the
maximal ideal Iθ in Z(g) attached to the orbit θ. Then, we have Γ(X,Dλ) = Uθ.

For each λ in h∗, we can consider the category Mqc(Dλ) of (quasicoherent)
Dλ-modules on X and the category M(Uθ) of Uθ-modules. Clearly, the functor of
global sections Γ(X,−) : Mqc(Dλ) −→ M(Uθ) has a left adjoint functor ∆λ defined
by ∆λ(V ) = Dλ ⊗Uθ

V for any Uθ-module V . This is the localization functor of
Beilinson and Bernstein [3]. Localization functors are an equivalence of the category
M(Uθ) with the category of Mqc(Dλ) for regular and antidominant λ ∈ h∗.

We can consider the derived categories D∗(Dλ) and D∗(Uθ) of the categories
Mqc(Dλ) and M(Uθ) respectively. The derived functors RΓ and L∆λ are adjoint
functors between these categories. For regular λ ∈ h∗, they are equivalences of
categories.

As discussed in [12], we can define analogous categories Mfg(Uθ,K) of finitely
generated Uθ-modules and Mcoh(Dλ,K) of coherent Dλ-modules with compatible
actions of K. We call the objects of these categories Harish-Chandra modules and
Harish-Chandra sheaves respectively. The above results extend formally to these
categories. For example, localization functors are an equivalence of the category of
Harish-Chandra modules with the category of Harish-Chandra sheaves for regular
and antidominant λ ∈ h∗. Harish-Chandra sheaves are holonomic Dλ-modules.
Therefore, Mcoh(Dλ,K) is an artinian and noetherian category. Moreover, its
irreducible objects are easily classified. As explained in [12], they are attached on
to the set of geometric data consisting of pairs (Q, τ) where Q is a K-orbit in X and
τ is a K-equivariant irreducible connection on Q compatible with the twist. The
Dλ-module direct image of the connection τ is the standard Harish-Chandra sheaf
I(Q, τ) attached to (Q, τ). It has the unique irreducible Harish-Chandra subsheaf
L(Q, τ). All irreducible Harish-Chandra sheaves in Mcoh(Dλ,K) are isomorphic
to some L(Q, τ).

Now we describe im some detail the results discussed in the paper. The (derived)
localizations L∆λ of Uθ-modules for different λ ∈ θ are related by the intertwining
functors LIw of Beilinson and Bernstein [4]. Their construction and basic results are
discussed in Section 2. In Section 3. we prove a quantitative analogue of the main
result in [4] which relates support of the localization of an irreducible Uθ-module
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V for strongly antidominant λ with possible weights of the Lie algebra homology
H0(nx, V ) for a dense set of x ∈ X.

Our leading principle is that information contained in the localizations L∆wλ(V ),
for some Harish-Chandra module (π, V ) for specific w ∈ W can give more obvious
information about Harish-Chandra module than the localization ∆λ(V ) for an an-
tidominant λ. A typical example is the main result in Section 8, which gives a
necessary and sufficient condition for irreducibility of standard Harish-Chandra
sheaves. Localization functors satisfy a product formula which allows a reduction
to the case of reflections with respect to a simple root α. By considering the fi-
bration of the flag variety X over the generalized flag variety Xα attached to a
simple root α we can easily see that failure of the conditions for root α implies
the reducibility. The general criterion for irreducibility follows from this remark
and an inductive argument using intertwining functors. This irreducibility result
is a D-module analogue of the irreducibility result of Speh and Vogan in [20]. An
attempt to understand this result was one of starting points of this part of our
project. They remarked that the situation is much more complicated for singu-
lar infinitesimal characters. This suggested that this is naturally a result about
standard Harish-Chandra sheaves and not corresponding modules. The complica-
tions at singular infinitesimal character are caused by the failure of equivalence of
categories in this case.

As we already remarked, the geometric classification of irreducible Harish-Chandra
sheaves is straightforward. If λ is antidominant, the category of Harish-Chandra
modules is the quotient of the category of Harish-Chandra sheaves by the subcate-
gory of all Harish-Chandra sheaves with no global sections. Therefore, irreducible
Harish-Chandra modules are all nonvanishing modules Γ(X,L(Q, τ)). Hence, to
have a classification of irreducible Harish-Chandra modules, we have to character-
ize all L(Q, τ) with nonvanishing global sections. This is done in Section 9.

Finally, in Sections 11. and 12., we reprove in our setting the classical results of
Harish-Chandra on asymptotic of matrix coefficients of irreducible Harish-Chandra
modules. Again, assume for simplicity that G0 is a connected semisimple Lie group
with maximal compact subgroup K0. Let G0 = K0A0N0 be the Iwasawa decom-
position of G0. Then, N0 determines a set of positive (restricted) roots. Harish-
Chandra considered the K0-finite matrix coefficients of a Harish-Chandra module
(π, V ) on the corresponding negative chamber in A0 (for details, consult [8]). The
growth of these coefficients at infinity is determined by “leading exponents”. In [8],
it is established that these linear forms on the Lie algebra of A0 are in the set of
all weights of H0(n0, V ), where n0 is the Lie algebra of N0. By [16, Theorem II.
2.1], they correspond precisely to the “minimal” weights with respect to a natu-
ral ordering. This establishes a connection between growth conditions of K0-finite
matrix coefficients and n0-homology.

The Lie algebra n0 is contained in a Borel suhalgebra of g which lies in the open
orbit of K in the flag variety X. Therefore, to determine the “leading exponents” of
(π, V ), we have to understand the localizations of (π, V ) supported on the full flag
variety X. The main result of Section 3 implies therefore the precise estimates for
possible “leading exponents” of irreducible Harish-Chandra modules. This allows
to reprove the results of Harish-Chandra on classification of discrete series of G0

[10]. First, they exist if and only if rank g = rankK. Second, they correspond (for
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regular and strongly antidominant λ) to standard Harish-Chandra sheaves I(Q, τ)
attached to closed K-orbits Q.

We also characterize tempered Harish-Chandra modules in terms of vanishing
of a simple invariant which we call Langlands invariant. As a consequence, we see
that irreducible tempered Harish-Chandra modules are global sections of specific
irreducible standard Harish-Chandra sheaves I(Q, τ) for strongly antidominant λ.
This explains relative simplicity of tempered spectrum of G0.

If Langlands invariant of an irreducible Harish-Chandra module is nonzero, it
determines the data necessary to characterize it as a Langlands representation [13].
We shall discuss the details of this correspondence in a further publication.

2. Generalities on intertwining functors

Let θ be a Weyl group orbit in h∗. We consider the category M(Uθ) of Uθ-
modules. For each λ ∈ θ we also consider the category Mqc(Dλ) of (quasicoherent)
Dλ-modules. Assigning to a Dλ-module V its global sections Γ(X,V) defines a
functor Γ : Mqc(Dλ) −→ M(Uθ). Its left adjoint is the localization functor ∆λ :
M(Uθ) −→ Mqc(Dλ) given by ∆λ(V ) = Dλ ⊗Uθ

V .
Let Σλ be the set of roots integral with respect to λ, i.e.,

Σλ = {α ∈ Σ | α (̌λ) ∈ Z}.
Then the subgroup Wλ of the Weyl group W generated by the reflections with
respect to the roots from Σλ is equal to

Wλ = {w ∈W | wλ− λ ∈ Q(Σ)},
where Q(Σ) is the root lattice of Σ in h∗ ([7], Ch. VI, §2, Ex. 2). Let Πλ be
the set of simple roots in the root system Σλ attached to the set of positive roots
Σ+

λ = Σλ ∩ Σ+. Denote by ℓλ :Wλ −→ Z+ the corresponding length function.
We say that λ is antidominant if α (̌λ) is not a strictly positive integer for any

α ∈ Σ+. For arbitrary λ we define

n(λ) = min{ℓλ(w) | wλ is antidominant, w ∈Wλ}.
The following result was established in [4] and [11].

Theorem 2.1. Let λ ∈ h∗ and θ =W · λ. Then

(i) The right cohomological dimension of Γ : Mqc(Dλ) −→ M(Uθ) is ≤ n(λ).
(ii) The left cohomological dimension of ∆λ : M(Uθ) −→ Mqc(Dλ) is finite if

and only if λ is regular.
(iii) If λ is regular, the left cohomological dimension of ∆λ is ≤ n(λ).

Consider the derived category D(Uθ) of complexes of Uθ-modules and the de-
rived category D(Dλ) of complexes of Dλ-modules. By (i), there exists the de-
rived functor RΓ : D(Dλ) −→ D(Uθ). This functor also induces functors be-
tween the corresponding full subcategories of bounded complexes. On the other
hand, for arbitrary λ, there exists also the derived functor of localization functor
L∆λ : D−(Uθ) −→ D−(Dλ) between derived categories of complexes bounded from
above.

If λ is regular, the left cohomological dimension of ∆λ is finite by (ii), and L∆λ

extends to the derived functor between D(Dλ) and D(Uθ). Moreover, it maps
bounded complexes into bounded complexes.

We have the following result [4].
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Theorem 2.2. Let λ ∈ h∗ be regular and θ =W ·λ. Then RΓ : Db(Dλ) −→ Db(Uθ)
and L∆λ : Db(Uθ) −→ Db(Dλ) are mutually quasiinverse equivalences of categories.

This implies, in particular, that for any two λ, µ ∈ θ, the categories Db(Dλ) and
Db(Dµ) are equivalent. This equivalence is given by the functor L∆µ ◦ RΓ from
Db(Dλ) into Db(Dµ). In this section we describe a functor, defined in geometric
terms, which is (under certain conditions) isomorphic to this functor. This is the
intertwining functor of Beilinson and Bernstein [4].

Most of the following results on the intertwining functors are due to Beilinson
and Bernstein and were announced in [4], [2]. Complete details can be found in
[15].

We start with some geometric remarks. Define the action of G = Int(g) on X×X
by

g · (x, x′) = (g · x, g · x′)
for g ∈ G and (x, x′) ∈ X × X. The G-orbits in X × X can be parametrized in
the following way. First we introduce a relation between Borel subalgebras in g.
Let b and b′ be two Borel subalgebras in g, n and n′ their nilpotent radicals and
N and N ′ the corresponding subgroups of G. Let c be a Cartan subalgebra of g
contained in b ∩ b′. Denote by R the root system of (g, c) in c∗ and by R+ the set
of positive roots determined by b. This determines a specialization of the Cartan
triple (h∗,Σ,Σ+) into (c∗, R,R+) [12]. On the other hand, b′ determines another
set of positive roots in R, which corresponds via this specialization to w(Σ+) for
some uniquely determined w ∈ W . The element w ∈ W does not depend on the
choice of c, and we say that b′ is in relative position w with respect to b.

Let

Zw = {(x, x′) ∈ X ×X | bx′ is in the relative position w with respect to bx}
for w ∈W . Then the map w −→ Zw is a bijection of W onto the set of G-orbits in
X ×X, hence the sets Zw, w ∈W , are smooth subvarieties of X ×X.

Denote by p1 and p2 the projections of Zw onto the first and second factor in
the product X ×X, respectively. The fibrations pi : Zw −→ X, i = 1, 2, are locally
trivial with fibres isomorphic to ℓ(w)-dimensional affine spaces. Hence, they are
are affine morphisms.

Let ΩZw|X be the invertible OZw
-module of top degree relative differential forms

for the projection p1 : Zw −→ X. Let Tw be its inverse. Since the tangent space at
(x, x′) ∈ Zw to the fibre of p1 can be identified with nx/(nx ∩ nx′), and ρ − wρ is
the sum of roots in Σ+ ∩ (−w(Σ+)), we see that

Tw = p∗1(O(ρ− wρ)).

It is easy to check that
(Dwλ)

p1 = (Dp2

λ )Tw

([12], Appendix A). Since the morphism p2 : Zw −→ X is a surjective submer-
sion, the inverse image p+2 is an exact functor from Mqc(Dλ) into Mqc((Dλ)

p2).
Twisting by Tw defines an exact functor V −→ Tw ⊗OZw

p+2 (V) from M(Dλ) into

Mqc((Dwλ)
p1) ([12], A.3.3.1). Therefore, we have a functor V · −→ Tw⊗OZw

p+2 (V ·)

from Db(Dλ) into D
b((Dwλ)

p1). Composing it with the direct image functor Rp1+ :
Db((Dwλ)

p1) −→ Db(Dwλ), we get the functor Jw : Db(Dλ) −→ Db(Dwλ) by the
formula

Jw(V ·) = Rp1+(Tw ⊗OZw
p+2 (V ·))
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for any V · ∈ Db(Dλ). Let V ∈ Mqc(Dλ). Since p1 is an affine morphism with
ℓ(w)-dimensional fibres, it follows that Hi(Jw(D(V))) vanishes for i < −ℓ(w) and
i > 0. Moreover, the functor

Iw(V) = R0p1+(Tw ⊗OZw
p+2 (V))

from Mqc(Dλ) into Mqc(Dwλ) is right exact. This is the intertwining functor
(attached to w ∈ W ) between Mqc(Dλ) and Mqc(Dwλ). One knows that Jw is
actually the left derived functor LIw of Iw ([4], [15]); moreover,

Proposition 2.3. Let w ∈W and λ ∈ h∗. Then LIw = Jw : Db(Dλ) −→ Db(Dwλ)
is an equivalence of categories.

We denote by P (Σ) the weight lattice of Σ. For a weight ν ∈ P (Σ) we denote by
O(ν) the corresponding homogeneous invertibleOX -module. From the construction
of the intertwining functors one can easily check that they behave nicely with respect
to twists by homogeneous invertible OX -modules:

Lemma 2.4. Let w ∈W , λ ∈ h∗ and ν ∈ P (Σ). Then

LIw(V ·(ν)) = LIw(V ·)(wν)

for any V · ∈ Db(Dλ).

Intertwining functors satisfy a natural “product formula”. To formulate it we
need some additional geometric information on G-orbits in X × X. Let w,w′ ∈
W . Denote by p1 and p2 the projections of Zw into X, and by p′1 and p′2 the
corresponding projections of Zw′ into X. Let Zw′×XZw be the fibre product of Zw′

and Zw with respect to the morphisms p′2 and p1. Denote by q′ : Zw′×XZw −→ Zw′

and q : Zw′ ×X Zw −→ Zw the corresponding projections to the first, resp. second
factor. Finally, the morphisms p′1◦q′ : Zw′ ×XZw −→ X and p2◦q : Zw′ ×XZw −→
X determine a morphism r : Zw′×XZw −→ X×X. Therefore, we have the following
commutative diagram.

X ×X

Zw′ ×X Zw

r

OO

q′

||

q

""
Zw′

p′
1

��

p′
2

""

Zw

p1

||

p2

��
X X X

All morphisms in the diagram are G-equivariant. From the construction it follows
that the image of r is contained in Zw′w, and by the G-equivariance of r it is a
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surjection of Zw′ ×X Zw onto Zw′w. Assume in addition that w,w′ ∈ W are such
that ℓ(w′w) = ℓ(w′) + ℓ(w). Then r : Zw′ ×X Zw −→ Zw′w is an isomorphism.
Therefore, if we assume that w,w′, w′′ ∈W satisfy w′′ = w′w and ℓ(w′′) = ℓ(w′) +
ℓ(w), we can identify Zw′′ and Zw′ ×X Zw. Under this identification the projections
p′′1 and p′′2 of Zw′′ into X correspond to the maps p′1 ◦ q′ and p2 ◦ q. This leads to
the following result.

Proposition 2.5. Let w,w′ ∈ W be such that ℓ(w′w) = ℓ(w′) + ℓ(w). Then,
for any λ ∈ h∗, the functors LIw′ ◦ LIw and LIw′w from Db(Dλ) into Db(Dw′wλ)
are isomorphic; in particular the functors Iw′ ◦ Iw and Iw′w from Mqc(Dλ) into
Mqc(Dw′wλ) are isomorphic.

Let α ∈ Σ+. We say that λ ∈ h∗ is α-antidominant if α (̌λ) is not a strictly
positive integer. For any S ⊂ Σ+, we say that λ ∈ h∗ is S-antidominant if it is
α-antidominant for all α ∈ S. Put

Σ+
w = {α ∈ Σ+ |wα ∈ −Σ+} = Σ+ ∩ (−w−1(Σ+))

for any w ∈W . Then

Σ+
w−1 = −w(Σ+

w),

and if w,w′ ∈W are such that ℓ(w′w) = ℓ(w′) + ℓ(w),

Σ+
w′w = w−1(Σ+

w′) ∪ Σ+
w

by ([7], Ch. VI, §1, no. 6, Cor. 2. of Prop. 17). In this situation, if λ ∈ h∗ is
Σ+

w′w-antidominant, then wλ is Σ+
w′ -antidominant.

Since the left cohomological dimension of Iw is ≤ ℓ(w), LIw extends to a functor
from D(Dλ) into D(Dwλ) which is also an equivalence of categories. The next result
gives one of the fundamental properties of this functor.

Theorem 2.6. Let w ∈W and let λ ∈ h∗ be Σ+
w-antidominant. Then the functors

LIw ◦ L∆λ and L∆wλ from D−(Uθ) into D
−(Dwλ) are isomorphic.

If we also assume regularity, we get the result of Beilinson and Bernstein we
mentioned before.

Theorem 2.7. Let w ∈W and λ ∈ h∗ be Σ+
w-antidominant and regular. Then LIw

is an equivalence of the category Db(Dλ) with D
b(Dwλ), isomorphic to L∆wλ ◦RΓ.

We can also give a more precise estimate of the left cohomological dimension of
the intertwining functors.

Theorem 2.8. Let w ∈ W and λ ∈ h∗. Then the left cohomological dimension of
Iw is ≤ Card(Σ+

w ∩ Σλ).

In particular, we have the following important consequence.

Corollary 2.9. Let w ∈ W and λ ∈ h∗ be such that Σ+
w ∩ Σλ = ∅. Then Iw :

Mqc(Dλ) −→ Mqc(Dwλ) is an equivalence of categories and Iw−1 is its quasi-
inverse, i.e., the compositions Iw ◦Iw−1 and Iw−1 ◦Iw are isomorphic to the identity
functors.

Also, for a regular λ, we see from the equivalence of derived categories 2.2 and
2.7 that RΓ ◦ LIw is a functor isomorphic to RΓ. By a twisting argument on can
actually remove this restriction, i.e., we have the following result.
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Theorem 2.10. Let w ∈ W and λ ∈ h∗ be Σ+
w-antidominant. Then the functors

RΓ ◦ LIw and RΓ from Db(Dλ) into D
b(Uθ) are isomorphic.

This theorem implies a spectral sequence, which collapses when all but one of
the derived intertwining functors of a Dλ-module V vanish, either as a consequence
of 2.10, or by explicit verification:

Corollary 2.11. Suppose λ ∈ h∗ is Σ+
w-antidominant. Suppose further that LpIw(V) =

0 for p ̸= −q ∈ −Z+. Then

Hp(X,L−qIw(V)) ∼= Hp−q(X,V), p ∈ Z+,

as Uθ-modules.

Let Mcoh(Dλ) be the category of coherent Dλ-modules and Db
coh(Dλ) the cor-

responding bounded derived category. It is equivalent with the full subcategory of
Db(Dλ) consisting of complexes with coherent cohomology ([5], VI.2.11). If θ is the
Weyl group orbit of λ we can also consider the bounded derived category Db

fg(Uθ)
of finitely generated Uθ-modules. Again, it is equivalent with the full subcategory
of Db(Uθ) consisting of complexes with finitely generated cohomology. The functor
RΓ maps complexes from Db

coh(Dλ) into complexes from Db
fg(Uθ). If λ is regular,

the localization functor L∆λ maps complexes from Db
fg(Uθ) into complexes from

Db
coh(Dλ). Hence, by 2.4 and 2.7, we see that LIw : Db

coh(Dλ) −→ Db
coh(Dwλ) for

arbitrary w ∈ W and λ ∈ h∗. This is clearly an equivalence of categories. Now we
want to describe the quasiinverse of this functor.

First, we recall the twisted version of the D-module duality functor. Let λ ∈ h∗.
It is well-known that the opposite sheaf of rings D◦

λ of Dλ is isomorphic to D−λ

([12], A.2). Therefore, we can view the sheaf HomDλ
(V,Dλ) of right Dλ-modules

as a left D−λ-module. If V is a coherent Dλ-module, HomDλ
(V,Dλ) is a coherent

D−λ-module. Moreover, for any complex V ·, we have the duality functor

D : Db
coh(Dλ) −→ Db

coh(D−λ)

given by

D(V ·) = RHomDλ
(V ·, D(Dλ))[dimX].

One can check that this duality operation behaves well with respect to tensoring,
i.e., for any weight ν ∈ P (Σ), the following diagram of functors is commutative

Db
coh(Dλ)

D−−−−→ Db
coh(D−λ)

−(ν)

y y−(−ν)

Db
coh(Dλ+ν) −−−−→

D
Db

coh(D−λ−ν)

.

Assume for a moment that λ is regular antidominant. Since it is equivalent to
Mfg(Uθ), the category Mcoh(Dλ) has enough projective objects. Moreover, they
are direct summands of Dp

λ for some p ∈ Z+. Hence, if P is a projective object in
Mcoh(Dλ) and x an arbitrary point in X, the stalk Px of P is a projective Dλ,x-
module. Since the twisting with O(ν), for a weight ν ∈ P (Σ), is an equivalence
of Mcoh(Dλ) with Mcoh(Dλ+ν), we see that the category Mcoh(Dλ) has enough
projectives for arbitrary λ ∈ h∗. Moreover, if P is a projective object in Mcoh(Dλ),
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its stalk Px is a projective Dλ,x-module for any x ∈ X. Therefore, ExtpDλ
(P,Dλ)x =

ExtpDλ,x
(Px,Dλ,x) = 0 for p > 0, the “local to global” spectral sequence

Hp(X, ExtqDλ
(P,Dλ)) ⇒ Extp+q

Dλ
(P,Dλ),

degenerates, and we conclude that

Hp(X,HomDλ
(P,Dλ)) = 0, for p > 0;

i.e., HomDλ
(P,Dλ) is acyclic for the functor of global sections Γ.

Consider the functor V · 7−→ RHomDλ
(V ·, D(Dλ)) fromD−

coh(Dλ) intoD
+
coh(D−λ)

and the functor RΓ from D+
coh(D−λ) into D

+(Uθ). Then the above remark implies
that

RΓ(RHomDλ
(V ·, D(Dλ))) = RHomDλ

(V ·, D(Dλ)).

This yields the following result.

Lemma 2.12. We have the isomorphism

RΓ(D(V ·)) = RHomDλ
(V ·, D(Dλ))[dimX]

of functors from Db
coh(Dλ) into D

b(Uθ).

Let θ be the Weyl group orbit of λ and −θ be the orbit of −λ. For regular
orbit θ, the homological dimension of the ring Uθ is finite. Moreover, the principal
antiautomorphism of U(g) induces an isomorphism of the ring opposite to Uθ with
U−θ. We define a contravariant duality functor

Dalg(V
·) = RHomUθ

(V ·, D(Uθ))

from Db
fg(Uθ) into D

b
fg(U−θ).

Let V · be a complex of finitely generated Uθ-modules bounded from above. Then
there exists a complex F · bounded from above, consisting of free Uθ-modules of
finite rank and a morphism of complexes F · −→ V ·. Therefore,

RΓ(D(L∆λ(V
·))) = RΓ(D(∆λ(F

·))) = RHomDλ
(∆λ(F

·), D(Dλ))[dimX]

= Hom·
Dλ

(∆λ(F
·), D(Dλ))[dimX] = Hom·

Uθ
(F ·, D(Uθ))[dimX]

= RHomUθ
(F ·, D(Uθ))[dimX] = Dalg(V

·)[dimX].

Since L∆λ is an equivalence of Db
fg(Uθ) with Db

coh(Dλ) we get the following
result.

Lemma 2.13. Let λ ∈ h∗ be regular, then the following diagram of functor com-
mutes

Db
coh(Dλ)

D−−−−→ Db
coh(D−λ)

RΓ

y yRΓ

Db
fg(Uθ) −−−−−−−→

Dalg [dimX]
Db

fg(U−θ)

.

Let α be a simple root. If λ is α-antidominant, by 2.10, we have

RΓ(V ·) = RΓ(LIsα(V ·)).

Hence, we have

RΓ(D(V ·)) = Dalg(RΓ(V ·))[dimX] = Dalg(RΓ(LIsα(V ·)))[dimX] = RΓ(D(LIsα(V ·))).
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Here D(V ·) is in Db
coh(D−λ) and D(LIsα(V ·)) is in Db

coh(D−sαλ). Since −sαλ is
α-antidominant, applying again 2.10, it follows that

RΓ(D(V ·)) = RΓ(LIsαD(LIsα(V ·))).

Since D(V ·) and LIsαD(LIsα(V ·)) are in Db
coh(D−λ) and RΓ is an equivalence of

categories, we have

D(V ·) = LIsα(D(LIsα(V ·))).

Therefore,

LIsα ◦ (D ◦ LIsα ◦ D) ∼= id

on Db
coh(D−λ). Because all of these functors commute with twists, it follows that

this relation holds for arbitrary λ.
This implies that in general

LIw ◦ (D ◦ LIw−1 ◦ D) ∼= id.

Therefore, we proved the following result.

Theorem 2.14. The quasiinverse of the intertwining functor LIw : Db
coh(Dλ) −→

Db
coh(Dwλ) is equal to

D ◦ LIw−1 ◦ D : Db
coh(Dwλ) −→ Db

coh(Dλ).

Finally, we want to discuss the behavior of global sections of Dλ-modules for
(not necessarily regular) antidominant λ ∈ h∗. Since the localization functor ∆λ is
the left adjoint of Γ, we have the adjunction morphisms ∆λ ◦ Γ −→ id of functors
on M(Uθ) and id −→ Γ ◦ ∆λ of functors on M(Dλ). By (i), Γ is exact in this
situation and the functor Γ ◦∆λ is right exact. Moreover, by [3],

(Γ ◦∆λ)(Uθ) = Γ(X,Dλ) = Uθ.

Hence, from the exact sequence

U (J)
θ −→ U (I)

θ −→ V −→ 0

we get the commutative diagram

U (J)
θ −−−−→ U (I)

θ −−−−→ V −−−−→ 0∥∥∥ ∥∥∥ y
U (J)
θ −−−−→ U (I)

θ −−−−→ Γ(X,∆λ(V )) −−−−→ 0

.

We conclude that the morphism V −→ Γ(X,∆λ(V )) is an isomorphism. Therefore,
the adjunction morphism id −→ Γ ◦∆λ is an isomorphism of functors.

Lemma 2.15. Let λ ∈ h∗ be antidominant and θ =W · λ. Then:

(i) for any irreducible Dλ-module V, either Γ(X,V) is an irreducible Uθ-module
or it is equal to zero;

(ii) for an irreducible Uθ-module V there exists a unique irreducible Dλ-module
V such that V = Γ(X,V).

Proof. Let V be an irreducible Dλ-module. Then the Dλ-submodule of V generated
by Γ(X,V) can be either 0 or V. Obviously, the first case corresponds to Γ(X,V) =
0.
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Assume now that Γ(X,V) ̸= 0. Then the adjunction morphism ∆λ(Γ(X,V)) −→
V is an epimorphism. Let K be the kernel of this morphism. Applying Γ to the
corresponding short exact sequence

0 −→ K −→ ∆λ(Γ(X,V)) −→ V −→ 0

we get

0 −→ Γ(X,K) −→ Γ(X,∆λ(Γ(X,V))) −→ Γ(X,V) −→ 0,

and since Γ ◦ ∆λ
∼= id, we see that Γ(X,K) = 0. Let C be any quasicoherent

submodule of ∆λ(Γ(X,V)). Then either C ⊂ K and Γ(X, C) = 0, or the morphism
of C into V is surjective. Since Γ is exact, the natural map Γ(X, C) −→ Γ(X,V) is
an isomorphism in the latter case.

Assume now that U is a nonzero quotient of Γ(X,V). Then ∆λ(U) is a quotient
of ∆λ(Γ(X,V)). LetW be the kernel of this epimorphism. By the preceding remark,
either Γ(X,W) = 0 or Γ(X,W) −→ Γ(X,V) is an isomorphism. The latter case is
ruled out since U ̸= 0, hence Γ(X,W) = 0 and U = Γ(X,V). Therefore, Γ(X,V) is
irreducible. This completes the proof of (i).

Let V be an irreducible Uθ-module. Then ∆λ(V ) is a coherent Dλ-module. Let
W be a maximal coherent Dλ-submodule and V the quotient of ∆λ(V ) by W. Then
we have the exact sequence

0 −→ Γ(X,W) −→ Γ(X,∆λ(V )) −→ Γ(X,V) −→ 0.

Since Γ(X,∆λ(V )) = V , either Γ(X,W) = V or Γ(X,V) = V . Since ∆λ(V ) is,
by definition, generated by its global sections, the first possibility is ruled out. It
follows that Γ(X,W) = 0 and Γ(X,V) = V . This proves the existence part in (ii).

Let S be the family of all quasicoherent Dλ-submodules U of ∆λ(Γ(X,V)) or-
dered by inclusion. Since the functor Γ is exact, S has the largest element. Hence,
we conclude that W is the largest coherent Dλ-submodule and V is the unique
irreducible quotient of ∆λ(V ). Let U be another irreducible Dλ-module with
Γ(X,U) = V . Then, by the proof of (i), U is a quotient of ∆λ(V ). Therefore,
U = V. □

This reduces the problem of classification of irreducible Uθ-modules to the prob-
lem of classification of irreducible Dλ-modules and the problem of describing all
irreducible Dλ-modules with no global sections. Now we prove several simple re-
sults useful in studying the second problem (a more detailed discussion can be found
in [15]).

We need some preparation. Let F be a finite-dimensional g-module. Then the
sheaf F = OX ⊗C F has a natural structure of a sheaf of U(g)-modules. Fix a base
point x0 ∈ X. Let 0 = F0 ⊂ F1 ⊂ · · · ⊂ Fm = F be a maximal bx0-invariant flag
in F . Then nx0Fi ⊂ Fi−1 for 1 ≤ i ≤ m. Therefore, bx0/nx0 acts naturally on
Fi/Fi−1, and this action induces, by specialization, an action of the Cartan algebra
h on Fi/Fi−1 given by a weight νi ∈ P (Σ). The sheaf F is the sheaf of local sections
of the trivial homogeneous vector bundle X × F −→ X. Hence, the flag induces a
filtration of F by the sheaves of local sections Fi of homogeneous vector subbundles
with fibres Fi, 1 ≤ i ≤ m, at the base point x0. They are locally free coherent
OX -modules and also U(g)-modules. On the other hand, Fi/Fi−1 = O(νi) as a
U(g)-module, i.e., Fi/Fi−1 is naturally a Dνi−ρ-module. Let V be a quasicoherent
Dλ-module on X. Then the OX -module V ⊗OX

F has a natural structure of a
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U(g)-module given by

ξ(v ⊗ s) = ξv ⊗ s+ v ⊗ ξs

for ξ ∈ g, and local sections v and s of V and F , respectively. We can define
its U(g)-module filtration F(V ⊗OX

F) by the submodules V ⊗OX
Fi, 1 ≤ i ≤

m. By the previous discussion, the corresponding graded module is Gr(V ⊗OX

F) =
⊕m

i=1 V(νi). Therefore, for any ξ ∈ Z(g), the product
∏

1≤i≤m(ξ − χλ+νi
(ξ))

annihilates V ⊗OX
F . Hence, V ⊗OX

F decomposes into the direct sum of its
generalized Z(g)-eigensheaves.

Let U be a U(g)-module and µ ∈ h∗. Denote by U[µ] the generalized Z(g)-
eigensheaf of U corresponding to χµ. Then

V ⊗OX
F =

⊕
ν

(V ⊗OX
F)[λ+ν],

where the sum is taken over the weights ν of F which represent the different Weyl
group orbits W · (λ+ ν).

We also need to recall some standard constructions from the theory of derived
categories. Let A be an abelian category and Db(A) the corresponding derived
category of bounded complexes. Let D : A −→ Db(A) be the natural functor
which attaches to an object A the complex D(A) such that D(A)n = 0 for n ̸= 0
and D(A)0 = A. Then D is fully faithful.

Also, for any s ∈ Z, we define the truncation functors τ≥s and τ≤s on Db(A)
: if A· is a complex, τ≥s(A

·) is a complex which is zero in degrees less than s,
τ≥s(A

·)s = coker ds−1 and τ≥s(A
·)q = Aq for q > s, with the differentials induced

by the differentials of A·. On the other hand, τ≤s(A
·) is a complex which is zero

in degrees greater than s, τ≤s(A
·)s = ker ds and τ≤s(A

·)q = Aq for q < s, with the
differentials induced by the differentials of A·. The natural morphisms τ≤s(A

·) −→
A· and A· −→ τ≥s(A

·) induce isomorphisms on cohomology in degrees ≤ s and ≥ s
respectively. Moreover, for any complex A· we have the distinguished triangle:

τ≥s+1(A
·)

[1]

��
τ≤s(A

·) // A·

]]

in Db(A).
We return to the analysis of irreducible Dλ-modules. Let α ∈ Πλ. Then, by 2.8,

the left cohomological dimension of the intertwining functor Isα is ≤ 1.

Lemma 2.16. Let λ ∈ h∗, α ∈ Πλ and p = −α (̌λ) ∈ Z. Let V be an irreducible
Dλ-module. Then either

(i) Isα(V) = 0 and L−1Isα(V) = V(pα); or
(ii) L−1Isα(V) = 0. In this case, we have the exact sequence

0 −→ C −→ Isα(V) −→ V(pα) −→ 0

where C the largest proper coherent Dsαλ-submodule of Isα(V). In addition,
Isα(C) = 0 and L−1Isα(C) = C(pα).
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Proof. By 2.4, we can first assume that λ is antidominant and regular. Since
the left cohomological dimension of LIsα is ≤ 1, the complex LIsα(D(V)) can
have nontrivial cohomology modules only in degrees −1 and 0. By the truncation
construction for s = −1, we get the distinguished triangle

D(Isα(V))

[1]

}}
D(L−1Isα(V))[1] // LIsα(D(V))

__

Applying to it the functor RΓ leads to the distinguished triangle

RΓ(D(Isα(V)))

[1]

||
RΓ(D(L−1Isα(V)))[1] // RΓ(LIsα(D(V)))

aa

By 2.10, we conclude that that RΓ(LIsα(D(V))) = RΓ(D(V)) = D(Γ(X,V)). In
addition, since λ is antidominant and regular, we see that n(sαλ) = 1. By 2.1.(i), it
follows thatHp(X,W) = 0 for p > 1 for any quasicoherent Dsαλ-moduleW. Hence,
from the long exact sequence of cohomology attached to the above distinguished
triangle, we conclude that Γ(X,L−1Isα(V)) = 0, H1(X, Isα(V)) = 0 and

0 −→ H1(X,L−1Isα(V)) −→ Γ(X,V) −→ Γ(X, Isα(V)) −→ 0

is exact. Since Γ(X,V) is irreducible, eitherH1(X,L−1Isα(V)) = 0 or Γ(X, Isα(V)) =
0. Therefore, either RΓ(D(L−1Isα(V))) = 0 or RΓ(D(Isα(V))) = 0. By the equiv-
alence of derived categories this implies that either Isα(V) = 0 or L−1Isα(V) = 0.

Again, by 2.4, we can assume that λ is antidominant and α (̌λ) = 0. Moreover,
we can assume that β (̌λ), for β ∈ Σ+

λ − {α}, are “very large” integers. Let U
be a Dλ-module. Let µ be a “small” dominant weight and F the corresponding
irreducible finite dimensional g-module. Let F = OX ⊗C F be the sheaf of sections
of the corresponding trivial vector bundle. As we discussed before, this sheaf has
a natural finite increasing filtration, which induces the filtration F(U ⊗OX

F) with
the graded module Gr(U ⊗OX

F) =
⊕

ν U(ν). The center Z(g) acts on U(ν) with
infinitesimal character χλ+ν . Consider the graded components U(ν) on which the
action is given by χλ+µ. In these cases, we have w(λ+ ν) = λ+µ for some w ∈W .
This implies that wλ − λ = µ − wν ∈ Q(Σ) and w ∈ Wλ. Since µ is “small” and
wν is another weight of F , wλ− λ is also “small”. This implies that either w = 1
or w = sα. Hence, the induced filtration of the sheaf (U ⊗OX

F)[λ+µ] is two-step,
and the corresponding graded sheaf is U(µ)⊕U(sαµ). Since µ is the highest weight
of F , we see that we have the following short exact sequence

0 −→ U(µ) −→ (U ⊗OX
F)[λ+µ] −→ U(sαµ) −→ 0.
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Under our assumptions, λ+sαµ is regular and antidominant. Assume that Γ(X,U) =
0. Then

Hp(X, (U ⊗OX
F)[λ+µ]) = Hp(X, (U ⊗OX

F))[λ+µ] = (Hp(X,U)⊗C F )[λ+µ] = 0.

Hence, from the long exact sequence of cohomology corresponding to this short
exact sequence, we see that Γ(X,U(µ)) = 0 and Γ(X,U(sαµ)) = H1(X,U(µ)).
Therefore, RΓ(D(U(sαµ))) = RΓ(D(U(µ))[1]). On the other hand,

RΓ(D(U(sαµ))) = RΓ(LIsα(D(U(sαµ))))

by 2.10. By the equivalence of derived categories, it follows that

LIsα(D(U(sαµ))) = D(U(µ))[1].

By 2.4, we conclude that LIsα(D(U)) = D(U)[1].
When this discussion is applied to V, we see that Γ(X,V) = 0 implies (i). Con-

versely, if (i) holds, by 2.10,

D(Γ(X,V)) = RΓ(D(V)) = RΓ(LIsα(D(V))) = RΓ(D(V))[1] = D(Γ(X,V))[1],

and Γ(X,V) = 0.
Therefore, if (i) does not hold, V = Γ(X,V) ̸= 0. By 2.15 and its proof, V

is irreducible and V is the unique irreducible quotient of ∆λ(V ). Hence, by 2.6,
Isα(V) is a quotient of Isα(∆λ(V )) = ∆λ(V ). Since Isα(V) ̸= 0, V is the unique
irreducible quotient of Isα(V). Let C be the largest coherent Dsαλ-submodule of
Isα(V). Then we have the exact sequence

0 −→ C −→ Isα(V) −→ V −→ 0.

By applying Γ to it we see that Γ(X, C) = 0, an by the above result, L−1Isα(C) =
C. □

Assume that λ is antidominant and α ∈ Πλ such that α (̌λ) = 0. Let V be
an irreducible Dλ-module. Then, as we have shown in the preceding argument,
Isα(V) = 0 implies that Γ(X,V) = 0. The converse also holds:

Proposition 2.17. Let λ ∈ h∗ be antidominant, θ = W · λ and S = {α ∈ Πλ |
α (̌λ) = 0}. Let V be an irreducible Dλ-module. Then the following conditions are
equivalent:

(i) Γ(X,V) = 0;
(ii) there exists α ∈ S such that Isα(V) = 0.

Proof. As we remarked above, we just need to prove that (i) implies (ii). Let W (λ)
be the stabilizer of λ in W . Then W (λ) is generated by reflections with respect to
Σ(λ) = {α ∈ Σ | α (̌λ) = 0}. The root subsystem Σ(λ) is contained in Σλ. Since
λ is antidominant, any positive root in Σ(λ) is a sum of roots from S, i.e., S is a
basis of Σ(λ). It follows that W (λ) is generated by reflections with respect to S.
Therefore, the length function on W (λ) is the restriction of ℓλ.

Assume that Isα(V) ̸= 0 for all α ∈ S. Let ν be a regular antidominant weight.
We claim that Γ(X,V(wν)) ̸= 0 for all w ∈ W (λ). The proof is by induction in
ℓλ(w). If ℓλ(w) = 0, w = 1, λ + ν is regular antidominant and Γ(X,V(ν)) ̸= 0.
Assume that the assertion holds for v ∈ W (λ), ℓλ(v) < k for some k > 0. Let
ℓλ(w) = k. Then w = sαw

′ with α ∈ S and w′ ∈ W (λ) such that ℓλ(w
′) = k − 1.
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Then, w′−1
α ∈ Σ+

λ (see, for example, [7], Ch. VI, §1, no. 6, Cor. 1 of Prop. 17.).
This implies, by the antidominance of ν,

−p = α (̌λ+ w′ν) = α (̌w′ν) = (w′−1
α)̌ (ν) ∈ −Z+,

and λ+w′ν is α-antidominant. By the induction assumption we have Γ(X,V(w′ν)) ̸=
0, and by 2.4 and 2.15.(ii) we have the exact sequence

0 −→ C(pα) −→ Isα(V(w′ν)) −→ V(wν) −→ 0,

and LIsα(D(C)) = D(C(pα))[1]. Therefore, by 2.10,

RΓ(D(C)) = RΓ(LIsα(D(C))) = RΓ(D(C(pα)))[1].
It follows that Γ(X, C(pα)) = 0. On the other hand, by the induction assumption
and 2.10, we have

Γ(X, Isα(V(w′ν))) = Γ(X,V(w′ν)) ̸= 0,

so Γ(X,V(wν)) ̸= 0. This proves our earlier claim.
Let F be a finite-dimensional representation with lowest weight ν, and put F =

OX ⊗C F as before. Assume that (i) holds. Then V ⊗OX
F satisfies

Γ(X,V ⊗OX
F) = Γ(X,V)⊗C F = 0,

hence Γ(X, (V ⊗OX
F)[λ+ν]) = 0. On the other hand, the filtration of V ⊗OX

F ,
which was discussed before, induces a filtration of (V ⊗OX

F)[λ+ν] such that the
corresponding graded sheaf is a direct sum of V(µ) for all weights µ of F such
that w(λ + ν) = λ + µ for some w ∈ W . This implies wλ − λ = µ − wν, and
w ∈ Wλ. The left side of the equality λ − w−1λ = w−1µ − ν is a negative of a
sum of roots from Πλ and the right side is a sum of roots from Π. It follows that
wλ = λ, i.e., w ∈ W (λ). Let w ∈ W (λ) be such that V(wν) is a submodule of
(V ⊗OX

F)[λ+ν]. Then, if (ii) is violated, Γ(X,V(wν)) ̸= 0 according to the earlier
claim, contradicting Γ(X, (V ⊗OX

F)[λ+ν]) = 0. □

To put 2.17 into perspective we should mention the following criterion for van-
ishing of intertwining functors for simple reflections. In this paper, we shall need
only a special case, which we establish in 7.5, and which is an unpublished result
of Beilinson and Bernstein.

Let α ∈ Π, Xα the generalized flag variety of parabolic subalgebras of type α
and pα : X −→ Xα the canonical projection. We say that a D-module V is of
Xα-origin if it is equal to a twist p+α (W)(µ), µ ∈ P (Σ), of the inverse image p+α (W)
for some D-module W on Xα. The following result is proven in [15].

Proposition 2.18. Let λ ∈ h∗ be antidominant, and α ∈ Π such that α (̌λ) = 0.
Let V be an irreducible Dλ-module. Then the following conditions are equivalent:

(i) Isα(V) = 0;
(ii) V is of Xα-origin.

3. Supports and n-homology

In this section we prove some results relating the localization and n-homology
which follow from analysis of the action of intertwining functors. They are inspired
by the work of Beilinson and Bernstein on the generalization of the subrepresen-
tation theorem of Casselman [4]. Our main result can be viewed as a quantitative
version of their result.
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We start with some geometric preliminaries. Let ≤ be the Bruhat order on W
(determined by the reflections with respect to Π). Let S be a subset of the flag
variety X. For w ∈W put

Ew(S) = {x ∈ X | bx is in relative position v with respect to by for some v ≤ w, y ∈ S}.

Lemma 3.1. Let S be a subset of X and w ∈W . Then:

(i) dimS ≤ dimEw(S) ≤ dimS + ℓ(w).

(ii) Ew(S̄) = Ew(S).
(iii) If S is a closed subset of X, Ew(S) is the closure of the set

{x ∈ X | bx is in relative position w with respect to some by, y ∈ S}.

(iv) If S is irreducible, Ew(S) is also irreducible.
(v) If w, v ∈W are such that ℓ(wv) = ℓ(w) + ℓ(v),

Ewv(S) = Ew(Ev(S)).

Proof. Let α ∈ Π. Denote by Xα the generalized flag variety of parabolic subalge-
bras of type α, and by pα : X −→ Xα the natural projection. Then we have

Esα(S) = p−1
α (pα(S)).

Clearly, in this case, Esα(S) is closed (resp. irreducible) if S is closed (resp. irre-
ducible). Moreover, we see that

dimS ≤ dimEsα(S) ≤ dimS + 1.

Therefore, Esα(S̄) is closed. Hence, Esα(S) ⊂ Esα(S̄). On the other hand, since

S ⊂ Esα(S) it follows that S̄ ⊂ Esα(S). If x ∈ Esα(S), the whole fiber p−1
α (pα(x))

is contained in Esα(S). This implies Esα(S̄) ⊂ Esα(S). This proves (ii) for simple
reflections.

Now we prove (v) by induction in the length of w ∈W . First we claim that the
formula holds if w = sα, α ∈ Π. In this case, Esα(Ev(S)) consists of all points x ∈ X
such that either x ∈ Ev(S) or there exists y ∈ Ev(S) such that bx is in relative
position sα with respect to by. Hence, it consists of all x ∈ X such that there exists
y ∈ S and bx is in relative position u with respect to by for either u ≤ v or u = sαu

′

with u′ ≤ v. In the second case, we have either ℓ(u) = ℓ(u′) + 1 and u ≤ sαv or
ℓ(u) = ℓ(u′) − 1 and u ≤ u′ ≤ v. Hence, Esα(Ev(S)) ⊂ Esαv(S). Conversely, if
u ≤ sαv, we have either u ≤ v or sαu ≤ v, hence Esα(Ev(S)) = Esαv(S).

Assume now that w is arbitrary. Then we can find α ∈ Π and w′ ∈W such that
ℓ(w) = ℓ(w′) + 1. Therefore, by the induction assumption,

Ew(Ev(S)) = Esαw′(Ev(S)) = Esα(Ew′(Ev(S))) = Esα(Ew′v(S)),

which completes the proof of (v).
Now, for arbitrary w ∈ W , α ∈ Π, and w′ ∈ W such that ℓ(w) = ℓ(w′) + 1,

we have Ew(S) = Esα(Ew′(S)). Using the first part of the proof and an induction
in ℓ(w), (i), (ii) and (iv) follow. In addition, we see that Ew(S) is closed, if S is
closed.

(iii) Let

V = {x ∈ X | bx is in relative position w with respect to some by, y ∈ S}.



IRREDUCIBILITY AND CLASSIFICATION 17

Then V ⊂ Ew(S). Since Ew(S) is closed, V ⊂ Ew(S). Let y ∈ S. Then the closure
of the set of all x ∈ X such that bx is in relative position w with respect to by is
equal to Ew({x}). This implies

V ⊃
⋃
x∈S

Ew({x}) = Ew(S).

□

We say that w ∈W is transversal to S ⊂ X if

dimEw(S) = dimS + ℓ(w).

If w is transversal to S, ℓ(w) ≤ codimS.

Lemma 3.2. Let S be a subset of X. Then

(i) w ∈W is transversal to S if and only if it is transversal to S̄.
(ii) Let w, v ∈ W be such that ℓ(wv) = ℓ(w) + ℓ(v). Then the following state-

ments are equivalent:
(a) wv is transversal to S;
(b) v is transversal to S and w is transversal to Ev(S).

Proof. (i) By 3.1.(ii) we have

dimEw(S) = dimEw(S) = dimEw(S̄),

and the assertion follows from the definition of transversality.
(ii) By 3.1.(i)

dimEwv(S) ≤ dimS + ℓ(wv) = dimS + ℓ(w) + ℓ(v),

and the equality holds if and only if wv is transversal to S. On the other hand, by
3.1.(v),

dimEwv(S) = dimEw(Ev(S)) ≤ dimEv(S) + ℓ(w) ≤ dimS + ℓ(v) + ℓ(w).

Hence, if (a) holds, the last relation is an equality, i.e.,

dimEw(Ev(S)) = dimEv(S) + ℓ(w)

and
dimEv(S) = dimS + ℓ(v).

Hence, (b) holds.
Conversely, if (b) holds, we see immediately that wv is transversal to S. □

Lemma 3.3. Let S be an irreducible closed subvariety of X and w ∈ W . Then
there exists v ≤ w such that v is transversal to S and Ev(S) = Ew(S).

Proof. First we consider the case of w = sα, α ∈ Π. In this case Esα(S) =
p−1
α (pα(S)) is irreducible and closed, and we have two possibilities:

a) sα is transversal to S and dimEsα(S) = dimS + 1, or
b) sα is not transversal to S, dimEsα(S) = dimS and since S ⊂ Esα(S), we

have Esα(S) = S.

Now we prove the general statement by induction in ℓ(w). If ℓ(w) = 0, w = 1 and
E1(S) = S, hence the assertion is obvious. Assume that ℓ(w) = k. Then there
exists w′ ∈ W and α ∈ Π such that w = sαw

′ and ℓ(w) = ℓ(w′) + 1. In this
case, Ew(S) = Esα(Ew′(S)) by 3.1.(v). By the induction assumption, there exists
v′ ∈W , v′ ≤ w′ which is transversal to S and such that Ev′(S) = Ew′(S).
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Now, by the first part of the proof, if sα is not transversal to Ew′(S) we have

Ew(S) = Esα(Ew′(S)) = Ew′(S) = Ev′(S).

Since v′ ≤ w′ ≤ w the assertion follows. If sα is transversal to Ew′(S), we have

dimEw(S) = dimEsα(Ew′(S)) = dimEw′(S) + 1 = dimS + ℓ(v′) + 1.

Put v = sαv
′. If we have ℓ(v) = ℓ(v′)− 1, Ev′(S) = Esα(Ev(S)) = p−1

α (pα(Ev(S)))
by 3.1.(v) and

Esα(Ev′(S)) = p−1
α (pα(p

−1
α (pα(Ev(S))))) = Ev′(S),

contrary to transversality of sα. Therefore, ℓ(v) = ℓ(v′) + 1, v ≤ w and Ev(S) =
Esα(Ev′(S)). We conclude that Ew(S) = Ev(S),

dimEv(S) = dimEw(S) = dimS + ℓ(v′) + 1 = dimS + ℓ(v)

and v is transversal to S. □

As we remarked in §2, for any coherent Dλ-module V, the modules LpIw(V),
p ∈ Z, are also coherent.

If V is a coherent Dλ-module, the set {x ∈ X | Vx ̸= 0} is closed, and thus
coincides with the support suppV of V. We want to analyze how the action of
intertwining functors changes supports of coherent D-modules. First we point out
the following simple fact which is a direct consequence of the definition of the
intertwining functors and 3.1.(iii).

Lemma 3.4. For any V ∈ Mcoh(Dλ), p ∈ Z and w ∈W , we have

suppLpIw(V) ⊂ Ew(suppV).

Lemma 3.5. Let V ∈ Mcoh(Dλ) and w ∈ W transversal to S = suppV. Assume
that S is irreducible. Then

supp Iw(V) = Ew(S),

and
dim supp Iw(V) = dimS + ℓ(w).

Proof. We prove this result by induction in ℓ(w). If ℓ(w) = 1, w = sα for some α ∈
Π. In this case, the second statement is proved in [4]. By 3.4, supp Isα(V) ⊂ Esα(S).
Also, by 3.1, both sets are closed and Esα(S) is irreducible. Since dim supp Iw(V) =
dimS + 1 = dimEsα(S) by transversality, the first statement follows.

Let w ∈ W with ℓ(w) = k > 1. Then w = sαw
′ with α ∈ Π and ℓ(w′) = k − 1.

Since w is transversal to S, w′ is transversal to S and sα is transversal to Ew′(S)
by 3.2. By the induction assumption, supp Iw′(V) = Ew′(S). Hence, by 2.5 and
3.1.(iv), we have

supp Iw(V) = supp Isα(Iw′(V)) = Esα(Ew′(S)) = Ew(S).

□

To any coherent Dλ-module we attach two subsets of the Weyl group W :

S(V) = {w ∈W | supp Iw(V) = X}
and

E(V) = the set of minimal elements in S(V).
We have the following result. The statement (i) is the result of Beilinson and
Bernstein we mentioned before.
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Proposition 3.6. Suppose V ∈ Mcoh(Dλ) has irreducible support. Then

(i) the set S(V) is nonempty;
(ii)

E(V) = {w ∈W |w is transversal to suppV and ℓ(w) = codim suppV},
i.e., E(V) consists of all w ∈ W transversal to suppV with the maximal
possible length.

Proof. Assume that w ∈ W is transversal to suppV and ℓ(w) = codim suppV.
Then, by 3.5, we conclude that w ∈ S(V). If v < w, ℓ(v) < codim suppV, and
dim supp Iv(V) < dimX by 3.4. Hence, v /∈ S(V), i.e., w ∈ E(V).

Conversely, assume that w ∈ E(V). Then, by 3.4, we have Ew(suppV) = X.
Since the support of V is irreducible, by 3.3 we can find v ≤ w such that v is
transversal to suppV and Ev(suppV) = X. By 3.5 this implies v ∈ S(V). Since w
is a minimal element in S(V) we must have w = v, and w is transversal to suppV.
This proves (ii).

To show (i) it is enough to show that E(V) is nonempty. Clearly, if w0 is the
longest element in W , Ew0(S) = X. By 3.3, there exists w transversal to S such
that Ew(S) = X, hence the assertion follows from (ii). □

We recall a simple relationship between localization and n-homology. Let x ∈ X.
Fix a Cartan subalgebra c in bx. Let θ be a Weyl group orbit in h∗. Let V ∈
M(Uθ). The nx-homology modules Hp(nx, V ), p ∈ Z+, have a natural structure of
c-modules, and via the specialization we can view them as h-modules. According
to a result of Casselman and Osborne, the modules Hp(nx, V ) are annihilated by
Pθ(ξ) =

∏
w∈W (ξ − (wλ + ρ)(ξ)) for all ξ ∈ h. For a h-module U denote by U(µ)

the generalized weight submodule corresponding to the weight µ ∈ h∗. Then

Hp(nx, V ) =
∑
w∈W

Hp(nx, V )(wλ+ρ)

for any p ∈ Z+. Moreover, if λ ∈ h∗ is regular, linear forms wλ + ρ in Pθ are
all mutually different, hence the nx-homology modules Hp(nx, V ) are semisimple.
These modules are related to localization by the following result (see, for example,
[11]). For any OX -module F we denote by Tx(F) the geometric fibre of F .

Lemma 3.7. Let λ ∈ h∗ be regular and θ = W · λ. Then for any V ∈ M(Uθ) we
have the spectral sequence

LpTx(L
q∆λ(V )) =⇒ H−(p+q)(nx, V )(λ+ρ).

This result will allow us to extract information about n-homology from localiza-
tions.

Unfortunately, as we remarked in 2.1.(ii), the behavior of localization functor for
singular infinitesimal characters is quite bad and the corresponding relationship is
much less useful. Therefore, to analyze n-homology in this case we shall use the
translation functor technique.

Let F be a finite-dimensional g-module and F = OX⊗CF . The following lemma
is implicit in [3]. We include a proof for the sake of completeness.

Lemma 3.8. Let λ ∈ h∗, µ ∈ P (Σ) and w ∈ W be such that wλ and −wµ are
antidominant. Let F be the irreducible finite-dimensional g-module with highest
weight wµ. Then V −→ (V(−µ) ⊗OX

F)[λ] is a covariant functor from Mqc(Dλ)
into itself, naturally equivalent to the identity functor.
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Proof. The filtration of V(−µ)⊗OX
F described in §2 has V(−µ+ ν) as its compo-

sition factors, where ν ranges over the set of all weights of F . Therefore, Z(g) acts
on them with the infinitesimal character χλ−µ+ν . Assume that

sλ = λ− µ+ ν

for some s ∈W . Then, if we put s′ = wsw−1 and λ′ = wλ, we have

s′λ′ − λ′ = wν − wµ,

and since wµ and wν are weights of F , s′λ′ − λ′ ∈ Q(Σ). Therefore, s′ ∈ Wλ′ .
Now, since wµ is the highest weight of F , wν − wµ is a sum of negative roots. On
the other hand, since λ′ is antidominant, s′λ′ − λ′ is a sum of roots in Σ+

λ ⊂ Σ+.
Therefore, sλ = λ and µ = ν, and the generalized eigensheaf of V(−µ) ⊗OX

F
corresponding to χλ is isomorphic to V. □

Finally, we can formulate the result we need. Let V ̸= 0 be a finitely generated
Uθ-module. We say that λ ∈ θ is an exponent of V if the set

{x ∈ X |H0(nx, V )(λ+ρ) ̸= 0}
contains an open dense subset of X. Beilinson and Bernstein proved that the set
of exponents of V is nonempty [4]. In particular, the set of all x ∈ X such that
H0(nx, V ) ̸= 0 contains an open dense subset of X.

We say that λ ∈ h∗ is strongly antidominant if Reα (̌λ) ≤ 0 for any α ∈ Σ+.
Clearly, a strongly antidominant λ is antidominant.

We also define a partial ordering on h∗ by: λ ≼ µ if µ−λ is a linear combination of
simple roots in Π with coefficients with non-negative real parts. This order relation
is related to the ordering on the Weyl group W by the following observation (see
for example [9], 7.7.2).

Lemma 3.9. Let λ ∈ h∗ be strongly antidominant. Then for any v, w ∈W , v ≤ w
implies vλ ≼ wλ.

Proof. Clearly, it is enough to show that for any w ∈ W and α ∈ Π such that
ℓ(sαw) = ℓ(w) + 1, we have wλ ≼ sαwλ. But sαwλ = wλ− α (̌wλ)α, hence

sαwλ− wλ = (w−1α)̌ (λ)α,

and it is enough to prove that Re(w−1α)̌ (λ) ≥ 0. Since w−1α is in Σ+ (see, for
example, [7], Ch. VI, §1, no. 6, Cor. 2 of Prop. 17), this follows from the strong
antidominance of λ. □

The next result is the sharpening of the result of Beilinson and Bernstein we
alluded to before.

Theorem 3.10. Let λ ∈ h∗ be strongly antidominant. Let V ∈ Mcoh(Dλ) be such
that S = suppV is irreducible. Put V = Γ(X,V).

(i) If ω is an exponent of V , there exists w ∈W transversal to S with ℓ(w) =
codimS such that wλ ≼ ω.

(ii) Assume that V is irreducible and V ̸= 0. If w ∈W is transversal to S and
ℓ(w) = codimS, then wλ is an exponent of V .

We first prove (i). Let µ be a regular dominant weight and F the irreducible
finite-dimensional g-module with highest weight µ. Let F = OX ⊗C F . Then λ−µ
is regular and strongly antidominant. Let U = Γ(X,V(−µ)). Then, by 3.8,

V = (V(−µ)⊗OX
F)[λ].
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This implies

V = Γ(X,V) = Γ(X, (V(−µ)⊗OX
F)[λ])

= Γ(X,V(−µ)⊗OX
F)[λ] = (Γ(X,V(−µ))⊗C F )[λ] = (U ⊗C F )[λ].

Let ω be an exponent of V , i.e., H0(nx, V )(ω+ρ) ̸= 0 for all x in some open dense
subset of X. Then

H0(nx, V ) = H0(nx, (U ⊗C F )[λ]) =
⊕
v∈W

H0(nx, U ⊗C F )(vλ+ρ),

and

H0(nx, V )(ω+ρ) = H0(nx, U ⊗C F )(ω+ρ).

Let (Fp; 1 ≤ p ≤ n) be an increasing bx-invariant maximal flag in F . It induces
a filtration (U ⊗C Fp; 1 ≤ p ≤ n) of the bx-module U ⊗C F . The corresponding
graded module is the direct sum of modules of the form U ⊗C Cν , where ν goes
over the set of weights of F . Clearly, the semisimplification of H0(nx, U ⊗C F ) is a
submodule of the direct sum of modules H0(nx, U) ⊗C Cν . Since the infinitesimal
character of U is regular, H0(nx, U) is a semisimple h-module. This implies that the
semisimplification of H0(nx, V )(ω+ρ) is a submodule of the direct sum of modules
H0(nx, U)(ω−ν+ρ) ⊗C Cν . In particular, if H0(nx, V )(ω+ρ) ̸= 0, H0(nx, U)(ω−ν+ρ) ̸=
0 for some weight ν of F . Since the set of weights is finite, we can assume that
H0(nx, U)(ω−ν+ρ) ̸= 0 for all x in an open dense subset of X. On the other hand,

ω − ν = v(λ− µ) for some uniquely determined v ∈W . This implies that v−1(ω −
ν) = λ− µ. Since ω = uλ for some u ∈W , we see that

v−1uλ− λ = −(µ− v−1ν).

Since µ is the highest weight of F , the right side is the negative of a sum of positive
roots. Hence v−1u ∈ Wλ and since λ is antidominant, we see that the left side is
a sum of positive roots. It follows that both sides must be zero, v−1u is in the
stabilizer of λ and ω = uλ = vλ. Since λ − µ is regular, V(−µ) = ∆λ−µ(U).
Moreover, from 3.7 we conclude that supp∆v(λ−µ)(U) = X. Since Iv(V(−µ)) =
Iv(∆λ−µ(U)) = ∆v(λ−µ)(U) by 2.6, we see that v ∈ S(V(−µ)) = S(V). Hence, by
3.6 there exists w ≤ v such that w is transversal to S and ℓ(w) = codimS. But, by
3.9, this implies wλ ≼ vλ = ω. This completes the proof of 3.10.(i).

To prove 3.10.(ii) we need a curious result which is a formal consequence of the
equivalence of derived categories Db(Uθ) and D

b(Dλ).

Lemma 3.11. Let λ ∈ h∗ be regular and θ = W · λ. Let V be a Uθ-module and
p = min{q ∈ Z | L−q∆λ(V ) ̸= 0}. Assume that Hq(X,L−p∆λ(V )) = 0 for q < p.
Then there exists a nontrivial morphism of V into Hp(X,L−p∆λ(V )).

Proof. First a simple result about morphisms in derived categories. Let A be an
abelian category and Db(A) its derived category of bounded complexes. Let C · and
D· be two complexes in Db(A) and ϕ ∈ HomDb(A)(C

·, D·). Assume that

a) Hq(C ·) = 0 for q > 0,
b) Hq(D·) = 0 for q < 0.

Then ϕ = 0 if and only if H0(ϕ) = 0.
To prove this we use the truncation functors τ≥s and τ≤s we introduced in §2.

By the hypothesis, τ≤0(C
·) −→ C · and D· −→ τ≥0(D

·) are quasiisomorphisms,
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and by composing them with ϕ we can assume that Cq = 0 for q > 0 and Dq = 0
for q < 0. By the definition of a morphism in derived categories, there exists a
complex B· ∈ Db(A) and morphisms of complexes q : B· −→ C ·, f : B· −→ D·,
where q is a quasiisomorphism, which represent ϕ. By composing them with the
truncation morphism τ≤0(B

·) −→ B·, we see that we can assume in addition that
B· satisfies Bq = 0 for q > 0. But this implies that fq = 0 for q ̸= 0, im f0 ⊂ ker d0

and im d−1 ⊂ ker f0. Hence f0 = 0 is equivalent to H0(ϕ) = 0.
Consider now the truncation morphism

L∆λ(D(V )) −→ τ≥−p(L∆λ(D(V ))) = D(L−p∆λ(V ))[p].

By the assumption, it is not zero. By equivalence of derived categories, it leads to a
nontrivial morphism ϕ of D(V ) into RΓ(D(L−p∆λ(V )[p]) = RΓ(D(L−p∆λ(V ))[p].
It induces zero morphisms between the cohomology modules of both complexes, ex-
cept in degree zero where we get a morphism of V intoHp(X,L−p∆λ(V )). Since co-
homology modules of L−p∆λ(V ) vanish below degree p, the complexRΓ(D(L−p∆λ(V ))[p]
satisfies the condition (b). Hence, by the preceding result, the morphism H0(ϕ) of
V into RΓ(D(L−p∆λ(V )))[p]0 = Hp(X,L−p∆λ(V )) is nonzero. □

Now we can prove 3.10.(ii). If V is irreducible, V(−µ) is also irreducible and
their support S is irreducible. Hence, U is irreducible by the equivalence of cat-
egories. Since w is transversal to S and ℓ(w) = codimS, by 3.5 we see that
supp∆w(λ−µ)(U) = X. Put U = ∆w(λ−µ)(U). Since U is irreducible, by applying
3.11 with p = 0, we get U ⊂ Γ(X,U).

Assume that s ∈ U is a global section of U which vanishes on the open dense
subset in X. Then it generates a submodule of global sections supported in the
complement of this open set. This submodule must be either equal to U or to zero.
The first possibility would imply that the localization ∆w(λ−µ)(U) is also supported
in the complement of this open set, contradicting our assumption. Therefore this
submodule is equal to zero, i.e., s = 0. This implies that the support of any nonzero
global section in U is equal to X. Let F be the irreducible finite-dimensional
representation of g with highest weight µ. Then, as before, by 3.8,

U(wµ) = (U ⊗OX
F)[λ].

Hence, we see

Γ(X,U(wµ)) = Γ(X, (U ⊗OX
F)[λ])

= Γ(X,U ⊗OX
F)[λ] = (Γ(X,U)⊗C F )[λ] ⊃ (U ⊗C F )[λ] = V.

Moreover, the support of any nonzero global section of U⊗OX
F = U⊗CF which

comes from U ⊗C F is equal to X, and the support of any nonzero global section
of its subsheaf U(wµ) which belongs to (U ⊗C F )[λ] = V is also equal to X. Since
U(wµ) is coherent, there exists an open dense subset O in X such that U(wµ)|O is
a locally free OO-module ([5], VII.9.3). Therefore, on this set, a section vanishes
if and only if its values (i.e., its images in geometric fibres) vanish everywhere.
Hence, there exists an open dense subset O′ of O, such that for x ∈ O′, some
sections from V do not vanish at x. On the other hand, for any x ∈ O′, the global
sections in nxV vanish at that point. Therefore, for x ∈ O′, the geometric fibre
map U(wµ) 7−→ Tx(U(wµ)) induces a nonzero map of V into Tx(U(wµ)), which
factors through H0(nx, V ), and this factor map is a morphism of bx-modules. It
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follows that H0(nx, V )(wλ+ρ) ̸= 0 for x ∈ O′, i.e., wλ is an exponent of V . This
completes the proof of 3.10.(ii).

4. Calculations for sl(2,C)

In this section we discuss the simplest case of g = sl(2,C). In this case the group
Int(g) of inner automorphisms of g can be identified with PSL(2,C), and we can
identify the flag variety X of g with the one-dimensional projective space P1. If
we denote by [x0, x1] the projective coordinates of x ∈ P1, the corresponding Borel
subalgebra bx is the Lie subalgebra of sl(2,C) which leaves the line x invariant.

First we want to classify all possible Harish-Chandra pairs (g,K) with g =
sl(2,C). We say that two Harish-Chandra pairs (g,K) and (g,K ′) are conjugate if
there exists an isomorphism ψ : K −→ K ′ and an inner automorphism β of g such
that β ◦ φ = φ′ ◦ ψ.

Let B be the Borel subgroup of PSL(2,C) corresponding to [1, 0], N its unipotent
radical and T the one-dimensional torus which stabilizes both 0 = [1, 0] and ∞ =
[0, 1].

Lemma 4.1. Up to conjugacy, the only connected algebraic groups K such that
(g,K) is a Harish-Chandra pair are:

(i) N with φ = identity,
(ii) finite coverings of T with φ = covering map,
(iii) finite coverings of B with φ = covering map,
(iv) PSL(2,C) with φ = identity,
(v) SL(2,C) with φ = covering map.

Proof. Clearly, dimK > 0, since otherwise there would be infinitely manyK-orbits.
Therefore, if the Lie algebra k of K is one-dimensional, the elements of k are either
all nilpotent, or they are all semisimple. This implies that k is conjugate either to
the Lie algebra of N or the Lie algebra of T . Since N is simply connected, either
(i) or (ii) holds.

If dim k = 2, k must be solvable, hence a Borel subalgebra. This implies (iii).
Finally, if dim k = 3, φ must be surjective, hence (iv) and (v) follows from the fact
that SL(2,C) is simply connected and its center is Z2. □

Let (g,K) and (g,K ′) be two Harish-Chandra pairs and ι : K ′ −→ K a morphism
of algebraic groups with the property that φ◦ι = φ′. Then we have a natural functor
from the category Mcoh(Dλ,K) into Mcoh(Dλ,K

′). If the groups K and K ′ are
connected, this functor is fully faithful. To see this, one can argue as follows. The
corresponding statement for the categories Mfg(Uθ,K) and M(Uθ,K

′) is clear.
Therefore, by the equivalence of categories, it holds also for Mcoh(Dλ,K) and
Mcoh(Dλ,K

′) if λ ∈ h∗ is antidominant and regular. By twisting, this statement
holds for arbitrary λ ∈ h∗. Hence we can view Mcoh(Dλ,K

′) as a full subcategory
of Mcoh(Dλ,K). In particular, in the case of a connected group K, the general
situation can be reduced to (i) and (ii).

We need to determine the structure of standard Harish-Chandra sheaves in these
cases. We start with (i).

First we want to construct a suitable trivializations of Dλ on the open cover of
P1 consisting of P1 − {0} and P1 − {∞}. We denote by α ∈ h∗ the positive root of
g and put ρ = 1

2α and t = α (̌λ). Denote by N̄ the unipotent radical of the Borel
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subgroup of PSL(2,C) which stabilizes ∞ = [0, 1] in P1. Then the subgroups N
and N̄ correspond to the subgroups{(

1 x
0 1

) ∣∣∣∣ x ∈ C
}

and {(
1 0
y 1

) ∣∣∣∣ y ∈ C
}

of SL(2,C). Both are normalized by the image in PSL(2,C) of the torus

T =

{(
t 0
0 t−1

) ∣∣∣∣ t ∈ C∗
}
.

Let {E,F,H} denote the standard basis of sl(2,C):

E =

(
0 1
0 0

)
F =

(
0 0
1 0

)
H =

(
1 0
0 −1

)
.

They satisfy the commutation relations

[H,E] = 2E [H,F ] = −2F [E,F ] = H.

Also, E spans the Lie algebra of N , F spans the Lie algebra of N̄ and H spans the
Lie algebra of T . If we specialize at 0, H corresponds to the dual root α ,̌ but if we
specialize at ∞, H corresponds to the negative of α .̌

First we discuss P1−{∞}. We define on it the usual coordinate z by z([1, x1]) =
x1. In this way one identifies P1 − {∞} with the complex plane C, which is an
N̄ -orbit. The matrix (

1 0
x 1

)
moves 0 into x, and this map is an isomorphism of N̄ onto C. Also, if ∂ denotes
differentiation with respect to z considered as a vector field on C, then F corre-
sponds to ∂ under the above isomorphism. Now H and E are represented by first
order differential operators on C, i.e.,

H = a∂ + b and E = c∂ + d

where a, b, c, d are polynomials. Clearly,

[H,F ] = [a∂ + b, ∂] = −a′∂ − b′

which implies a = 2z + a0 and b = b0 where a0 and b0 are constants. On the other
hand, in the geometric fibre of Dλ at 0, H − (t + 1) maps into 0, which implies
a0 = 0 and b0 = t+ 1. It remains to determine E. We have

[E,F ] = [c∂ + d, ∂] = −c′∂ − d′,

which implies c = −z2 + c0 and d = −(t+ 1)z + d0; and

[H,E] = [2z∂+(t+1),−z2∂+c0∂−(t+1)z+d0] = −2[z∂, z2∂]+2c0[z∂, ∂]−2(t+1)z

= −2z2∂ − 2c0∂ − 2(t+ 1)z = 2(−z2∂ − c0∂ − (t+ 1)z),

which implies c0 = 0 and d0 = 0. Therefore, in our coordinate system the basis of
g is given by

E = −z2∂ − (t+ 1)z, F = ∂, H = 2z∂ + (t+ 1).
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Consider now P1 − {0}. Let

w =

(
0 i
i 0

)
.

Then w ∈ SL(2,C), w−1 = −w and w[x0, x1] = [x1, x0] for any [x0, x1] ∈ P1. In
particular, the automorphism µ of P1 induced by w maps P1 −{∞} onto P1 −{0}.
Since Dλ is homogeneous, µ∗(Dλ) ∼= Dλ and µ∗(ξ) = Ad(w)ξ for any ξ ∈ g.
In particular, µ∗(E) = F , µ∗(F ) = E and µ∗(H) = −H. The natural coordi-
nate is ζ([x0, 1]) = x0 which identifies P1 − {0} with the complex plane C. Since
ζ(µ([x0, x1])) = ζ([x1, x0]) = x1 = z([x0, x1]), it follows that in this coordinate
system we have

E = ∂, F = −ζ2∂ − (t+ 1)ζ, H = −2ζ∂ − (t+ 1).

On C∗ these two coordinate systems are related by ζ = 1
z . This implies ∂ζ = −z2∂z,

i.e., on C∗ the second trivialization gives

E = −z2∂, F = ∂ − 1 + t

z
, H = 2z∂ − (t+ 1).

Therefore, the first and the second trivialization on C∗ are related by the automor-
phism of DC∗ induced by

∂ −→ ∂ − 1 + t

z
= z1+t ∂ z−(1+t).

The N -orbits are 0 = [1, 0] and its complement X∗ = P1 − {0}. Since the group
N is unipotent, the representation which induces the connection at 0 is trivial.
This implies that the standard Harish-Chandra sheaf I({0}, λ) is isomorphic to the
D-module of truncated Laurent series at 0. Its generator z−1 is annihilated by
E, and H acts on it by multiplication by t − 1. Also, the module is spanned by
Fnz−1 = (−1)nn!z−(n+1). This implies that the global sections of I({0}, λ) are
isomorphic to the Verma module M((t− 1)ρ+ ρ) =M(tρ) =M(λ).

To see what happens with the standard Harish-Chandra sheaf on the open N -
orbit we first remark that I(X∗, λ)|X∗ = OX∗ in our second trivialization. Since
the irreducibility of Dλ-modules is a local property, to analyze the reducibility of
I(X∗, λ) it is enough to consider the restriction to P1 − {∞} (since the restriction
to P1−{0} is obviously irreducible). Using the relation between our trivializations,
we see that we can view I(X∗, λ)|P1 − {∞} as the DC-module which is the direct
image of the module on C∗ generated by z1+t. This module is irreducible if and
only if t /∈ Z. If t ∈ Z, λ ∈ P (Σ) and I(X∗, λ) contains the invertible homogeneous
OX -module O(λ+ρ) as its unique irreducible Dλ-submodule, i. e. we have the exact
sequence

0 −→ O(λ+ ρ) −→ I(X∗, λ) −→ I({0}, λ) −→ 0.

To calculate Γ(X, I(X∗, λ)) we remark first that (with respect to the trivialization
on X∗) constant functions on X∗ are annihilated by E, and H acts on them by
multiplication with −(t+1). Moreover, Fζn = −(n+ t+1)ζn+1, for n ∈ Z+, which
implies Γ(X, I(X∗, λ)) is generated by 1 if t is not a negative integer. Therefore, if
α (̌λ) is not a negative integer, Γ(X, I(X∗, λ)) is the Verma module M(−(t+1)ρ+
ρ) =M(−tρ) =M(−λ).

If t = −k, k a strictly positive integer, by the equivalence of categories, Γ(X, I(X∗, λ))
is reducible, and it contains, as the unique g-submodule, the finite-dimensional ir-
reducible g-module with lowest weight λ + ρ. The quotient of Γ(X, I(X∗, λ)) by
this submodule is isomorphic to the Verma module M(λ).



26 H. HECHT, D. MILIČIĆ, W. SCHMID, AND J. A. WOLF

Lemma 4.2. Let λ ∈ h∗. Then:

(i) I({0}, λ) is an irreducible Dλ-module;
(ii) Γ(X, I({0}, λ)) =M(λ) and Hi(X, I({0}, λ)) = 0 for i > 0.
(iii) If α (̌λ) is not an integer, I(X∗, λ) is an irreducible Dλ-module. If α (̌λ)

is an integer, we have the exact sequence

0 −→ O(λ+ ρ) −→ I(X∗, λ) −→ I({0}, λ) −→ 0

of Dλ-modules.
(iv) If α (̌λ) is not a strictly negative integer, we have Γ(X, I(X∗, λ)) =M(−λ).
(v) If α (̌λ) is a strictly negative integer, we have an exact sequence of g-

modules

0 −→ Fλ+ρ −→ Γ(X, I(X∗, λ)) −→M(λ) −→ 0

where Fλ+ρ is the finite-dimensional g-module with lowest weight λ+ ρ.
(vi) Hi(X, I(X∗, λ)) = 0 for i > 0.

This enables us to calculate the action of the intertwining functor I = Isα .

Lemma 4.3. Let λ ∈ h∗.

(i) If α (̌λ) is not an integer,

I(I({0}, λ)) = I(X∗,−λ) and I(I(X∗, λ)) = I({0},−λ).
(ii) If α (̌λ) is an integer,

I(O(λ+ ρ)) = 0 and L−1I(O(λ+ ρ)) = O(−λ+ ρ),

I(I({0}, λ)) = I(X∗,−λ) and L−1I(I({0}, λ)) = 0;

and

I(I(X∗, λ)) = I(X∗,−λ) and L−1I(I(X∗, λ)) = O(−λ+ ρ).

Proof. (i) If α (̌λ) is not an integer, λ and −λ are antidominant, hence the assertion
follows from 4.2 and the equivalence of categories.

(ii) To prove the first statement, by 2.4 we can assume that λ is antidominant
and regular. Since in this situation

Γ(X,O(λ+ ρ)) = Fλ+ρ = H1(X,O(−λ+ ρ))

by the Borel-Weil-Bott theorem, the assertion follows from the equivalence of de-
rived categories and 2.10.

The second statement follows from 4.2, 2.10 and the equivalence of derived cat-
egories. Finally, to get the third statement we use the short exact sequence of
4.2.(iii). It implies the long exact sequence

0 −→ L−1I(O(λ+ ρ)) −→ L−1I(I(X∗, λ)) −→ L−1I(I({0}, λ)
−→ I(O(λ+ ρ)) −→ I(I(X∗, λ)) −→ I(I({0}, λ)) −→ 0.

If we apply the first statement, the assertion follows. □

Before turning to the second basic case (ii), we digress to consider a possibly
non-connected group K (compare [12], Appendix B). First, let (g,K) be a Harish-
Chandra pair such that the unipotent radical of K is nontrivial. In this case, by 4.1,
the identity component of K is up to conjugacy either equal to N or to a covering
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of B. Therefore, K has exactly two orbits in X. By conjugating, we can assume
that X∗ = P1 − {0} is the open orbit.

Lemma 4.4. Let τ be an irreducible K-homogeneous connection on X∗ compatible
with λ + ρ ∈ h∗. Then I(X∗, τ) is an irreducible (Dλ,K)-module if and only if
α (̌λ) /∈ Z.

Proof. If we view I(X∗, τ) as a Dλ-module, it is a direct sum of finitely many copies
of I(X∗, λ). If α (̌λ) /∈ Z, I(X∗, λ) is irreducible by 4.2.(iii), hence I(X∗, τ) has
no quotients supported in 0. Therefore, L(X∗, τ) must be equal to I(X∗, τ), i.e.,
I(X∗, τ) is irreducible.

Assume now that α (̌λ) ∈ Z. Then I(X∗, λ) contains O(λ + ρ) as a Dλ-
submodule. Hence, the Dλ-module I(X∗, τ) contains the largest Dλ-submodule
V which is a connection. It is equal to the direct sum of the submodules O(λ+ ρ)
for various copies of I(X∗, λ). The quotient of I(X∗, τ) by V is nontrivial and
supported in 0. Clearly, the K-action maps this connection into itself, i.e., it is a
(Dλ,K)-submodule. Therefore, V = L(X∗, τ) and I(X∗, τ) is reducible. □

Now suppose the connected component K0 of K is a cover of PSL(2,C). In this
case, K acts transitively on X. If K = K0, the standard modules are O(λ + ρ),
λ ∈ P (Σ), and the action of the intertwining functor I is given by 4.3.(ii). In
general, we have the following result.

Lemma 4.5. Let τ be a K-homogeneous connection on X compatible with λ+ ρ ∈
h∗. Then p = −α (̌λ) ∈ Z and

LI(D(τ)) = D(τ(pα))[1].

Proof. Since τ must be a direct sum of K0-homogeneous invertible OX -modules we
conclude that p ∈ Z and τ , as a K0-homogeneous connection, is a direct sum of
copies of O(λ+ ρ).

Let C = kerφ. Then C is a normal subgroup of K. On the other hand, since
K0 is connected, it centralizes C. Therefore, the map C × K0 −→ K given by
(c, k) 7−→ ck is a surjective homomorphism. Its kernel is C0 = C ∩K0 imbedded by
the map c 7−→ (c, c−1) into C×K0. The subgroup C0 is the kernel of the restriction
of φ to the identity component K0 of K. This map is a covering map and K0 is
either SL(2,C) or PSL(2,C). Therefore, C0 is either trivial or Z2. By construction,
C0 is a normal subgroup of K, hence it must be a central subgroup. Hence, by
using the map C × K0 −→ K we can always reduce the situation to the case of
K = C ×K0. In this situation the result follows immediately as in 4.3.(ii). □

Now the case (ii). Then K is an n-fold covering of the torus T in PSL(2,C) and
φ is the covering map. We realize K as C∗ and take φ(ζ)([x0, x1]) = [x0, ζ

nx1]. Let
ζ∂ζ be a basis vector of the Lie algebra k of K. Then the differential of φ maps ζ∂ζ
into 1

2nH. The K-orbits in this case are {0}, {∞} and C∗, the stabilizers of {0}
and {∞} are equal to K, and the stabilizer of any point in C∗ is the group M of
nth roots of 1. The irreducible representations of K are ωk : ζ 7−→ ζk for k ∈ Z.

The only “new” standard Harish-Chandra sheaves arise on the open orbit C∗.
Let η0 be the trivial representation of M , η1 the identity representation of M , and
ηk = (η1)

k, 2 ≤ k ≤ n − 1, the remaining irreducible representations of the cyclic
groupM . To analyze these Dλ-modules it is convenient to introduce a trivialization
of Dλ on C∗ = P1 − {0,∞} such that H corresponds to the differential operator
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2z∂ on C∗. We obtain this trivialization by restricting the original z-trivialization
to C∗ and twisting it by the automorphism

∂ 7−→ ∂ − 1 + t

2z
= z

1+t
2 ∂ z−

1+t
2 .

This gives a trivialization of Dλ|C∗ which satisfies

E = −z2∂ − 1 + t

2
z, F = ∂ − 1 + t

2
, H = 2z∂.

Denote by τk the K-equivariant connection on C∗ corresponding to the representa-
tion ηk ofM , and by I(C∗, ηk, λ) the corresponding standard Harish-Chandra sheaf
in Mcoh(Dλ,K). The global sections of τk on C∗ form the linear space spanned by

functions zp+
k
n , p ∈ Z. Therefore, the function zp+

k
n , p ∈ Z, is an eigenvector of H

for eigenvalue 2(p+ k
n ) and K acts on it via representation ωnp+k. To analyze the

irreducibility of the standard Dλ-module I(C∗, ηk, λ) we have to study its behavior
at 0 and ∞. By the preceding discussion, if we use the z-trivialization of Dλ on
C∗, I(C∗, ηk, λ) looks like the DC-module which is the direct image of the DC∗ -

module generated by z
k
n− 1+t

2 . This module is reducible if and only if it contains
constant functions, i.e., if and only if k

n − 1+t
2 is an integer. On the other hand,

µ∗(I(C∗, ηk, λ)) = I(C∗, ηn−k, λ), hence I(C∗, ηk, λ)|P1 − {0} is reducible if and
only if n−k

n − 1+t
2 is an integer, i.e., if and only if k

n + 1+t
2 is an integer. Therefore,

I(C∗, ηk, λ) is irreducible if and only if neither k
n − 1+t

2 nor k
n + 1+t

2 is an integer.
We can summarize this as follows.

Lemma 4.6. Let K be the n-fold covering of T , k ∈ {0, 1, . . . , n− 1} and λ ∈ h∗.
Then the following conditions are equivalent:

(i) α (̌λ) /∈
{

2k
n ,−

2k
n

}
+ 2Z+ 1;

(ii) the standard module I(C∗, ηk, λ) is irreducible.

In the following, we shall refer to

α (̌λ) /∈
{
2k

n
,−2k

n

}
+ 2Z+ 1

as the parity condition.
If a standard module I(C∗, ηk, λ) is reducible, it has irreducible quotients sup-

ported in {0,∞}. All such irreducible modules are obtained in this way:

Corollary 4.7. Every standard module supported in a closed K-orbit is isomorphic
to a quotient of a unique standard module attached the open orbit C∗.

Proof. For simplicity, assume that a standard module is supported in {0}. An
irreducible K-homogeneous connection on {0} compatible with λ+ρ is just an irre-
ducible representation of K with differential equal to λ+ρ (under the specialization
at 0). If ωk : ζ 7−→ ζk is this irreducible representation of K, the compatibility
implies that k = 1

2n(t+1). Hence, for each λ there is at most one standard module
supported in {0}. Since ηk is the restriction ωk toM , from the discussion preceding
4.6 we see that the standard module I(C∗, ηk, λ) is reducible and has an irreducible
quotient supported at {0}. This irreducible module must be isomorphic to our
standard module. □

The global sections of I(C∗, ηk, λ) are the Uθ-module spanned by ep = zp+
k
n ,

p ∈ Z, and the action of g is given by
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Eep = −
(
p+

k

n
+

1

2
(1 + t)

)
ep+1,

F ep =

(
p+

k

n
− 1

2
(1 + t)

)
ep−1,

Hep = 2

(
p+

k

n

)
ep.

This implies that this Uθ-module is irreducible if the parity condition holds.
Clearly, this condition is symmetric under the change t 7−→ −t. If it is satisfied,

we can define rational functions αp, p ∈ Z, such that

αp+1 =
p+ k

n + 1
2 (1 + t)

p+ k
n + 1

2 (1− t)
αp

and change the basis by fp = αpep, p ∈ Z. This leads to

Efp = αpEep = − αp

αp+1

(
p+

k

n
+

1

2
(1 + t)

)
fp+1 = −

(
p+

k

n
+

1

2
(1− t)

)
fp+1,

Ffp = αpFep =
αp

αp−1

(
p+

k

n
− 1

2
(1 + t)

)
fp−1 =

(
p+

k

n
− 1

2
(1− t)

)
fp−1,

Hfp = 2

(
p+

k

n

)
fp.

It follows that Γ(X, I(C∗, ηk, λ)) and Γ(X, I(C∗, ηk,−λ)) are isomorphic as Uθ-
modules. Also, since C∗ is an affine variety,

Hi(X, I(C∗, ηk, λ)) = Hi(C∗, τk) = 0

for i > 0, and the same statement is true for I(C∗, ηk,−λ). Therefore,

RΓ(D(I(C∗, ηk, λ))) = RΓ(D(I(C∗, ηk,−λ))).

For regular antidominant λ satisfying the parity condition this implies, via the
equivalence of derived categories,

LI(D(I(C∗, ηk, λ))) = D(I(C∗, ηk,−λ)).

Therefore, by translation, this holds for arbitrary λ satisfying the parity condition.

Lemma 4.8. Let K be the n-fold covering of T , k ∈ {0, 1, . . . , n− 1} and λ ∈ h∗.
Assume also that λ and k satisfy the parity condition. Then

LI(D(I(C∗, ηk, λ))) = D(I(C∗, ηk,−λ)).

Now we want to extend the last three results to the case of non-connected K.
Let (g,K) be a Harish-Chandra pair such that the identity component K0 of K is
the n-fold covering of the torus T . Then the image φ(K) of K in PSL(2,C) is a
subgroup of the normalizer N(T ) of the torus T . Since T is in the image and T has
index two in N(T ), we have two possibilities:

(a) φ(K) = T ;
(b) φ(K) = N(T ).
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Let K1 = φ−1(T ). Then, in the case (a), K1 = K; and in the case (b), K1 has
index two in K. Since K1 acts trivially on the Lie algebra of K, K0 is a central
subgroup of K1. Moreover, K1 is the centralizer of K0, since in the case (b) K does
not centralize K0.

By dimension reasons, the K0-orbit C∗ is also a K-orbit. Let S be the stabilizer
in K of 1 ∈ C∗, S1 = S ∩K1 and S0 = S ∩K0. Since S1 also stabilizes 0 and ∞, it
acts trivially on X. The orbit C∗ is connected, hence the map K0 ×S −→ K given
by (k, s) 7−→ ks, is surjective. Therefore, in case (b), S1 is a proper subgroup of S.
Any representative of the nontrivial element in S/S1 acts on C∗ as the inversion
z 7−→ z−1, hence S stabilizes only 1 and −1 in C∗.

Lemma 4.9. The restriction of any irreducible algebraic representation of S to S0

is a direct sum of copies of ηk or a direct sum of copies of ηk ⊕ ηn−k for some
0 ≤ k ≤ n− 1.

Proof. In the case (a) the assertion is obvious since S0 is a central subgroup of S.
In the case (b) S1 is a subgroup of index two in S, hence the restriction of an

irreducible representation of S to S1 is either irreducible or a direct sum of two
irreducible representations conjugated by the action of S/S1. In the first case the
restriction to S0 is a direct sum of copies of ηk for some k ∈ Z. In the second case,
the representation restricted to S0 is a direct sum of two isotypic components of
the same dimension corresponding to two irreducible representations conjugated by
the action of S/S1. Since the nontrivial element of S/S1 acts as k 7−→ k−1 on S0,
the orbit of ηk is equal to {ηk, ηn−k} and the isotypic components correspond to
these representations. □

Since the parity condition is symmetric with respect to k 7−→ n−k, we see that we
can say that the pair (ω, λ), where ω is a finite-dimensional algebraic representation
of S and λ ∈ h∗, satisfies the parity condition if ω|S0 contains only representations
ηk, 0 ≤ k ≤ n − 1, such that the pairs (k, λ) satisfy the parity condition. If ω is
irreducible, by 4.9 it is enough that one irreducible component ηk of ω|S0 is such
that the pair (k, λ) satisfies the parity condition.

The next result generalizes 4.6 to this setting.

Proposition 4.10. Let ω be an irreducible representation of S, τ the corresponding
connection on C∗ and λ ∈ h∗. The following conditions are equivalent:

(i) the pair (ω, λ) satisfies the parity condition;
(ii) the standard (Dλ,K)-module I(C∗, τ, λ) is irreducible.

Proof. The Dλ-module I(C∗, τ, λ) is the direct sum of I(C∗, ηk, λ), where ηk goes
over all irreducible components of ω|S0. Let L(C∗, τ, λ) be the unique irreducible
(Dλ,K)-submodule of I(C∗, τ, λ). Since L(C∗, τ, λ)|C∗ is τ and as aK0-homogeneous
connection τ corresponds to ω|S0, we see that the Dλ-module L(C∗, τ, λ) must
contain the direct sum V of all L(C∗, ηk, λ), where ηk ranges over all irreducible
components of ω|S0. On the other hand, the action of K maps the irreducible Dλ-
module L(C∗, ηk, λ) into a submodule of V. Therefore, V is a (Dλ,K)-submodule
of I(C∗, τ, λ), and must contain L(C∗, τ, λ). It follows that V = L(C∗, τ, λ). There-
fore, I(C∗, τ, λ) is irreducible (Dλ,K)-module if and only if all I(C∗, ηk, λ), where
ηk ranges over all irreducible components of ω|S0, are irreducible Dλ-modules. By
4.6 and 4.9, this implies our assertion. □
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Let C be a closed K-orbit in X, i.e., either {0}, or {∞} or the union of these
two points. The next result generalizes 4.7.

Lemma 4.11. Every standard module attached to C is isomorphic to a quotient of
a standard module on the open orbit C∗.

Proof. By twisting we can assume that λ is regular and dominant. In the case
(a), K is a quotient of the direct product K0 × S. Therefore, we can assume that
K = K0×D for some finite group D and that φ|{1}×D = 1. The orbit C consists
of just one point and we can assume that C = {0}. An irreducible K-homogeneous
connection on C compatible with λ+ρ is just an irreducible representation ofK with
differential equal to a direct sum of copies of λ+ ρ (under the specialization at 0).
Such representation is an exterior tensor product ω⊠δ of irreducible representations
ω of K0 and δ of D. If ω = ωk, the compatibility implies that k = 1

2n(t + 1). If
we denote by I(C,ωk) the standard (g,K0)-module on C determined by ωk, we
have Γ(X, I(C,ω)) = Γ(X, I(C,ωk))⊠ δ where g acts only on the first factor in the
tensor product. On the other hand, ηk ⊠ δ is then an irreducible representation of
the stabilizer of 1 in K and determines an irreducible K-homogeneous connection
τ on C∗. Its global sections are

Γ(X, I(C∗, τ, λ)) = Γ(X, I(C∗, ηk, λ))⊠ δ,

and the assertion follows from 4.7 and the equivalence of categories.
In the case (b), we have C = {0,∞}. As we remarked in Appendix B of [12], in

this situation
Γ(X, I(C,ω)) = IndKK1

(Γ(X, I({0}, ω|{0})))
for any irreducible K-homogeneous connection ω on C. On the other hand, by the
first part of the proof, Γ(X, I({0}, ω|{0})) is a quotient of Γ(X, I(C∗, τ, λ)) for some
irreducible K1-homogeneous connection τ on C∗. This connection corresponds to
some irreducible representation γ of the stabilizer S1 of 1 in K1. Let γ̃ = IndKK1

(γ).
Then γ̃ is either irreducible or the sum of two irreducible representations γ+ and
γ−. Denote by τ̃ , resp. τ+ and τ−, the corresponding irreducible K-homogeneous
connections on C∗. One can check that

IndKK1
(Γ(X, I(C∗, τ, λ))) = Γ(X, I(C∗, τ̃ , λ))

in the first case, and

IndKK1
(Γ(X, I(C∗, τ, λ))) = Γ(X, I(C∗, τ+, λ))⊕ Γ(X, I(C∗, τ−, λ))

in the second case. Therefore, Γ(X, I(C,ω)) is a quotient of either Γ(X, I(C∗, τ̃ , λ))
or Γ(X, I(C∗, τ+, λ)) ⊕ Γ(X, I(C∗, τ−, λ)). The assertion again follows from the
equivalence of categories. □

Now we generalize 4.8. A K-homogeneous connection τ on C∗ is determined
by the representation ω of the stabilizer S in the geometric fiber T1(τ). On the
other hand, S also stabilizes the point −1. Therefore, there exists a unique K-
homogeneous connection τ̃ on C∗ determined by ω considered as the representation
of S in the geometric fiber T−1(τ̃). Since K0 is transitive on C∗ and K1 is the
centralizer of K0, it follows that τ ∼= τ̃ as K1-homogeneous connections.

Proposition 4.12. Let ω is an irreducible representation of S and λ ∈ h∗. Assume
that the pair (ω, λ) satisfies the parity condition. Then

LI(D(I(C∗, τ, λ))) = D(I(C∗, τ̃ ,−λ)).
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Proof. If (ω, λ) satisfies the parity condition, all ηk appearing in ω|S0 satisfy this
condition too. Therefore, I(I(C∗, τ, λ)) is as a D−λ-module equal to a direct sum
of finitely many I(C∗, ηk,−λ) for ηk contained in ω|S0, and the higher derived
intertwining functors vanish on I(C∗, τ, λ). Moreover,

I(I(C∗, τ, λ)) = I(C∗, τ ′,−λ),

where τ ′ is the K-equivariant connection which is the restriction of I(I(C∗, τ, λ))
to C∗. By translation we can assume that λ is antidominant and regular. Then by
2.10 we have

Γ(C∗, τ) = Γ(X, I(C∗, τ, λ)) = Γ(X, I(C∗, τ ′,−λ)) = Γ(C∗, τ ′),

as K-modules.
Assume first that we are in the case (a). In this situation K is a central extension

of K0. Therefore the map K0 × S −→ K given by (k, s) 7−→ ks is a surjective ho-
momorphism. This implies that any irreducible representation of K can be viewed
as an irreducible representation of K0×S. Since K0 is commutative, the restriction
of this representation to S is irreducible. By Frobenius reciprocity, the preceding
formula implies that the representations of S determining τ and τ ′ are equivalent.
Hence, in this case τ ∼= τ̃ .

Assume now that we are in the case (b). In this case K1 is a normal subgroup
of index two in K. Thus we can define a character δ of K which is 1 on K1 and
−1 outside K1. If π is an irreducible algebraic representation of K, π ⊗ δ is an
irreducible algebraic representation of K. There are two possibilities for π.

(i) π1 = π|K1 is irreducible. In this case, we can induce π|K1 to K. The induced
representation Ind(π1) contains exactly one copy of π by Frobenius reciprocity.
Since dim Ind(π1) = 2 dimπ, Ind(π1) is reducible and it is a sum of two irreducible
representations of K. Let ν be the other irreducible component of Ind(π1). Then
ν|K1 = π1 by Frobenius reciprocity. Therefore, ν|K1 = π|K1. Since the character
of Ind(π1) vanishes outsideK1, tr ν(k) = − trπ(k) outsideK1. Therefore, ν ∼= π⊗δ.
On the other hand, ν ̸∼= π, since Ind(π1) contains only one copy of π. Therefore,
in this case there exists exactly two irreducible representations extending π1 to
K, the representation π and π ⊗ δ. Since π|K0 is an isotypic K0-module, and
K/K1 conjugates all nontrivial characters of K0 into their inverses, we see that the
restriction of π to K0 is trivial.

(ii) π1 = π|K1 is reducible. In this case, π1 consists of two irreducible rep-
resentations ν+ and ν− of K1 conjugated by the action of K/K1. By Frobe-
nius reciprocity, π is contained in Ind(ν+) and Ind(ν−), but ν+ ̸∼= ν−. Since
dimπ = dim Ind(ν+) = dim Ind(ν−), we conclude that π ∼= Ind(ν+) ∼= Ind(ν−).
This implies that the character of π vanishes outside K1 and π ∼= π ⊗ δ.

Assume that Γ(C∗, τ) contains at least one irreducible component π of the type
(i). In this case, π|K1 is irreducible, hence as in (a) we conclude that the restriction
of π to S1 is irreducible. This implies that the restriction of π to S is irreducible.
By Frobenius reciprocity, the representation ω defining τ is equivalent to π|S. Since
the same argument applies to Γ(C∗, τ ′), we conclude τ ∼= τ ′. On the other hand,
again by Frobenius reciprocity, we see that the representation of S in T−1(τ) is also
equivalent to π|S, and τ̃ ∼= τ ∼= τ ′. Also, since π|K0 is trivial, ω|S0 is trivial in this
case.

It remains to treat the case when all irreducible representations of K in Γ(C∗, τ)
are of type (ii). Then π|S ∼= Ind(ν+|S1) ∼= Ind(ν−|S1). If this is an irreducible
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representation of S for some π in Γ(C∗, τ), the preceding argument applies again
and τ ∼= τ̃ . It remains to analyze the situation when π|S is reducible for all π in
Γ(C∗, τ). This implies that π|S contains two irreducible subrepresentations σ+ and
σ−. By Frobenius reciprocity, σ+|S1

∼= σ−|S1
∼= ν+|S1

∼= ν−|S1, and σ+ and σ− are
not equivalent. As before, we conclude that σ− ∼= σ+ ⊗ ι where ι = δ|S. Therefore,
the representation ω determining τ is either σ+ or σ+ ⊗ ι. Since K/K1 = S/S1

conjugates ν+|S1 and ν−|S1, if ν+|S0 is a direct sum of copies of ηk, ν−|S0 is a
direct sum of copies of ηn−k. Therefore, we also have ηk ∼= ηn−k. This is possible
only if ν+|S0 is either trivial or its kernel is of order two in S0.

Since K0 × S1 −→ K1 is a surjective homomorphism, if ν+|S0
∼= 1, there exists

an irreducible representation γ of K1 such that γ|K0 = 1 and γ|S1 = ν+|S1.
Since K/K1 conjugates ν+|S1 and ν−|S1 and they are equivalent, we conclude
that the conjugate of γ is equivalent to γ. By Frobenius reciprocity, there exists
an irreducible representation of K contained in Γ(X, τ) which, restricted to K1,
contains γ. By the preceding discussion, this representation must be of the type (i)
and we have a contradiction. Therefore, ker(ν+|S0) is of index two in S0. Since this
is a normal subgroup of K, we can divide S0 by it and assume that S0

∼= Z2. In
this case, K0 is a two-fold cover of T . Also, there exists an element ko of K which
maps into the image of w in PSL(2,C). It acts as z 7−→ z−1 on C∗, and therefore
lies in S. Since T acts with no fixed points on C∗, it follows that φ(K0) ∩ B1 is
trivial. This implies that φ(ko) is the only nontrivial element of φ(K) ∩ B1. If we
consider I(C∗, τ, λ) as (Dλ,K1)-module, from the preceding argument we conclude
that the restrictions of each isotypic K1-submodule of Γ(X, I(C∗, τ, λ)) to S1 are
mutually equivalent and irreducible. Therefore, we can assume that they are all
isomorphic to some irreducible S1-module V . Hence we see that the global sections
are spanned by ep ⊗ v, p ∈ Z and v ∈ V . Since φ(S1) = 1, the actions of E, F and
H are

E(ep ⊗ v) = −
(
p+ 1 +

t

2

)
ep+1 ⊗ v,

F (ep ⊗ v) =

(
p− t

2

)
ep−1 ⊗ v,

H(ep ⊗ v) = (2p+ 1)ep ⊗ v,

for all p ∈ Z. Let R be the linear transformation which describes the action of k0
on Γ(X, I(C∗, τ, λ)). Then,

R(ep ⊗ v) = e−p−1 ⊗Qpv

for some linear transformation Qp on V . By a direct calculation,

R−1ER(ep ⊗ v) = F (ep ⊗Q−1
p−1Qpv)

R−1FR(ep ⊗ v) = E(ep ⊗Q−1
p+1Qpv)

R−1HR(ep ⊗ v) = −H(ep ⊗ v)

for any p ∈ Z. Since Ad(w)(E) = F , Ad(w)F = E and Ad(w)(H) = −H, we see
that Qp = Q for all p ∈ Z. This implies that k0 acts as Q on the geometric fibre
T1(τ) ∼= V , and as −Q on T−1(τ) ∼= V .
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If we change the basis {ep | p ∈ Z} to the basis {fp | p ∈ Z} as before, we get

T (fp ⊗ v) = α(e−p−1 ⊗Qv) =
αp

α−p−1
(f−p−1 ⊗Qv).

On the other hand, for p ∈ N, we have

αp

α−p−1
=

αp

αp−1
·αp−1

α−p
· α−p

α−p−1
=

(p+ t
2 )

(p− t
2 )

·
(−p+ t

2 )

(−p− t
2 )

·αp−1

α−p
=
αp−1

α−p
= . . . =

α0

α−1
= −1.

This implies
T (fp ⊗ v) = −(f−p−1 ⊗Qv)

for any p ∈ Z. Hence the actions of k0 on the fibre of τ and τ ′ at 1 differ in sign.
This implies τ ′ ∼= τ̃ in this case. □

Corollary 4.13. Assume that the pair (ω, λ) satisfies the parity condition and that
p = −α (̌λ) ∈ Z. Then

LI(D(I(C∗, τ, λ))) = D(I(C∗, τ, λ)(pα)).

Proof. In the case (a), φ(K) = T . Since T acts with no fixed points on C∗, it
follows that φ(K) ∩ B1 is trivial. Hence, the representation of the stabilizer S =
φ−1(φ(K) ∩ B1) corresponding to the K-homogeneous OC∗ -connection i∗(O(pα))
is trivial. This proves that τ̃ ∼= τ ∼= τ ⊗OC∗ i

∗(O(pα)) in this case.
In the case (b), the element ko of K maps into the image of w in PSL(2,C). It

acts as z 7−→ z−1 on C∗ and therefore lies in S. As in the preceding argument, this
implies that φ(ko) is the only nontrivial element of φ(K) ∩ B1. Its square maps
into the identity element of PSL(2,C), hence it acts as −1 in the one-dimensional
representation of S attached to the K-homogeneous OC∗ -connection i∗(O(α)). If
p is even, the representation of the stabilizer attached to i∗(O(pα)) is trivial and
i∗(O(pα)) ∼= OC∗ . Since the parity condition holds, 2k ̸= n in this situation and
kerω|S0 is not of index two in S0. Therefore, as we have seen in the preceding
argument, τ ∼= τ̃ and the assertion holds in this case. If p is odd, by the parity
condition k ̸= 0. Hence, either ω is induced from an irreducible representation
of S1 or kerω|S0 is of index two in S0. In the first case, the representations of
the stabilizer S at 1 and −1 attached to τ are equivalent and ω ∼= ω ⊗ ι. Hence,
τ̃ ∼= τ ⊗OC∗ i

∗(O(pα)) in this case. In the second case, the representation of S at 1
corresponding to τ̃ is ω ⊗ ι, hence τ̃ ∼= τ ⊗OC∗ i

∗(O(pα)) again. □

Finally, we want to make an observation about the action of the intertwining
functor I on irreducible Harish-Chandra sheaves. In particular, we want to establish
an analogue of 2.18 in this case. First, by 2.8, L−1I ̸= 0 implies that α (̌λ) ∈ Z.

Lemma 4.14. Let p = −α (̌λ) ∈ Z. Let L(Q, τ) be an irreducible Harish-Chandra
sheaf. Then the following conditions are equivalent:

(i) I(L(Q, τ)) = 0;
(ii) either

(a) K contains a conjugate of N and Q is the open orbit in X; or
(b) the identity component of K covers a conjugate of T , Q is the open

orbit in X and the parity condition fails for τ .

Proof. Assume that K contains a conjugate of N and Q is not the open orbit. Then
Q is a point and I(L(Q, τ)) ̸= 0 by 4.3.(ii). If the identity component of K covers
T and Q is not the open orbit, Q is either a point or a pair of points, hence the
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same argument applies. If Q is the open orbit and the parity condition holds for τ ,
L(Q, τ) = I(Q, τ) by 4.10, and I(L(Q, τ)) ̸= 0 by 4.12. Therefore, (i) implies (ii).

Assume that (ii) holds. By 2.4, we can assume that λ = −ρ. First, assume that
K contains N . Then, by replacing K by its identity component we see that I(Q, τ)
is isomorphic to a finite direct sum of I(X∗,−ρ). By 4.2.(iii), each of these modules
contains a copy of OX as the unique irreducible submodule, we see that I(Q, τ)
contains a connection C which is the direct sum of the same number of copies of
OX . The connection C is clearly K-homogeneous, and the quotient of I(Q, τ) by
C is supported in the complement of Q. Hence, it is equal to L(Q, τ). By 4.3.(ii),
we see that I(L(Q, τ)) = 0.

Assume now that (ii) holds and identity component of K covers T . Again, by
replacing K by its identity component we can assume that I(Q, τ) is, as a Dλ-
module, a finite direct sum of I(C∗, ηk, λ) (for possibly different k). Moreover, the
failure of the parity condition implies that k must be equal to 0. It follows that
I(Q, τ) is a direct sum of finitely many copies of I(C∗, η0,−ρ) as a DX -module.
By 4.6, each of these modules contains a copy of OX as the unique irreducible
submodule, we see that I(Q, τ) contains a connection C which is the direct sum of
the same number of copies of OX . The connection C is clearly K-homogeneous, and
the quotient of I(Q, τ) by C is supported in the complement of Q. Hence, it is equal
to L(Q, τ). The assertion I(L(Q, τ)) = 0 again follows by applying 4.3.(ii). □

5. Some results on root systems with involution

In this section we prove some technical lemmas about root systems with involu-
tion. Let V be a vector space over Q and Σ a (restricted) root system in V . We
assume that V is equipped with a natural inner product (. , .) invariant under the
action of Aut(Σ). Let σ be an involution on Σ, i.e., an automorphism of the root
system Σ such that σ2 = 1. A root α ∈ Σ is called imaginary if σα = α, real
if σα = −α and complex otherwise. If g is the complexified Lie algebra of a real
semisimple Lie group g0, σ a Cartan involution on g and c the complexification of a
σ-stable Cartan subalgebra c0 of g, the vector space V over Q spanned by the roots
of (g, c) in c∗ is a root system with involution induced by the Cartan involution σ,
and the notions of imaginary, real and complex roots agree with the usual ones.

Denote by ΣI the set of imaginary roots, ΣR the set of real roots and ΣC the set
of complex roots in Σ. Let Σ+ be a set of positive roots in Σ. We say that Σ+ is of
Langlands type if for any positive complex root α the root σα is negative; and that
Σ+ is of Zuckerman type if for any positive complex root α the root σα is positive.

If (Σ, σ) is a root system with involution, (Σ,−σ) is also a root system with
involution. The sets of complex roots are the same in both cases; and real, respec-
tively imaginary, roots for (Σ, σ) are imaginary, respectively real, roots for (Σ,−σ).
Thus, replacing the involution σ with −σ switches the two types of sets of positive
roots: a set of Langlands type, respectively of Zuckerman type, for σ is a set of
Zuckerman type, respectively of Langlands type, for −σ.

Lemma 5.1. The root system Σ admits sets of positive roots of Langlands type and
of Zuckerman type.

Proof. Let V = V+ ⊕ V− be the decomposition of V into the σ-eigenspaces with
eigenvalues 1 and −1. Define a lexicographical ordering on V with respect to a
basis of V which consists of a basis of V+ followed by a basis of V−. Let Σ

+ be the
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corresponding set of positive roots. Then σα is a positive root for any positive root
α which is not real. Therefore, Σ+ is of Zuckerman type. The existence of sets of
positive roots of Langlands type follows by replacing σ with −σ. □

Now we want to refine the argument of the preceding lemma. Let ≫+ be an
order relation on V+, and ≫− be an order relation on V−, compatible with the
vector space structures on V+ and V− respectively. Then we can define an order
relation ≫+,− on V = V+ ⊕ V− as (v, w) ≫+,− (v′, w′) if and only if v − v′ ≫+ 0
if v ̸= v′, and w − w′ ≫− 0 if v = v′. Analogously, we can define an order relation
≫−,+ on V by reversing the roles of V+ and V−.

Lemma 5.2. Let Σ+ be a set of positive roots in V and λ ∈ V such that (α, λ) ≤ 0
for all α ∈ Σ+. Then there exists a set of positive roots Σ+,L of Langlands type
such that:

(L1) (α, λ) ≤ 0 for all imaginary roots in Σ+,L;
(L2) (α, λ− σλ) ≤ 0 for all nonimaginary roots in Σ+,L.
(I) Σ+ ∩ (−Σ+,L) consists of complex roots satisfying σα ∈ Σ+.

Proof. By continuity we may assume that λ is regular and λ−σλ is not orthogonal
to any nonimaginary roots. Then we can define an ordering on V− by µ ≫− 0 if
(µ, λ − σλ) ≤ 0 and an ordering ≫+ on V+ compatible with Σ+ ∩ ΣI . This gives
the ordering ≫−,+ on V . Since λ − σλ is not orthogonal to any nonimaginary
root α, they are either positive or negative. On the other hand, the order relation
on imaginary roots is given by ≫+. Thus any root is either positive or negative
with respect to ≫−,+, hence the set of all roots α≫−,+ 0 is a set of positive roots.
Clearly it satisfies the conditions (L1) and (L2) of the lemma, and it is of Langlands
type. In addition, if α is a positive real root with respect to this ordering,

2(α, λ) = (α, λ− σλ) < 0.

Hence, α ∈ Σ+. This implies that roots in Σ+ ∩ (−Σ+,L) are complex. Moreover,
if α belongs to Σ+ ∩ (−Σ+,L), σα ∈ Σ+,L and

0 > (σα, λ− σλ) = (α, σλ− λ),

which implies

(σα, λ) = (α, σλ− λ) + (α, λ) < 0

and σα ∈ Σ+. □

Let Σ+ be a set of positive roots in Σ. Put

D(Σ+) = {α ∈ Σ+ | σα ∈ Σ+ and σα ̸= α}.

Proposition 5.3. Let Σ+ be a set of positive roots in Σ.

(i) There exists a set of positive roots of Langlands type Σ+,L such that

Σ+ ∩ (−Σ+,L) ⊂ D(Σ+).

(ii) Let Σ+,L be a set of positive root of Langlands type such that S = Σ+ ∩
(−Σ+,L) ⊂ D(Σ+). Then

S ∩ σS = ∅ and S ∪ σS = D(Σ+).
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(iii) Let Σ+,′ be another set of positive roots in Σ such that S = Σ+ ∩ (−Σ+,′)
satisfies

S ∩ σS = ∅ and S ∪ σS = D(Σ+).

Then Σ+,′ is a set of positive roots of Langlands type.

Proof. Suppose λ ∈ V satisfies (α, λ) < 0 for all α ∈ Σ+. Then (i) follows from 5.2.
(ii) Let α ∈ S ∩ σS. Then

−α,−σα ∈ −S ⊂ Σ+,L.

Since Σ+,L is of Langlands type, this would imply that α is an imaginary root
contradicting α ∈ D(Σ+). Therefore, S ∩ σS is empty.

Let α ∈ D(Σ+). Then α ∈ Σ+,L or −α ∈ Σ+,L. In the first case, σα ∈ −Σ+,L

and σα ∈ Σ+∩(−Σ+,L) = S. In the second case, α ∈ Σ+∩(−Σ+,L) = S. Therefore,
α ∈ S ∪ σS.

(iii) Let α be a complex root in Σ+,′.
Assume first that α ∈ −Σ+. Then −α ∈ S ⊂ D(Σ+). This implies that

−σα ∈ D(Σ+) ⊂ Σ+ and −σα /∈ S. Therefore −σα /∈ −Σ+,′, i.e., σα ∈ −Σ+,′.

Assume now that α ∈ D(Σ+). Since α ∈ Σ+,′, α /∈ S. Hence σα ∈ S, i.e.,

σα ∈ −Σ+,′.
Finally, assume that α ∈ Σ+ and α /∈ D(Σ+). In this case, σα ∈ −Σ+, i.e.,

−σα ∈ Σ+. If σα ∈ Σ+,′, −σα ∈ S ⊂ D(Σ+) and −α ∈ D(Σ+) contradicting

α ∈ Σ+. Therefore, σα ∈ −Σ+,′.
Consequently Σ+,′ is a set of positive roots of Langlands type. □

Since the Weyl group W of Σ acts transitively on the sets of positive roots, this
result can be rephrased as follows.

Corollary 5.4. Let Σ+ be a set of positive roots in Σ. There exists w ∈ W such
that

Σ+
w ∩ σ(Σ+

w) = ∅ and Σ+
w ∪ σ(Σ+

w) = D(Σ+).

In particular, if D(Σ+) ̸= ∅, it must contain a simple root.
For any such w ∈W , w−1(Σ+) is a set of positive roots of Langlands type.

Any set of positive roots of Langlands type Σ+,L satisfying

S = Σ+ ∩ (−Σ+,L) ⊂ D(Σ+)

defines a section S of the σ-orbits in D(Σ+). Such sections are not completely
arbitrary. Actually, they are all contained in a smaller subset of D(Σ+).

To analyze these sections in more detail we first have to study the case of root
systems of rank 2. If Σ is a root system of rank 2 with nonempty D(Σ+), the involu-
tion σ must be different from ±1. On the other hand, if α ∈ D(Σ+), α, σα,−α,−σα
are complex roots. Moreover, if α and σα are not strongly orthogonal, Σ contains
at least a pair of either imaginary or real roots. This implies that CardD(Σ+) is
either 2 or 4.

Assume first that CardD(Σ+) = 2. Therefore, by 5.3, there exists a set of
positive roots of Langlands type Σ+,L in Σ such that S = Σ+ ∩ (−Σ+,L) consists
of only one root in D(Σ+). We can assume that S = {α}. Let w be the element of
the Weyl group of Σ with the property that w(Σ+,L) = Σ+. Then S = Σ+

w . Since
ℓ(w) = CardΣ+

w , we see that α ∈ Π and w = sα. Therefore, S ⊂ D(Σ+) ∩ Π. The
only ambiguity about S is in the case when D(Σ+) = Π. This is possible only if
both simple roots are of the same length, i.e., we have the following cases:
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(i) Σ is of type A1×A1 and Π = {α, σα};
(ii) Σ is of type A2 and Π = {α, σα}.
Assume that D(Σ+) = 4. Then Σ must contain at least eight complex roots,

and if it contains only eight roots all pairs α, σα must be strongly orthogonal. This
implies that Σ must be of type G2, and D(Σ+) consists of a pair of short roots and
a pair of long roots. The remaining four roots are two pairs of mutually orthogonal
roots: a pair of real roots and a pair of imaginary roots. By 5.3, there exists a
set of positive roots of Langlands type Σ+,L in Σ such that S = Σ+ ∩ (−Σ+,L)
consists of two roots in D(Σ+). Let w be the element of the Weyl group of Σ
with the property that w(Σ+,L) = Σ+. Then S = Σ+

w , and we see that S contains
a simple root. We can assume that this root is α. Moreover, if β is the other
simple root, S = {α, sαβ} and w = sαsβ . If β is complex, β ∈ D(Σ+) and
σ(Σ+) = Σ+, contradicting the existence of a positive real root. The same is true if
β is an imaginary root. Therefore β is a real root. It follows that S is the uniquely
determined subset of D(Σ+) which consists of the one complex simple root α and
the root which is the reflection of the other simple root β with respect to α.

This proves:

Lemma 5.5. Let Σ be a root system of rank 2 and Σ+ ⊂ Σ a set of positive roots.
Let

C = {α ∈ D(Σ+) | α is a minimal element of {α, σα}}.
If w ∈W is such that

Σ+
w ∩ σ(Σ+

w) = ∅ and Σ+
w ∪ σ(Σ+

w) = D(Σ+),

we have Σ+
w ⊂ C. Moreover, Σ+

w = C except if D(Σ+) = Π, i.e., except in the
following cases:

(i) Σ is of type A1×A1, Π = {α, σα};
(ii) Σ is of type A2 and Π = {α, σα}.

Now we can discuss the general case. For each α in D(Σ+) we denote by Σα

the smallest closed root subsystem containing α and σα. Clearly Σα is σ-invariant,
hence the restriction of σ to the vector subspace Vα of V spanned by Σα defines
an involution σα on the root system Σα. Thus (Σα, σα) is a root system with
involution of rank 2. We can define an ordering on Σα by Σ+

α = Σα ∩ Σ+. Denote
by Πα the corresponding set of simple roots in Σα. If Σ

+,L is a set of positive roots
of Langlands type in Σ, Σ+,L

α is a set of positive roots of Langlands type in Σα.
Define

C(Σ+) = {α ∈ D(Σ+) | α is minimal in {α, σα} with respect to Σ+
α}.

Now 5.5 combined with the preceding discussion implies:

Proposition 5.6. Let w ∈W be such that

Σ+
w ∩ σ(Σ+

w) = ∅ and Σ+
w ∪ σ(Σ+

w) = D(Σ+).

Then we have
Σ+

w ⊂ C(Σ+).

Moreover, {α, σα} ⊂ C(Σ+) if and only if

(i) Σα is of type A1×A1, Πα = {α, σα};
(ii) Σα is of type A2 and Πα = {α, σα}.

The next result is a converse of 5.2.
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Lemma 5.7. Let Σ+,L be a set of positive roots of Langlands type in V and λ ∈ V
such that (L1) and (L2) hold. Then there exists a set of positive roots Σ+ such that

(AD) (α, λ) ≤ 0 for all roots in Σ+;
(I) Σ+ ∩ (−Σ+,L) consists of complex roots satisfying σα ∈ Σ+.

Proof. Again, by continuity we can assume that λ is regular and λ − σλ is not
orthogonal to any nonimaginary root. Then the set of all roots α satisfying (α, λ) ≤
0 is a set of positive roots in Σ. Also, it contains all imaginary and real roots from
Σ+,L. Now (I) follows as in the proof of 5.2. □

We shall also need:

Lemma 5.8. Let Σ+ be a set of positive roots and λ ∈ V such that

(V1) (α, λ+ σλ) ≤ 0 for all roots in α ∈ Σ+ such that σα ∈ Σ+;
(V2) (α, λ− σλ) ≥ 0 for all roots α ∈ Σ+ such that −σα ∈ Σ+.

Then there exists a set of positive roots Σ+,L of Langlands type such that

(DL1) (α, λ) ≤ 0 for all imaginary roots in Σ+,L;
(DL2) (α, λ− σλ) ≥ 0 for all nonimaginary roots in Σ+,L;

(I) all α ∈ Σ+ ∩ (−Σ+,L) are complex and satisfy:
(I1) σα ∈ Σ+; and
(I2) (α, λ) ≤ 0.

Proof. By continuity, we may assume that λ is regular, λ + σλ is not orthogonal
to imaginary roots, and λ− σλ is not orthogonal to nonimaginary roots. Then we
can define an order relation ≫+ on V+ by µ≫+ 0 if (µ, λ+ σλ) ≤ 0 and an order
relation ≫− on V− by µ ≫− 0 if (µ, λ − σλ) ≥ 0. Together they define the order
relation ≫−,+ on V . As before ≫−,+ determines a set of positive roots Σ+,L of
Langlands type. It satisfies the condition (DL2). Moreover, since

2(α, λ) = (α, λ+ σλ)

for any imaginary root α, we see that (DL1) holds. Since λ is regular,

ΣI ∩ Σ+ = ΣI ∩ Σ+,L.

Analogously, for any real root α ∈ Σ+,L,

2(α, λ) = (α, λ− σλ) ≥ 0

and α ∈ Σ+. Conversely, if α is a real root in Σ+, it follows that (α, λ − σλ) ≥ 0
and α ∈ Σ+,L. Therefore,

ΣR ∩ Σ+ = ΣR ∩ Σ+,L.

Hence, the roots in Σ+∩ (−Σ+,L) are complex. Moreover, if α ∈ Σ+∩ (−Σ+,L) and
−σα ∈ Σ+, it would follow from (V2) that (α, λ−σλ) ≥ 0, and from the definition
of Σ+,L that (α, λ−σλ) ≤ 0 which is impossible since α is not orthogonal to λ−σλ.
Therefore, σα ∈ Σ+ for any α ∈ Σ+ ∩ (−Σ+,L). Finally

2(α, λ) = (α, λ+ σλ) + (α, λ− σλ) ≤ 0,

because of (V1) and (DL2). □

Lemma 5.9. Let Σ+,L be a set of positive roots of Langlands type and λ ∈ V
such that (DL1) and (DL2) hold. Then there exists a set of positive roots Σ+,Z of
Zuckerman type such that

(Z1) (α, λ) ≥ 0 for all real roots in Σ+,Z ;



40 H. HECHT, D. MILIČIĆ, W. SCHMID, AND J. A. WOLF

(Z2) (α, λ+ σλ) ≤ 0 for all nonreal roots in Σ+,Z .
(I) Σ+,Z ∩ (−Σ+,L) consists of complex roots and (α, λ) ≤ 0 for α ∈ Σ+,Z ∩

(−Σ+,L).

Proof. To prove this statement argue as in the preceding argument, but replace the
order ≫−,+ with ≫+,−. □

Finally, we shall need the following simple result.

Lemma 5.10. Let Σ+ be a set of positive roots of Langlands type. Then:

(i) The set P = ΣI ∪ Σ+ is a parabolic set of roots in Σ.
(ii) There exists v ∈ V− such that P = {α ∈ Σ | (α, v) ≥ 0}.

Proof. (i) Let α ∈ ΣI and β ∈ Σ+ − ΣI be such that α + β is a root. We have to
show that α + β is positive. This is evident if α is positive. On the other hand,
if α is negative, the root β is either complex or real, hence σβ ∈ −Σ+. Assume
that α + β ∈ −Σ+. Since α + β is not imaginary, α + σβ = σ(α + β) ∈ Σ+, and
σβ = (α+ σβ)− α ∈ Σ+, contradicting the preceding statement.

(ii) Let u ∈ V be such that Σ+ = {α ∈ Σ | (α, u) > 0}. Since Σ+ is of
Langlands type, for any positive nonimaginary root α we have (α, σu) < 0. If we
put v = u − σu, we have v ∈ V− and (α, v) > 0 for any positive nonimaginary
root α. Therefore, (α, v) ≥ 0 for any α ∈ P . On the contrary, if α /∈ P , −α is in
Σ+ − ΣI , hence (α, v) < 0. □

6. K-orbits in the flag variety

A K-orbit in X can be viewed as a K-conjugacy class of Borel subalgebras in g.
The following result is due to Matsuki [14].

Lemma 6.1. Let b be a Borel subalgebra of g and N the unipotent radical of the
Borel subgroup B of G = Int(g) corresponding to b. Then the algebra b contains a
σ-stable Cartan subalgebra h0. All such Cartan subalgebras are conjugate by K∩N .

Let Q be a K-orbit in X and x ∈ Q. Then, by 6.1, Q determines a K-conjugacy
class of σ-stable Cartan subalgebras in g. Therefore, we have a map from the set of
K-orbits in X onto the set of K-conjugacy classes of σ-stable Cartan subalgebras
in g; in particular the latter set is finite. Let c be a σ-stable Cartan subalgebra in
g, and let R be the root system of (g, c) in c∗. Any choice of positive roots R+ in R
determines a Borel subalgebra, spanned by c and the root subspaces corresponding
to the roots in R+, and thus determines a K-orbit in X. Assume that two such
choices of positive roots define Borel subalgebras b and b′ lying in the same K-
orbit in X. Choose k ∈ K such that Ad k(b′) = b. Then Ad k(c) is a σ-stable
Cartan subalgebra which is contained in b. By 6.1, there is u ∈ K ∩ N such that
Ad k(c) = Adu(c), i.e., k′ = u−1k ∈ K lies in the normalizer NK(c) of c in K, and

b′ = Ad(k−1)(b) = Ad(k′
−1
u−1)(b) = Ad(k′

−1
)(b).

Therefore, the K-orbits in X which map into the K-conjugacy class of c are
parametrized by the conjugacy classes of positive root systems in R with respect
to NK(c). To summarize:

Observation 6.2. (i) Each K-orbit in X is attached to a unique K-conjugacy class
of σ-stable Cartan subalgebras.
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(ii) Let c be a σ-stable Cartan subalgebra. Then the K-orbits corresponding to
the K-conjugacy class of c are parametrized bijectively by the NK(c)-orbits of sets
of positive roots R+ for (g, c).

Let Q be a K-orbit in X, x a point of Q, and c a σ-stable Cartan subalgebra
contained in bx. Then σ induces an involution on the root system R in c∗. Let
R+ be the set of positive roots determined by bx. The specialization map from the
Cartan triple (h∗,Σ,Σ+) into the triple (c∗, R,R+) pulls back σ to an involution
of Σ. From the construction, one sees that this involution on Σ depends only on
the orbit Q, so we denote it by σQ. Let h = tQ ⊕ aQ be the decomposition of h
into σQ-eigenspaces for the eigenvalue 1 and −1. Under the specialization map this
corresponds to the decomposition c = t⊕a of c into σ-eigenspaces for the eigenvalue
1 and −1. As we discussed in §5, we can divide the roots in (Σ, σQ) into imaginary,
real and complex roots. This division depends on the orbit Q, hence we have

ΣQ,I = Q-imaginary roots,

ΣQ,R = Q-real roots,

ΣQ,C = Q-complex roots.

Via specialization, these roots correspond to imaginary, real and complex roots in
the root system R in c∗.

Put
D+(Q) = {α ∈ Σ+ | σQα ∈ Σ+, σQα ̸= α};

then D+(Q) is σQ-invariant and consists of Q-complex roots. Each σQ-orbit in
D+(Q) consists of two roots, hence d(Q) = CardD+(Q) is even. The complement
of the set D+(Q) in the set of all positive Q-complex roots is

D−(Q) = {α ∈ Σ+ | −σQα ∈ Σ+, σQα ̸= −α}.
In addition, for imaginary α ∈ R, σα = α and the root subspace gα is σ-invariant.
Therefore, σ acts on it either as 1 or as−1. In the first case gα ⊂ k and α is a compact
imaginary root, in the second case gα ̸⊂ k and α is a noncompact imaginary root.
We denote by RCI and RNI the sets of compact, resp. noncompact, imaginary roots
in R. Also, we denote the corresponding sets of roots in Σ by ΣQ,CI and ΣQ,NI .

Lemma 6.3. (i) The Lie algebra k is the direct sum of t, the root subspaces gα for
compact imaginary roots α, and the σ-eigenspaces of gα ⊕ gσα for the eigenvalue 1
for real and complex roots α.

(ii) The Lie algebra k ∩ bx is spanned by t, gα for positive compact imaginary
roots α, and the σ-eigenspaces of gα ⊕ gσα for the eigenvalue 1 for complex roots
α ∈ R+ with σα ∈ R+.

Proof. Evident. □

Lemma 6.4. Let Q be a K-orbit in X. Then

dimQ =
1

2
(CardΣQ,CI +CardΣQ,R +CardΣQ,C − d(Q)).

Proof. The tangent space to Q at x can be identified with k/(k ∩ bx). By 6.3,

dimQ = dim k− dim(k ∩ bx)

= CardΣQ,CI +
1

2
(CardΣQ,R +CardΣQ,C)−

1

2
CardΣQ,CI −

1

2
d(Q).
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□

By 6.4, sinceD+(Q) consists of at most half of allQ-complex roots, the dimension
of K-orbits attached to c lies between

1

2
(CardΣQ,CI +CardΣQ,R +

1

2
CardΣQ,C)

and
1

2
(CardΣQ,CI +CardΣQ,R +CardΣQ,C).

The first, minimal, value is attained if Q corresponds to a set of positive roots R+ of
Zuckerman type. We call such orbits Zuckerman orbits attached to c. The second,
maximal, value is attained on the K-orbits corresponding to sets of positive roots
of Langlands type. We call those orbits Langlands orbits attached to c. As we have
shown in 5.1, there exist both Langlands and Zuckerman orbits attached to c.

The following simple observation will play a critical role later. Let α ∈ Π and
Xα be the generalized flag variety of g of parabolic subalgebras of type α. Denote
by pα the natural projection of X onto Xα, which maps a Borel subalgebra b ⊂ g
into the parabolic subalgebra of type α containing b. Let Q be a K-orbit in X and
V = p−1

α (pα(Q)). Then V is an union of finitely many K-orbits. Let x ∈ Q and
y = pα(x). Let Py be the parabolic subgroup of G of type α which stabilizes y
and py its Lie algebra. Let U be the unipotent radical of Py. Then the quotient
of Py/U by its center is isomorphic to PSL(2,C). Denote by τ the corresponding
homomorphism of Py into PSL(2,C). The differential of τ defines an isomorphism
of the fiber p−1

α (y), i.e., the set of Borel subalgebras of g contained in py, with the
flag variety Xo = P1 of sl(2,C). Also, φ−1(φ(K)∩ker τ) is a normal subgroup of the
closed subgroup φ−1(φ(K)∩Py) ofK. Therefore, we have a natural homomorphism
φo of the group

Ko = φ−1(φ(K) ∩ Py)/φ
−1(φ(K) ∩ ker τ)

into PSL(2,C).

Lemma 6.5. (i) (sl(2,C),Ko) is a Harish-Chandra pair.
(ii) The identification of Xo and the fiber p−1

α (y) identifies Ko-orbits in Xo with
the intersections of K-orbits in V with p−1

α (y).
(iii) If α is a compact Q-imaginary root, the identity component of Ko is a

covering of PSL(2,C). The orbit Q is equal to V .
(iv) If α is a noncompact Q-imaginary root or a Q-real root, the identity com-

ponent of Ko is a one dimensional torus. In the first case, dimQ = dimV − 1, in
the second dimQ = dimV . The variety V is a union of two or three K-orbits.

(v) If α is a Q-complex root, the unipotent radical of Ko is one dimensional.
The variety V is a union of two K-orbits, dimQ = dimV if σQα /∈ Σ+, and
dimQ = dimV − 1 if σQα ∈ Σ+. In the second case, pα : Q −→ pα(Q) is an
isomorphism.

Proof. (ii) Let Qo be a Ko-orbit in Xo
∼= p−1

α (y). Then Qo is contained in a K-orbit
O. Let x′ ∈ O ∩ Xo. Then there exists k ∈ K such that k · x′ ∈ Qo. Moreover,
k · y = k · pα(x′) = pα(k · x′) = y implies that k ∈ φ−1(φ(K) ∩ Py), which yields
x′ ∈ Qo. Therefore, Qo = O ∩Xo.

(i) follows from (ii).
To prove the remaining statements, we calculate the Lie algebra of Ko. Using

the notation of 6.3, we see that k∩py is spanned by t, gβ for positive compact roots
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β, σ-eigenspaces of gβ ⊕ gσβ for the eigenvalue 1 for complex roots β ∈ R+ with
σβ ∈ R+, and either g−α if α is compact imaginary, or σ-eigenspaces of g−α⊕g−σα

for the eigenvalue 1 if α is a complex root such that σα /∈ R+.
If α is compact imaginary in R, k ∩ py has a Levi factor that contains gα and

g−α. Therefore, the Lie algebra of Ko in this case must be sl(2,C). This completes
the proof of (iii).

If α is noncompact imaginary or real, the Lie algebra ofKo is the image of t under
the differential of τ . By (i), Ko must be at least one-dimensional and from 4.1 we
conclude that its identity component is an one-dimensional torus. An application
of 4.1 and (ii) completes the proof of (iv).

If α is complex, the Lie algebra ofKo is solvable and contains the image under the
differential of τ of either gα if σα ∈ R+, or g−α if σα /∈ R+. Therefore, the unipotent
radical of Ko is one dimensional by (i) and 4.1, and Ko acts on Xo with two orbits.
By (ii), this implies that V contains twoK-orbits. Applying 4.1 again we see that in
the first caseKo stabilizes x, Q∩Xo = {x}, and φ−1(φ(K)∩Py) = φ−1(φ(K)∩Bx);
in the second case Ko does not stabilize x, and Q is the open orbit in V . □

Let w be transversal to a K-orbit Q. Then Ew(Q) is K-invariant. Since it is
irreducible by 3.1.(iv), and the number of K-orbits is finite, there exists a unique
K-orbit Qw of maximal dimension in Ew(Q). The next result reduces the analysis
of elements of W transversal to a K-orbits to simple reflections.

Lemma 6.6. Let w, v ∈ W be such that ℓ(wv) = ℓ(w) + ℓ(v), and Q a K-orbit in
X. Then the following conditions are equivalent:

(i) wv is transversal to Q;
(ii) v is transversal to Q and w is transversal to Qv.

If these conditions are satisfied, Qwv = (Qv)w.

Proof. Assume that wv is transversal to Q. Then, by 3.2, v is transversal to Q and
w is transversal to Ev(Q). Since Qv is dense in Ev(Q), Ev(Q) ⊂ Qv. Hence, by
3.1.(ii) and 3.1.(v),

Ewv(Q) = Ew(Ev(Q)) ⊂ Ew(Qv) = Ew(Qv).

This implies

dimQ+ℓ(wv) = dimEwv(Q) ≤ dimEw(Qv) ≤ dimQv+ℓ(w) ≤ dimQ+ℓ(v)+ℓ(w),

hence the inequalities must be equalities. Therefore, w is transversal to Qv. In
addition this implies that the K-orbit Qwv is open in Ew(Qv), i.e., Qwv = (Qv)w.

If v is transversal to Q and w is transversal to Qv, by 3.2.(ii) and 3.1.(ii), v

is transversal to Q̄ and w is transversal to Qv = Ev(Q) = Ev(Q̄). By 3.2.(ii), it
follows that wv is transversal to Q. □

The case of simple reflections is treated in the following result.

Lemma 6.7. Let Q be a K-orbit and α a simple root. Then sα is transversal
to Q if and only if α is either noncompact Q-imaginary or Q-complex satisfying
σQα ∈ Σ+.

Proof. By our definition, Esα(Q) = p−1
α (pα(Q)), hence sα is transversal to Q if and

only if Q is of codimension one in p−1
α (pα(Q)). By 6.5.(iii) and (iv), if α is compact

Q-imaginary of Q-real, dim p−1
α (pα(Q)) = dimQ, hence sα is not transversal to Q.

On the other hand, by 6.5.(iv), if α is noncompact Q-imaginary, sα is transversal
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to Q. If α is Q-complex, sα is transversal to Q if and only if σQα is a positive root
by 6.5.(v). □

Assume first that α ∈ Π is noncompact Q-imaginary. Then Esα(Q) is the union
of two or three K-orbits by 6.5.(iv). Fix x ∈ Q. Let c be a σ-stable Cartan
subalgebra in bx. Then roots α and −α via specialization determine root subspaces
gα and g−α of g. Let sα be the subalgebra of g spanned by gα, g−α and [gα, g−α] ⊂ c.
Then sα is σ-stable, since σ acts as −1 on gα. Let σα be the restriction of σ to sα.
Therefore, lα = sα+ c is a σ-stable Levi factor of the parabolic subalgebra p of type
α which contains bx. This parabolic subalgebra corresponds to the point pα(x) in
the generalized flag variety Xα. Let ξα ∈ gα and ξ−α ∈ g−α. Then ξα − ξ−α is a
semisimple element in sα and

σ(ξα − ξ−α) = −(ξα − ξ−α).

Therefore, the kernel of the root α in c and the line spanned by ξα − ξ−α span
another σ-stable Cartan subalgebra in g, which we denote by d. The σ-invariant
vectors in d are the subspace of codimension 1 in the σ-invariants of c. Therefore,
c and d are not K-conjugate. Since d ⊂ p, there exists a Borel subalgebra bx′

containing d which lies inside p. The point x′ lies in a K-orbit which projects onto
pα(Q) in Xα. In the notation of 6.5, the fiber over y = pα(x) can be viewed as the
flag variety Xo of sl(2,C). Since Ko is an one dimensional torus by the discussion in
6.5, by the results of §4 it follows that c∩sα is the only σα-stable Cartan subalgebra
in sα on which σα acts as identity. The representative of the other class of σα-stable
Cartan subalgebras is d∩sα. The involution σα acts on it as −1, and it corresponds
to the open orbit in Xo. Hence the K-orbit of x′ is open in p−1

α (pα(Q)), i.e., this
orbit is Qsα .

From the construction it is clear that the involutions σQ and σQsα
agree on kerα.

On the other hand, on the complementary line spanned by α ,̌ σQ acts as 1 and
σQsα

as −1. Therefore,

σQsα
= sα ◦ σQ = σQ ◦ sα.

It follows that α is a Qα-real root.
Hence, we established the following fact.

Lemma 6.8. Let α ∈ Π be a noncompact Q-imaginary root. Then

(i) σQsα
= sα ◦ σQ = σQ ◦ sα;

(ii) α is Qsα-real.

Now we want to discuss elements of W transversal to K-orbits and which are
products of complex simple reflections only. Let w ∈ W and Zw be the subvariety
of X ×X consisting of pairs of Borel subalgebras in relative position w. Denote by
p1, p2, the projections of Zw onto the first, resp. second, factor in X ×X. As we
mentioned in §2, p2 : Zw −→ X is a locally trivial fibration with fibres isomorphic
to Cℓ(w). Therefore, for any K-orbit Q in X, p−1

2 (Q) is a smooth K-invariant
subvariety of Zw. Recall the notation established in §2.

Lemma 6.9. Let Q be a K-orbit in X attached to a σ-stable Cartan subalgebra c
and a set of positive roots R+ in c∗. Let w ∈ W . Assume that Σ+

w ⊂ D+(Q) and
Σ+

w ∩ σQ(Σ+
w) = ∅. Then:

(i) p−1
2 (Q) is a K-orbit in Zw;
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(ii) the projection p1 induces an isomorphism of p−1
2 (Q) onto the K-orbit p1(p

−1
2 (Q))

in X, which is attached to c and the set of positive roots in R corresponding
to w−1(Σ+) under the specialization determined by Q.

By 3.1.(iii), the K-orbit p1(p
−1
2 (Q)) is dense in Ew(Q). Hence,

dimEw(Q) = dim p1(p
−1
2 (Q)) = dimQ+ ℓ(w),

and w is transversal to Q. It follows that Qw = p1(p
−1
2 (Q)).

We prove this statement by induction on ℓ(w). Assume first that ℓ(w) = 1,
i.e., w = sα for some simple root α. Then sα(Σ

+) = (Σ+ − {α}) ∪ {−α}, hence
Σ+

sα = {α} and the only condition is that α ∈ D+(Q). Let x ∈ Q and y = pα(x)
as before. The fiber of p2 : Zsα −→ X at x consists of all pairs (x′, x) ∈ X × X
such that b′x and bx are in relative position sα. This is equivalent to x′ ̸= x and
pα(x

′) = pα(x). To prove (i), it is enough to show that the stabilizer φ−1(φ(K)∩Bx)
of x in K acts transitively on this fiber. Since α is Q-complex and σQα ∈ Σ+, by
6.5.(v), Ko = φ−1(φ(K) ∩Bx) = φ−1(φ(K) ∩ Py), and this group acts transitively
on {x′ ∈ X | pα(x′) = y, x′ ̸= x}.

Let (x, x′), (x, x′′) ∈ p−1
2 (Q). Then pα(x

′) = pα(x) = pα(x
′′), so x′ = x′′ since

pα : Q −→ pα(Q) is a bijection by 6.5.(v). This proves (ii) in this situation.
Now we can prove the result for an arbitrary w by induction on ℓ(w). Assume

that the statement holds for all w′ ∈ W such that ℓ(w′) < k, and that w satisfies
ℓ(w) = k. Let w = sα1sα2 . . . sαk

be a reduced expression of w. Denote w′ =
sα1

sα2
. . . sαk−1

. Then ℓ(w′) = k − 1 and w = w′sαk
. Moreover, as we remarked in

§2, we see that Σ+
w = sαk

(Σ+
w′) ∪ {αk}, and this union is disjoint. So αk ∈ D+(Q),

and by the first part of the proof, 6.9 holds for sαk
. Hence, the K-orbit Qsαk

is attached to c and the set of positive roots sαk
(R+). The specializations of

(h∗,Σ,Σ+) to (c∗, R,R+) and (c∗, R, sαk
(R+)) differ by sαk

. Therefore,

σQsαk
= sαk

◦ σQ ◦ sαk
.

Since σQ(Σ
+
w) ∩ Σ+

w = ∅, we have

∅ = σQ(sαk
(Σ+

w′)) ∩ sαk
(Σ+

w′) = sαk
(σQsαk

(Σ+
w′) ∩ Σ+

w′),

and σQsαk
(Σ+

w′)∩Σ+
w′ = ∅. Before we complete the proof of 6.9 we need to describe

D+(Qsαk
).

Lemma 6.10. Let α ∈ D+(Q) be a simple root. Then

sα(D+(Qsα)) = D+(Q)− {α, σQα}.

Proof. Let β ∈ D+(Q), different from α and σQα. Then σQβ ̸= α, hence sα(β) ∈
Σ+ and sα(σQβ) ∈ Σ+. It follows that sα(β) and σQsα

(sα(β)) = (sασQ)(β) are
contained in Σ+. Therefore, D+(Q)− {α, σQα} ⊂ sα(D+(Qsα)).

Clearly,

σQsα
(α) = (sασQsα)(α) = −sα(σQα).

Since σQα ∈ Σ+ is different from α, it follows that sα(σQα) ∈ Σ+ and σQsα
(α) ∈

−Σ+. Therefore, α /∈ D+(Qsα). Let β ∈ sα(D+(Qsα)). Since α /∈ D+(Qsα),
β ∈ Σ+. Also sα(β) ∈ D+(Qsα), i.e., sα(β) ∈ Σ+ and σQsα

(sα(β)) = (sασQ)(β) ∈
Σ+. Assume that (sαsQ)(β) = α. This would imply that β = −σQα ∈ −Σ+

what contradicts the preceding statement. Therefore, (sασQ)(β) ̸= α and σQ(β) ∈
Σ+. This implies that β ∈ D+(Q). Since D+(Qsα) is a set of positive roots,
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sα(D+(Qsα)) cannot contain α. If σQsα
α would be in sα(D+(Qsα)), this would

imply that

−σQsα
(α) = −(sασQsα)(α) = sα(σQα) ∈ D+(Qsα)

and −α = −σQsα
(σQsα

(α)) ∈ D+(Qsα), which is again impossible. □

We now resume the proof of 6.9. Since σQ(Σ
+
w)∩Σ+

w = ∅, σQαk /∈ sαk
(Σ+

w′). By
6.10,

sαk
(Σ+

w′) ⊂ Σ+
w − {αk, σQαk} ⊂ D+(Q)− {αk, σQαk} ⊂ sαk

(D+(Qsαk
)),

and Σ+
w′ ⊂ D+(Qsαk

). Therefore w′ satisfies the conditions of 6.9 with respect to
the K-orbit Qsαk

.

Now the induction step. Let p′1, p
′
2 be the projections of Zw′ onto the first, resp.

second, factor in X×X. Denote the corresponding projections for Zsαk
by p′′1 and

p′′2. Since ℓ(w) = ℓ(w′)+1 = ℓ(w′)+ℓ(sαk
), as we remarked in §2, the natural map

from the fibered product r : Zw′ ×X Zsαk
−→ Zw, given by r((x, x′), (x′, x′′)) =

(x, x′′), is an isomorphism of varieties. It maps p′
−1
2 (Qsαk

) ×Qsαk
p′′

−1
2 (Q) onto

p−1
2 (Q). By the first step of the proof, the projection of p′

−1
2 (Qsαk

)×Qsαk
p′′

−1
2 (Q)

onto p′
−1
2 (Qsαk

) is a K-equivariant bijection, hence p′
−1
2 (Qsαk

) ×Qsαk
p′′

−1
2 (Q) is

a K-orbit. This implies that p−1
2 (Q) is a K-orbit. Its projection p1(p

−1
2 (Q)) is

equal to the projection p′1(p
′−1
2 (Qsαk

)), i.e., to the K-orbit (Qsαk
)w′ = Qw, and

the projection map is an isomorphism of p−1
2 (Q) onto Qw. This ends the proof of

6.9.
Another consequence of this inductive analysis gives the following proposition,

which is a generalization of 6.10. First we remark that

σQw
= w ◦ σQ ◦ w−1.

This is evident if w is a simple reflection. On the other hand,

σQw = σ(Qsαk
)w′ = w′ ◦ σQsαk

◦ w′−1
= w′sαk

◦ σQ ◦ sαk
w′−1

= w ◦ σQ ◦ w−1.

Proposition 6.11. Let Q be a K-orbit and w ∈ W . Assume that Σ+
w ⊂ D+(Q)

and Σ+
w ∩ σQ(Σ+

w) = ∅. Then

σQw
= w ◦ σQ ◦ w−1,

w−1D+(Qw) = D+(Q)− (Σ+
w ∪ σQ(Σ+

w)).

and

D−(Qw) = wD−(Q) ∪ Σ+
w−1 ∪

(
−σQw(Σ

+
w−1)

)
.

Proof. We prove this statement by induction in ℓ(w). If ℓ(w) = 1 this is the
statement of 6.10. Assume that ℓ(w) = k, with k > 1. Let w′ ∈ W be such that
ℓ(w′) = k−1 and w = w′sα. Then, as we remarked in §2, Σ+

w = sα(Σ
+
w′)∪{α}, and

this union is disjoint. As we checked in the preceding argument, w′ satisfies the
conditions of the proposition with respect to the orbit Qsα , hence by the induction
assumption we have

w′−1
D+(Qw) = w′−1

D+((Qsα)w′) = D+(Qsα)− (Σ+
w′ ∪ σQΣ+

w′).



IRREDUCIBILITY AND CLASSIFICATION 47

This implies that

w−1D+(Qw) = sαw
′−1

D+(Qw)

= sαD+(Qsα)− (sαΣ
+
w′ ∪ σQsαΣ+

w′) = D+(Q)− (Σ+
w ∪ σQΣ+

w).

On the other hand, since w−1D+(Qw) ⊂ Σ+ ∩ w−1(Σ+), we see that D+(Qw) ⊂
Σ+ ∩ w(Σ+). It follows that

D−(Qw) = w(ΣQ,C) ∩ Σ+ −D+(Qw)

=
(
w(ΣQ,C) ∩ Σ+ ∩ w(Σ+)−D+(Qw)

)
∪
(
w(ΣQ,C) ∩ Σ+

w−1

)
= w

(
ΣQ,C ∩ w−1(Σ+) ∩ Σ+ − w−1D+(Qw)

)
∪ w

(
ΣQ,C ∩ (−Σ+

w)
)

= w
(
ΣQ,C ∩ Σ+ − (w−1D+(Qw) ∪ Σ+

w)
)
∪ w(−Σ+

w)

= wD−(Q) ∪ σQ(Σ+
w) ∪ Σ+

w−1

= wD−(Q) ∪ Σ+
w−1 ∪

(
−σQw(Σ

+
w−1)

)
.

□

In particular, if Q is a Zuckerman orbit, we get the following result.

Corollary 6.12. Let Q be a Zuckerman orbit and w ∈ W such that Σ+
w consists

of Q-complex roots and Σ+
w ∩ σQ(Σ+

w) = ∅. Then

D−(Qw) = Σ+
w−1 ∪ (−σQw

(
Σ+

w−1)
)
.

This finally leads to the following statement.

Proposition 6.13. Let Q1 be an arbitrary K-orbit in X and w ∈ W . Then the
following conditions are equivalent:

(i) there exist a Zuckerman orbit Q attached to the same conjugacy class
of Cartan subalgebras such that Σ+

w consists of Q-complex roots, Σ+
w ∩

σQ(Σ
+
w) = ∅ and Q1 = Qw.

(ii) Σ+
w−1 ∩

(
−σQ1(Σ

+
w−1)

)
= ∅ and D−(Q1) = Σ+

w−1 ∪
(
−σQ1(Σ

+
w−1)

)
.

Let Θ be a subset of the set of simple roots Π. Let XΘ be the variety of parabolic
subalgebras of g of type Θ. For a point y in XΘ we denote by py the corresponding
parabolic subalgebra of g. Let XΘ,σ be the subset of all y ∈ XΘ such that py and
σ(py) have a common Levi subalgebra. Then XΘ,σ is a union of K-orbits.

Proposition 6.14. Let Q be one of the K-orbits in XΘ,σ. Then Q is affinely
imbedded in XΘ.

If Θ = ∅, XΘ coincides with X. In this case, every K-orbit is affinely imbedded.
The proof of this result for involutive Harish-Chandra pairs in ([12], 4.1) (due to
Beilinson and Bernstein), applies to the present situation. We leave it to the reader
to make the necessary modifications.

Now consider the case when Θ consists of only one simple root α. To simplify
the notation assume that our orbit in Xα is the projection pα(Q) of an orbit Q in
X. Then pα(Q) is in Xα,σ if and only if the set {α,−α} is σQ-invariant, i.e., if α
is either Q-imaginary or Q-real. Thus we obtain:

Corollary 6.15. Let Q be a K-orbit in X and α ∈ Π. Assume that α is either
Q-imaginary or Q-real. Then pα(Q) is affinely imbedded in Xα.

We shall also need the following simple (and well-known) remark.
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Lemma 6.16. (i) A K-orbit in the flag variety X is closed if and only if it consists
of σ-stable Borel subalgebras.

(ii) The K-orbit of any σ-stable parabolic subalgebra in a generalized flag variety
XΘ is closed.

Proof. Let Θ ⊂ Π and equip XΘ ×XΘ with the G-action given by

g(x, y) = (gx, σ(g)y),

for g ∈ G and X, y ∈ XΘ. Let (x, x) ∈ ∆. If Px is the parabolic subgroup which
stabilizes x ∈ XΘ, the stabilizer of (x, x) equals Px ∩ σ(Px). Therefore, if the Lie
algebra px of Px is σ-stable, the stabilizer of (x, x) is Px, and the G-orbit of (x, x)
is closed. Let C be the connected component containing (x, x) of the intersection
of this orbit with the diagonal ∆. We have just seen that C is closed. Via the
correspondence set up in the proof of 4.1 in [12], C corresponds to the K-orbit
of x under the diagonal imbedding of XΘ in XΘ × XΘ. This proves (ii) and one
implication in (i).

Let Q be a closed K-orbit, and x ∈ Q. Then the stabilizer of x in K is a solvable
parabolic subgroup, i.e., it is a Borel subgroup of K. Therefore, by 6.3 and 6.4,

dimQ =
1

2
(dim k− dim t) =

1

2
(CardΣQ,CI +

1

2
(CardΣQ,C +CardΣQ,R))

and

dimQ =
1

2
(CardΣQ,CI +CardΣQ,R +CardΣQ,C − d(Q)).

This implies

CardΣQ,R +CardΣQ,C = 2d(Q).

Since D+(Q) consists of at most half of all Q-complex roots, we see that there are
no Q-real roots, and all positive Q-complex root lie in D+(Q). This implies that
all Borel subalgebras bx, x ∈ Q, are σ-stable. □

We shall also need some information on Weyl group elements transversal to
Langlands orbits. Let Q be a Langlands orbit in X. Then, by 5.10, the set P =
ΣQ,I ∪ Σ+ is a parabolic set of roots in Σ. It determines a set of simple roots Θ.
Since P ∩ (−P ) = ΣQ,I , Θ consists of Q-imaginary roots. Let WΘ be the subgroup
of W generated by reflections with respect to roots in Θ.

Lemma 6.17. σQ(P ) = −P .

Proof. We have

σQ(P ) = σQ(ΣQ,I)∪σQ(Σ+−ΣQ,I) = ΣQ,I∪σQ(Σ+−ΣQ,I) = (−ΣQ,I)∪σQ(Σ+−ΣQ,I).

Let α ∈ Σ+−ΣQ,I . If α is Q-real, σQ(α) = −α and σQ(α) is a negative root. If α is
Q-complex, σQ(α) is also a negative root, since Q is a Langlands orbit. Therefore,
σQ(Σ

+ − ΣQ,I) ⊂ −Σ+, and

σQ(P ) = (−ΣQ,I) ∪ σQ(Σ+ − ΣQ,I) ⊂ (−ΣQ,I) ∪ (−Σ+) = −P.

□

As before, let XΘ be the generalized flag variety of parabolic subalgebras of type
Θ. Denote by pΘ the canonical projection of X onto XΘ.

Lemma 6.18. pΘ(Q) is the open K-orbit in XΘ.
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Proof. Let y ∈ XΘ and denote by py the corresponding parabolic subalgebra of g.
Then the tangent space to XΘ at y can be identified with g/py, and the tangent
space to the K-orbit through y with k/(k ∩ py). Hence, the K-orbit through y is
open in XΘ if and only if k+ py = g.

Assume that y = pΘ(x), x ∈ Q. Then, by 6.17, g = py+σ(py). Hence, any ξ ∈ g
can be represented as ξ = ξ1 + σ(ξ2) with ξ1, ξ2 ∈ py. This implies

ξ = ξ1 − ξ2 + (ξ2 + σ(ξ2)) ∈ k+ py;

i.e., g = k+ py. □

Let Q′ be another K-orbit in X which contains Q in its closure. Then, since
pΘ(Q) is open in XΘ, the projection of Q′ to XΘ must be equal to pΘ(Q). Let
x′ ∈ Q′ be such that pΘ(x

′) = y = pΘ(x). Let c′ be a σ-stable Cartan subalgebra
in bx′ . By 6.17, ly = σ(py)∩ py is the σ-stable Levi factor of py. Hence, it contains
c′. Since c = t⊕ a, and ly is the centralizer of a in g, we conclude that a ⊂ c′, i.e.,
a ⊂ a′. This implies aQ ⊂ aQ′ and

σQ′ |aQ = −1.

Hence, for any α ∈ Σ the restrictions of σQ′α and −α to aQ agree. By 5.10.(ii), if
α ∈ P we see that −σQ′α ∈ −P . Hence, σQ′(P ) = −P .

Therefore, we proved the following strengthening of 6.17.

Lemma 6.19. Let Q be a Langlands orbit in X and Q′ another K-orbit in X such
that Q is contained in the closure of Q′. Then:

(i) σQ′(P ) = −P ;
(ii) aQ ⊂ aQ′ .

Corollary 6.20. σQ′(Σ+ − ΣQ,I) = −(Σ+ − ΣQ,I).

Proof. By 6.19, we have

ΣQ,I = P ∩ (−P ) = P ∩ σQ′(P ).

Let α ∈ Σ+−ΣQ,I . Since α is not Q-imaginary, by the preceding relation σQ′α /∈ P .
Hence σQ′α ∈ −P . This implies σQ′α ∈ −(Σ+ − ΣQ,I). □

Proposition 6.21. Let w ∈ W be transversal to a Langlands orbit Q. Then
w ∈WΘ for the set Θ of all simple Q-imaginary roots.

Proof. Let w = sαw
′, ℓ(w′) = ℓ(w)− 1 with α ∈ Π. Then, by 6.6, w′ is transversal

to Q and sα is transversal to Qw′ . Assume that α /∈ Θ. By the definition of Qw′ ,
Q ⊂ Qw′ . This implies

σQw′ (Σ
+ − ΣQ,I) = −(Σ+ − ΣQ,I),

and σQw′ ∈ −Σ+. But this contradicts the transversality of sα to Qw′ , by 6.7.
Hence, α ∈ Θ. By the induction in length the statement follows. □

Finally, we analyze the structure of the stabilizers in K of points in X. Let Q
be a K-orbit in the flag variety X. Let x ∈ Q and bx the corresponding Borel
subalgebra. Denote by Bx the corresponding subgroup of G = Int(g). Fix a σ-
stable Cartan subalgebra c in bx and let C be the corresponding torus in Int(g).
Let Sx be the stabilizer of x in K, i.e.,

Sx = φ−1(φ(K) ∩Bx).
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Then the Lie algebra sx = k ∩ bx is a semidirect product of t = {ξ ∈ c | σ(ξ) = ξ}
with the nilpotent radical ux = {η ∈ nx | σ(η) = η} of sx. Let Ux be the unipotent
subgroup of K corresponding to ux; it is the unipotent radical of Sx. Put T =
φ−1(φ(K) ∩ C). Then we have:

Lemma 6.22. The stabilizer Sx is the semidirect product of T with Ux.

Proof. Let s ∈ φ(Sx). Then s ∈ σ(Bx)∩Bx, and this group is a semidirect product
of C with σ(Nx) ∩ Nx. This implies that we have a unique representation s = cn
with c ∈ C and n ∈ σ(Nx) ∩ Nx. Therefore, s = σ(s) = σ(c)σ(n) implies that
c = σ(c) and n = σ(n), i.e., c ∈ φ(K)∩C and n ∈ ϕ(Ux). This implies Sx = T ·Ux.
Since T is a reductive subgroup of Sx, it is contained in a Levi factor T ′ of Sx.
This in turn implies that the natural map T −→ Sx/Ux

∼= T ′ is surjective, i.e.,
T = T ′. □

Let
F = {exp(ξ) | σ(exp(ξ)) = exp(ξ), ξ ∈ a}.

Then for any s ∈ F , we have s = σ(s) = exp(σ(ξ)) = exp(−ξ) = s−1, i.e., s2 = 1.
Hence F is a direct product of several copies of Z2. Let s ∈ F and α a Q-complex
root. Then the character eα of C satisfies

eα(s) = exp(α(ξ)) = exp(σα(σ(ξ))) = exp(−σα(ξ)) = e−σα(s).

Therefore, eα(s) = e−σα(s) = ±1. Denote by A a set of representatives of the
(−σQ)-orbits in D−(Q). Then

δQ(t) =
∏
α∈A

eα(t), t ∈ F,

is a character of F independent of the choice of A.
Let α be a Q-real root. Denote by sα the three-dimensional simple algebra

spanned by gα, g−α and [gα, g−α]. Let Sα be the connected subgroup of G = Int(g)
with Lie algebra sα; it is isomorphic either to SL(2,C) or to PSL(2,C). Denote
by Hα the element of [gα, g−α] ⊂ a such that α(Hα) = 2. Then Hα is the dual
root in c, and β(Hα) ∈ Z for any β ∈ Σ. This implies mα = exp(πiHα) satisfies
m2

α = 1 in G. Moreover, σ(mα) = exp(−πiHα) = m−1
α = mα, and mα ∈ F .

Clearly mα = 1 if Sα
∼= PSL(2,C), and mα ̸= 1 if Sα

∼= SL(2,C), and in this latter
case mα corresponds to the negative of the identity matrix in SL(2,C).

Lemma 6.23. Let α ∈ Π be Q-real. Then δQ(mα) = 1.

Proof. Let β ∈ D−(Q). Then sαβ ∈ Σ+ and sασQβ = σQsαβ. Hence, sαβ ∈ ΣQ,C
and −σQsαβ ∈ Σ+, i.e., sαβ ∈ D−(Q). Clearly,

esαβ(mα) = eβ−αˇ(β)α(mα) = eβ(mα)e
α(mα)

αˇ(β) = eβ(mα).

On the other hand, if sαβ = β we see that α (̌β) = 0. Therefore β(Hα) = 0 and
eβ(mα) = 1. Hence the expression for δQ(mα) contains either both eβ(mα) and
esαβ(mα) if sαβ ̸= β, or eβ(mα) = 1 if sαβ = β. □

Let kα = sα ∩ k; it is the Lie algebra of a one dimensional torus Kα in K. Its
image φ(Kα) in G is a torus in Sα. Therefore, mα ∈ φ(Kα). The composition of
φ : Kα −→ Sα and the covering projection Sα −→ Int(sα) is an n-fold covering
map between two one dimensional tori. We shall need to know an explicit lifting
of mα to Kα. If we identify Kα with C∗, the kernel of this map is isomorphic to
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{e
2πp
n | 0 ≤ p ≤ n − 1}. Let nα correspond to e

2π
n under this isomorphism (there

are two possible choices for nα and they are inverses of each other). Then φ maps
nα to mα, hence nα lies in T . We have shown:

Observation 6.24. nα ∈ T , φ(nα) = mα.

7. Intertwining functors and standard Harish-Chandra sheaves

First we want to describe a simple necessary condition on λ ∈ h∗ for the existence
of a K-homogeneous connection τ on a K-orbit Q in X. We introduce a real
structure in h by putting hR to be the real span of all dual roots α ,̌ α ∈ Σ.
For any λ ∈ h∗ we denote by Reλ the complex linear form on h which satisfies
(Reλ)(ξ) = Reλ(ξ) for ξ ∈ hR, and by Imλ the complex linear form on h which
satisfies (Imλ)(ξ) = Imλ(ξ) for ξ ∈ hR.

If K is a subgroup of a covering G̃ of Int(g) with Lie algebra k, we say that the
Harish-Chandra pair is linear.

Lemma 7.1. Let λ ∈ h∗, Q an arbitrary K-orbit in X and τ a K-homogeneous
connection on Q compatible with λ+ ρ. Then

(i) α (̌λ+ σQλ) ∈ Q for any α ∈ Σ. In particular, Imλ vanishes on tQ.
(ii) If, in addition, (g,K) is a linear Harish-Chandra pair, α (̌λ + σQλ) ∈ Z

for any α ∈ Σ. Hence, α ∈ Σλ if and only if σQα ∈ Σλ.

Proof. Let x ∈ Q and c = t⊕ a a σ-stable Cartan subalgebra of bx. Then t ⊂ k and
it defines a closed subgroup in K. The image φ(T ) of T in Int(g) is contained in the
Cartan subgroup C of Int(g). Let r be the order of the kernel of the homomorphism
of T into C. Since τ is compatible with λ+ ρ, there exists a character ω of T with
differential equal to the restriction to t of the specialization of λ+ ρ. Then ωr is a
character of T which factors through φ(T ). It defines a character µ of φ(T ) with
differential equal to the restriction to t of the specialization of r(λ + ρ). This in
turn implies that c 7−→ µ(cσ(c)) is a character of C with the differential equal to
the specialization of r(λ+ σQλ+ ρ+ σQρ). Therefore, r(λ+ σQλ) is a weight.

To prove (ii), without loss of generality, we can assume that G̃ is simply con-

nected. Let B̃x denote the Borel subgroup of G̃ with Lie algebra bx and C̃ the
complex torus in G̃ with Lie algebra c. Let c ∈ C. Then cσ(c) ∈ Sx. Since the
exponential map from c onto C is surjective, any c ∈ C is of the form c = exp(ξ)
for some ξ ∈ c. This implies cσ(c) = exp(ξ + σ(ξ)) ∈ Sx. In particular cσ(c) lies in
the connected component of Sx.

Let ω denote the representation of the stabilizer Sx induced by the connection
τ on Q, which is compatible with λ+ ρ. Then

ω(cσ(c)) = exp((λ+ ρ)(ξ + σ(ξ))) = exp(λ+ σQλ+ ρ+ σQρ)(ξ)).

On the other hand, if µ(ξ) ∈ 2πiZ for any µ ∈ P (Σ), c = exp(ξ) is equal to the

identity in G̃, and exp(λ+ σQλ)(ξ) = 1. This implies λ+ σQλ ∈ P (Σ). Therefore,
for any root α ∈ Σ, we have α (̌λ) + (σQα)̌ (λ) ∈ Z, and α ∈ Σλ is equivalent to
σQα ∈ Σλ. □

Let Q be a K-orbit in X and iQ : Q −→ X the natural inclusion. Assume that
Q is not a Langlands orbit, i.e., the set D+(Q) is not empty. Let w ∈ W satisfy
the conditions of 6.9, i.e., Σ+

w ⊂ D+(Q) and Σ+
w ∩ σQ(Σ+

w) = ∅. There we defined

the K-orbit Qw = p1(p
−1
2 (Q)). Since p1 : p−1

2 (Q) −→ Qw is an isomorphism, p2
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composed with the inverse of this map induces a natural projection of Qw onto Q.
This fibration is locally trivial and its fibres are isomorphic to Cℓ(w).

Let x be a point of Q, c a σ-stable Cartan subalgebra contained in bx, and R
+

the set of positive roots in the root system R of (g, c) corresponding to the orbit
Q. Fix λ ∈ h∗. The homogeneous twisted sheaf of differential operators Dλ on X
induces a homogeneous twisted sheaf of differential operators (Dλ)

iQ on the orbit Q.
Let τ be a K-homogeneous connection on Q compatible with (Dλ)

iQ . This means
that the differential of the corresponding representation of the stabilizer K ∩Bx of
x is a direct sum of copies of the one dimensional representation of k ∩ bx given by
the specialization of λ+ ρ. Let q2 be the restriction of p2 to p−1

2 (Q). Then we have
the following commutative diagram:

p−1
2 (Q)

j−−−−→ Zw

q2

y p2

y
Q

iQ−−−−→ X

Since the orbit map iQ is an affine immersion and p2 is a locally trivial fibration, we
conclude that j is also an affine immersion. Therefore, by base change ([5], VI.8.4)
we see that:

p∗2(I(Q, τ)) = p∗2(R
0iQ+(τ)) = R0j+(q

∗
2(τ)).

Let Tw be the inverse of the invertible OZw -module of top degree relative differential
forms for the projection p1 : Zw −→ X. Then

Tw ⊗OZw
p∗2(I(Q, τ)) = Tw ⊗OZw

R0j+(q
∗
2(τ)) = R0j+(j

∗(Tw)⊗O
p
−1
2 (Q)

q∗2(τ)).

Therefore,

Rqp1+(Tw ⊗OZw
R0j+(q

∗
2(τ))) = Rqp1+(R

0j+(j
∗(Tw)⊗O

p
−1
2 (Q)

q∗2(τ)))

= Rq(p1 ◦ j)+(j∗(Tw)⊗O
p
−1
2 (Q)

q∗2(τ)).

The map p1 ◦ j induces an isomorphism q1 of p−1
2 (Q) onto Qw, so

Rqp1+(Tw ⊗OZw
R0j+(q

∗
2(τ))) = RqiQw+(R

0q1+(j
∗(Tw)⊗O

p
−1
2 (Q)

q∗2(τ))).

Since the orbit map iQw is an affine immersion, these expressions vanish for q ̸= 0.
Hence, if we let τw denote the K-homogeneous connection q1+(j

∗(Tw) ⊗O
p
−1
2 (Q)

q∗2(τ)), we see that

R0p1+(Tw ⊗OZw
p∗2(I(Q, τ))) = I(Qw, τw).

By the definition of the intertwining functors, this gives

L0Iw(I(Q, τ)) = I(Qw, τw)

and

LqIw(I(Q, τ)) = 0

for q ̸= 0. To describe τw more explicitly, we let qw denote the natural projection
of Qw onto Q which we described previously. Then

τw = q1+(j
∗(Tw)⊗O

p
−1
2 (Q)

q∗2(τ)) = q1+(j
∗(Tw))⊗OQw

q∗w(τ).
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Since Tw = p∗1(O(ρ − wρ)), we also conclude that q1+(j
∗(Tw)) = i∗Qw

(O(ρ − wρ)).
Therefore, we finally get

τw = q∗w(τ)⊗OQw
i∗Qw

(O(ρ− wρ)).

Let x ∈ Qw. Then the stabilizer of x inK is a quotient of the stabilizer of qw(x) ∈ Q
by a unipotent normal subgroup. Therefore, the quotient map induces a bijection
between irreducible algebraic representations of these stabilizers. This implies that
τ −→ q∗w(τ) is a bijection between irreducible K-homogeneous connections on Q
compatible with λ+ ρ and irreducible K-homogeneous connections on Qw compat-
ible with wλ+ wρ. We have proved:

Lemma 7.2. Let Q be an arbitrary K-orbit in X. Suppose w ∈W satisfies Σ+
w ⊂

D+(Q) and Σ+
w ∩ σQ(Σ+

w) = ∅. Then:

(i) the map τ 7−→ τw is a bijection between irreducible K-homogeneous con-
nections on Q compatible with λ + ρ and irreducible K-homogeneous con-
nections on Qw compatible with wλ+ ρ;

(ii) for any standard Harish-Chandra module I(Q, τ), we have

LIw(D(I(Q, τ))) = D(I(Qw, τw)).

Let (g,K) be an arbitrary Harish-Chandra pair. Let Θ be a subset of the set
of simple roots Π. Then it defines the generalized flag variety XΘ of all parabolic
subalgebras of type Θ. Let pΘ : X −→ XΘ be the natural projection.

Let O be a K-orbit of K in XΘ. Then V = p−1
Θ (O) is a smooth subvariety of X

and a union of K-orbits. Denote by j the natural immersion of V into X. Then
Dλ defines a K-equivariant twisted sheaf of differential operators Dj

λ on V . Let

Mcoh(Dj
λ,K) be the category of K-equivariant coherent Dj

λ-modules.

Let o ∈ O and Xo = p−1
Θ (o) the fiber over o. Denote by s : Xo −→ V the

natural immersion of the fiber Xo into V . Then j ◦s is the natural immersion of Xo

into X. Let Po be the stabilizer of o in G = Int(g), and Uo its unipotent radical.
Let Lo = Go/Uo and Go the quotient of Lo by its center. Let τ be the natural
homomorphism of Po into Go. Then its differential defines a surjective morphism
of the Lie algebra po onto go. This map induces an identification of the fiberXo with
the flag variety of go, which maps any Borel subalgebra b of g contained in po into
b/(b∩ker τ). These maps induce a canonical isomorphism of the Cartan algebra h of
g with the product of the center of the Lie algebra lo of Lo with the Cartan algebra
ho of go. Therefore, we get a natural splitting of h∗ into the subspace spanned by
roots in Θ and the complement h∗(Θ) = {µ ∈ h∗ | α (̌µ) = 0 for α ∈ Θ}, and h∗o
can be identified with the first subspace. The root system Σo of go can be identified
with the root subsystem ΣΘ of Σ generated by Θ, and Σ+

o with ΣΘ ∩Σ+. Let r be
the projection of h∗ onto h∗o along h∗(Θ). Let ρo be the half-sum of roots in Σ+

o .
Then

α (̌ρ) = 2 = α (̌ρo)

for any α ∈ Θ, hence r(ρ) = ρo. This implies

(Dj
λ)

s = (Dλ)
j◦s = (DX,λ+ρ)

j◦s = DXo,r(λ+ρ) = Do
λo
,

where we put λo = r(λ) and we let Do
µ denote the homogeneous twisted sheaf on

Xo attached to µ ∈ h∗o.
The subgroup φ−1(φ(K)∩Po) acts on Xo, and this action factors through Ko =

φ−1(φ(K) ∩ Po)/φ
−1(φ(K) ∩ ker τ). The pair (go,Ko) is a Harish-Chandra pair,
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since Ko-orbits in Xo are exactly the intersections of K-orbits with Xo. Since the
K-orbits are affinely imbedded in X by the result in Appendix A, it follows that
Ko-orbits are affinely imbedded in Xo.

Consequently, the inverse image functor s+ is an additive functor from the cat-
egory Mcoh(Dj

λ,K) into the category Mcoh(Do
λo
,Ko).

Lemma 7.3. The functor s+ : Mcoh(Dj
λ,K) −→ Mcoh(Do

λo
,Ko) is exact. It is an

equivalence of categories.

This is certainly a known fact (compare [6], 3.10).
Consider now the special case when Θ consists of one simple root α. Then

go ∼= sl(2,C), Σo = {α,−α} and Σ+
o = {α}. In this case, we have go ∼= sl(2,C) and

the connected component of Ko is one of the groups listed in 4.1. By 6.5, we have
the following possibilities:

(a) If α is compact Q-imaginary, the identity component of Ko is isomorphic
to either SL(2,C) or PSL(2,C).

(b) If α is Q-complex the unipotent radical of Ko is nontrivial.
(c) If α is either noncompact Q-imaginary or Q-real, the identity component

of Ko is a one dimensional torus.

In the case (c), we generalize the definition of the SL2-parity condition from §4.
By 6.5, if α is Q-real, the Ko-orbit Qo = Q ∩ Xo is open in Xo. Hence, for any
irreducible K-homogeneous connection τ , the Ko-homogeneous connection τo can
be viewed as a homogeneous connection on C∗ ⊂ P1. If this connection satisfies
the parity condition from §4, we say that τ satisfies the SL2-parity condition with
respect to the simple Q-real root α.

As in §2, let I denote the intertwining functor Isα for go ∼= sl(2,C).

Lemma 7.4. Let λ ∈ h∗. For any V ∈ Mqc(Dλ) we have

R(j ◦ s)!(LIsα(D(V))) = LI(R(j ◦ s)!(D(V))).

Proof. Put s′ = j◦s. The morphism s′×s′ : Xo×Xo −→ X×X is an identification
of Xo ×Xo with its image in X ×X. The intersection of Xo ×Xo with Zα consists
of pairs (bx, bx′), bx, bx′ ⊂ po, which are in relative position sα. Since pα is a
parabolic subalgebra of type α, any two Borel subalgebras of g contained in it are
either in relative position sα, or they are equal. This implies that the inverse image
(s′ × s′)−1(Zsα) is the complement Zo of the diagonal in Xo ×Xo. Denote by s̄ the
isomorphism of Zo onto (Xo ×Xo)∩Zsα . Then we have the commutative diagram

Zo
s̄−−−−→ Zsα

p01

y p1

y
Xo

s′−−−−→ X

,

and by base change ([5], VI.8.4),

Rs′
! ◦Rp1+ = Rp01+ ◦Rs̄!.

On the other hand,

Rs̄!(Tsα ⊗OZsα
p+2 (V)) = T0sα ⊗OZ0

Rs̄!(p+2 (V)),
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and since
Z0

s̄−−−−→ Zsα

p02

y p2

y
X0

s′−−−−→ X
is also commutative,

Rs̄!(p+2 (V)) = R(p2◦s̄)!(V)[−dimX+1] = R(s′◦p02)!(V)[−dimX+1] = p+02(Rs
!(V)),

which finally implies the assertion. □

In some cases, the lemma reduces the calculation of the action of the intertwining
functor LIsα on a standard module to an SL2-calculation.

Let Q be a K-orbit and V = p−1
α (pα(Q)). Assume that V is a Harish-Chandra

sheaf supported in V̄ . Then, by Kashiwara’s theorem, Rpj!(V) = 0 for p ̸= 0, and

j!(V) is in Mcoh(D
j
λ,K). By 3.1 and 3.4, the support of LpIsα is also contained

in V̄ . Therefore, the same applies to these Harish-Chandra sheaves. Hence, by the
preceding lemma, we see that

s+(j!(LqIsα(V))) = LqI(s+(j!(V)))
for any q ∈ Z. Assume that V is irreducible Harish-Chandra sheaf with support Q̄,
i.e., V = L(Q, τ). Then, since the restriction of an irreducible D-module is either
irreducible or 0, we see that the restriction of L(Q, τ) to the complement of ∂V is
irreducible. By Kashiwara’s equivalence of categories, j!(L(Q, τ)) is an irreducible

object in Mcoh(Dj
λ,K). Moreover, by 7.3, s+(j!(L(Q, τ))) is an irreducible object

in Mcoh(Dλo ,Ko). Hence, it is equal to L(Qo, τo), where Qo = Q∩ S and τo is the
restriction of τ to Qo. It follows that

s+(j!(LqIsα(L(Q, τ)))) = LqI(L(Qo, τo))

for any q ∈ Z. Assume that α (̌λ) ∈ Z. Then, by 2.16, either Isα(L(Q, τ)) = 0 (and
therefore I(L(Qo, τo)) = 0) or L−1Isα(L(Q, τ)) = 0 (and L−1I(L(Qo, τo)) = 0).
This leads immediately to the following generalization of 4.14. It is an unpublished
result of Beilinson and Bernstein, which is a special case of 2.18.

Lemma 7.5. Let α ∈ Π and α (̌λ) ∈ Z. Then Isα(L(Q, τ)) = 0 if and only if
either

(i) α is compact Q-imaginary root; or
(ii) α is a Q-complex root such that −σQα is positive; or
(iii) α is a Q-real root which doesn’t satisfy the SL2-parity condition.

Proof. Consider the cases (a), (b) and (c) we discussed before. If (a) holds, α is
compact Q-imaginary and Isα(L(Q, τ)) = 0 by 4.14. If (b) holds, α is Q-complex.
If σQ(α) is a positive root, Qo is a point and Isα(L(Q, τ)) ̸= 0 by 4.14. If σQ(α)
is a negative root, Qo is open in Xo and Isα(L(Q, τ)) = 0. If (c) holds, α is either
noncompact Q-imaginary or Q-real. In the first case, Qo is either one or two points,
and Isα(L(Q, τ)) ̸= 0 by 4.14. In the second case, Qo is the open orbit in Xo. By
4.14, Isα(L(Q, τ)) = 0 holds if and only if the SL2-parity condition fails for τ . □

Assume now that V is affinely imbedded in X. Since the fibration pα : X −→ Xα

is locally trivial, this is the case if pα(Q) is affinely imbedded in Xα. As we have
seen in 6.15, pα(Q) is affinely imbedded in Xα if the root α is either Q-imaginary or
Q-real. Then p−1

2 (V ) is a smooth subvariety of Zsα . Moreover, since V is affinely
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imbedded and p2 : Zsα −→ X is locally trivial, it is also affinely imbedded in Zsα .
Let q2 be the restriction of p2 to p−1

2 (V ). Then we have the following commutative
diagram:

p−1
2 (V )

k−−−−→ Zsα

q2

y p2

y
V

j−−−−→ X

.

Since k is an affine immersion, and p2 and q2 are submersions, from base change
([5], VI.8.4) we see:

p∗2(j+(V)) = k+(q
∗
2(V)),

for any Dj
λ-module V. Also,

Tsα ⊗OZsα
p∗2(j+(V)) = Tsα ⊗OZsα

k+(q
∗
2(V)) = k+(k

∗(Tsα)⊗O
p
−1
2 (V )

q∗2(V)).

Therefore,

Rqp1+(Tsα ⊗OZsα
p∗2(j+(V))) = Rqp1+(k+(k

∗(Tsα)⊗O
p
−1
2 (V )

q∗2(V)))

= Rq(p1 ◦ k)+(k∗(Tsα)⊗O
p
−1
2 (V )

q∗2(V)).

Since V = p−1
α (pα(Q)), we see that p−1

2 (V ) = p−1
1 (V ). Hence, if we denote by

q1 the restriction of p1 to p−1
2 (V ), we get the commutative diagram

p−1
2 (V )

k−−−−→ Zsα

q1

y p1

y
V

j−−−−→ X

.

From it we conclude that

Rq(p1 ◦ k)+ = Rq(j ◦ q1)+ = j+ ◦Rqq1+.

This implies

LqIsα(j+(V)) = j+(R
qq1+(k

∗(Tsα)⊗O
p
−1
2 (V )

q∗2(V))),

Hence, by Kashiwara’s theorem, we have

LqIsα(j+(V)) = j+(R
0j!(LqIsα(j+(V))))

for all q ∈ Z.
On the other hand, if V is a coherent (Dj

λ,K)-module, by 7.3, R0j!(LqIsα(j+(V)))
is completely determined by its restriction to Xo, i.e., by

s+(R0j!(LqIsα(j+(V))) = Rdim pα(Q)(j ◦ s)!(LqIsα(j+(V))).
By 7.4 and base change, we have

R(j◦s)!(LIsα(D(j+(V)))) = LI(R(j◦s)!(D(j+(V)))) = LI(D(s+(V)))[−dim pα(Q)].

Hence

s+(R0j!(LqIsα(j+(V))) = LqI(s+(V)).
Clearly, since Q is a K-orbit in V , we have I(Q, τ) = iQ+(τ)) = j+(l+(τ)), where
l : Q −→ V is the natural inclusion. Hence the preceding identity, combined with
4.5 and 4.12, leads to the following two propositions.
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Proposition 7.6. Let λ ∈ h∗, Q be a K-orbit and τ a connection on Q compatible
with λ. Let α ∈ Π a compact Q-imaginary root. Then p = −α (̌λ) is an integer,
and

LIsα(D(I(Q, τ))) = D(I(Q, τ)(pα))[1].

Proof. In this case, by 6.5.(iii), we have Q = p−1
α (pα(Q)). Then, by Kashiwara’s

equivalence of categories, R0j!(I(Q, τ)) = τ and Rqj!(I(Q, τ)) = 0 for q ̸= 0. This
implies

Rp(j ◦ s)!(I(Q, τ)) = Rps!(R0j!(I(Q, τ))) = Rps!(τ).

Hence Rp(j ◦ s)!(I(Q, τ)) = 0 for p ̸= dimQ− 1 = dim pα(Q), and

RdimQ−1(j ◦ s)!(I(Q, τ)) = RdimQ−1s!(τ) = s∗(τ) = τo,

where τo is the restriction of τ to Xo. By 4.5 and the preceding calculations, we
see that

Rq(j ◦ s)!(LqIsα(I(Q, τ))) = 0

for q ̸= −1, and

RdimQ−1(j ◦ s)!(L−1Isα(I(Q, τ))) = L−1I(τo) = τo(pα)

= RdimQ−1(j ◦ s)!(I(Q, τ))(pα) = RdimQ−1(j ◦ s)!(I(Q, τ)(pα)).

This implies our statement. □

Consider now the case of a Q-real root α. In this situation, by 6.5.(iv), Q is the
open orbit in p−1

α (pα(Q)). The restriction to Qo = Xo ∩ Q of the K-equivariant
connection τ on Q defines a Ko-equivariant connection τo on C∗. We say that τ
on Q satisfies the SL2-parity condition with respect to α if RdimQ−1s!(I(Q, τ)) =
I(Qo, τo) satisfies the SL2-parity condition.

Moreover, since α is a Q-real root, the twisted sheaves DiQ
λ and DiQ

sαλ correspond
to the same invariant linear form on k ∩ bx, i.e., they are naturally isomorphic.
Since the stabilizer Sx of x ∈ Q in K maps into the stabilizer S of 1 in Xo

∼= P1,
we see that there is a point x̃ in Q which corresponds to −1 in Xo

∼= P1, such
that Sx̃ = Sx. Let τ be a K-homogeneous connection on Q corresponding to the
representation ω of Sx in the geometric fibre Tx(τ). Then there exists a unique
K-homogeneous connection τsα on Q such that ω is the representation of Sx̃ = Sx

in Tx̃(τsα). It can be interpreted as a K-homogeneous DiQ
sαλ-connection on Q.

Proposition 7.7. Let Q be a K-orbit in X, α ∈ Π a Q-real root and λ ∈ h∗.
Assume that τ satisfies the SL2-parity condition with respect to α. Then

LIsα(D(I(Q, τ))) = D(I(Q, τsα)).

Proof. As in the preceding proof we first see, by base change, thatRp(j◦s)!(I(Q, τ)) =
0 for p ̸= dimQ− 1 and

RdimQ−1(j ◦ s)!(I(Q, τ)) = I(Qo, τo, λo)

where Qo = Q∩Xo is the open orbit in Xo and τo is the restriction of τ to Qo. On
the other hand, by the calculation preceding 7.4 and 4.12,

RdimQ−1(j ◦ s)!(LqIsα(I(Q, τ)) = LqI(I(Qo, τo, λ)) = 0

if q ̸= 0, and
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RdimQ−1(j ◦ s)!(Isα(I(Q, τ)) = I(I(Qo, τo, λ))

= I(Qo, τ̃o,−λ) = RdimQ−1(j ◦ s)!(I(Q, τsα)).

As in the preceding argument, this implies our assertion. □

In addition, if p = −α (̌λ) ∈ Z, we see from 4.13 that τsα
∼= τ ⊗OQ

i∗Q(O(pα)).
Hence we have the following result.

Corollary 7.8. Let Q be a K-orbit in X, α ∈ Π a Q-real root and λ ∈ h∗. Assume
that p = −α (̌λ) ∈ Z, and that τ satisfies the SL2-parity condition with respect to
α. Then

LIsα(D(I(Q, τ))) = D(I(Q, τ)(pα)).

Finally, we have to introduce the notion of the SL2-parity condition with respect
to an arbitrary Q-real root α. Let x ∈ Q and ω the representation of the stabilizer
Sx of x in K in the geometric fibre Tx(τ). Then, as we explained at the end of §6,
to α we attach an element nα ∈ Sx of x in K. We say that τ satisfies the SL2-parity
condition with respect to α if the spectrum of the linear transformation ω(nα) does
not contain −e±iπαˇ(λ)δQ(φ(nα)). Since nα is determined up to inversion, this
condition does not depend on the choice of nα. By 6.23, if α ∈ Π it agrees with the
previous defined parity condition. Moreover, for g = sl(2,C) this condition agrees
with the one in §4.

The next result describes how the parity condition behaves under the action of
intertwining functors.

Lemma 7.9. (i) Let τ and τw be the connections on Q and Qw respectively, as in
7.2, and α a Q-real root. Then wα is a Qw-real root and the following conditions
are equivalent:

(a) τ satisfies the SL2-parity condition with respect to α;
(b) τw satisfies the SL2-parity condition with respect to wα.

(ii) Let α be a Q-real root and τ and τsα the K-homogeneous connections on Q as in
7.7. Let β be a Q-real root. Then sαβ is a Q-real root and the following conditions
are equivalent:

(a) τ satisfies the SL2-parity condition with respect to β;
(b) τsα satisfies the SL2-parity condition with respect to sαβ.

Proof. (i) Let x ∈ Q and c a σ-stable Cartan subalgebra contained in bx. Denote
by C the torus with Lie algebra c in G = Int(g). Then there exists x′ ∈ Qw such
that c ⊂ bx′ . Therefore, by 6.22, the stabilizers Sx and Sx′ of x and x′ in K have
a common Levi factor T = φ−1(φ(K) ∩ C). Let ω and ω′ be the representations
of Sx and Sx′ respectively in geometric fibers of τ and τw. Let s and s′ be the
specializations determined by the Cartan subalgebra c in bx and bx′ respectively.
Then s′ = s◦w. Since σQw = w◦σQ◦w−1 by 6.11, we see that wα is a Qw-real root
if and only if α is a Q-real root. Moreover, the elements nβ , β ∈ ΣQw,R, and n

′
γ ,

γ ∈ ΣQ,R, of T attached to these two specializations satisfy nα = n′wα for α ∈ ΣQ,R.
From 6.11 we see that

δQw
=

∏
β∈Σ+

w−1

eβ
∏
β∈A

ewβ ,
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where A is a set of representatives of the (−σQ)-orbits in D−(Q), and where the
characters eα are defined via the specialization s′. Since ρ−wρ is the sum of roots
in Σ+

w−1 , we have

δQw(φ(n
′
wα)) = eρ−wρ(φ(n′wα))δQ(φ(nα)),

and finally

ω′(n′wα)δQw
(φ(n′wα)) = ω(n′wα)e

ρ−wρ(φ(n′wα))δQw
(φ(n′wα)) = ω(nα)δQ(φ(nα)).

This implies (i), since τ is a DiQ
λ -connection and τw is a DiQw

wλ -connection.
(ii) Clearly we have σQ(sαβ) = −β + α (̌β)α = −sαβ, and sαβ is a Q-real root.

Let x ∈ Q and ω the representation of the stabilizer Sx in the geometric fibre Tx(τ).
Let c be a σ-stable Cartan subalgebra in bx. Then there exists a unique point x̃ ∈ Q
different from x such that pα(x̃) = pα(x) and bx ⊃ c. The stabilizer Sx̃ is equal
to Sx. The specializations s and s̃ attached to the Cartan subalgebra c at these
two points differ by the reflection sα, hence the elements nγ and ñγ , γ ∈ ΣQ,R,
of the stabilizer attached to these two specializations satisfy nγ = ñsαγ . Since the
representations ω and ω̃ of the stabilizer Sx = Sx̃, attached to τ at the points x
and x̃ respectively, are conjugate, we see that the spectrum of ω(nβ) is equal to
the spectrum of ω̃(nsαβ) = ω̃(ñβ). The representation of the stabilizer attached to

τsα at x is ω̃, and the assertion follows since τ is a DiQ
λ -connection and τsα is a

DiQ
sαλ-connection. □

Finally, we want to analyze the structure of the standard module I(Q, τ) in the
situation when α is a Q-real simple root, α (̌λ) ∈ Z and the SL2-parity condition
fails for τ with respect to α. Then I(Q, τ) = j+(l+(τ)) with l+(τ). Clearly, l+(τ)
is reducible by 7.3, since s+(l+(τ)) = I(Qo, τo) is reducible by 4.10. Let K be its
unique irreducible submodule corresponding under the restriction s+ to L(Qo, τo).
Then, by 7.3, we have the following exact sequence

0 −→ K −→ l+(τ) −→ Q −→ 0

where Q is the direct sum of irreducible standard (Dj
λ,K)-modules on V attached

to the K-orbits in V −Q. Since j+ is exact, this short exact sequence leads to the
short exact sequence

0 −→ j+(K) −→ I(Q, τ) −→ j+(Q) −→ 0,

where j+(Q) is a direct sum of standard modules I(Q′, τ ′) for some K-orbits Q′

in V − Q and irreducible K-homogeneous connections τ ′ on Q′. By 4.14 and a
previous discussion, we also have Isα(j+(K)) = 0. This establishes the following
result.

Lemma 7.10. Let λ ∈ h∗, α ∈ Π, Q a K-orbit in X and τ an irreducible K-
homogeneous connection on Q compatible with λ + ρ. Assume that α is Q-real,
α (̌λ) ∈ Z and the SL2-parity condition fails for τ with respect to α. Then the
standard Harish-Chandra sheaf I(Q, τ) contains a Harish-Chandra subsheaf C such
that

(i) Isα(C) = 0;
(ii) the quotient I(Q, τ)/C is a direct sum of standard Harish-Chandra sheaves

on the K-orbits in p−1
α (pα(Q))−Q.

Finally, the same discussion, combined with 4.11, leads to the following result.
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Lemma 7.11. Let λ ∈ h∗, α ∈ Π, Q a K-orbit in X and τ an irreducible
K-homogeneous connection on Q compatible with λ + ρ. Assume that α is Q-
imaginary root. Then the orbit Q is closed in p−1

α (pα(Q)). Let Q′ be the open orbit
in p−1

α (pα(Q)). Then there exists an irreducible K-homogeneous connection τ ′ on
Q′ such that I(Q, τ) is a quotient of I(Q′, τ ′).

In addition, if α (̌λ) ∈ Z, the kernel of the quotient map I(Q′, τ ′) −→ I(Q, τ)
contains the Harish-Chandra sheaf C described in 7.10.

8. Irreducibility of standard Harish-Chandra sheaves

In this section we prove a necessary and sufficient condition for irreducibility of
standard Harish-Chandra sheaves.

We start with a necessary condition for irreducibility. We use the notation from
the preceding section. Let α ∈ Π and Q be a K-orbit. Denote V = p−1

α (pα(Q))
and Xo = p−1

α (pα(x)) for some x ∈ Q. Let τ be an irreducible K-homogeneous
connection on Q compatible with λ + ρ such that the standard Harish-Chandra
sheaf I(Q, τ) is irreducible. Clearly, V is a smooth subvariety of X and Q is
affinely imbedded in V . Then we have the following diagram:

Q
i−−−−→ V∥∥∥ j

y
Q

iQ−−−−→ X

.

Therefore, by the base change

j!(I(Q, τ)) = i+(τ)

and this is an irreducible (Dj
λ,K)-module. Moreover, by 7.3, the restriction s+(i+(τ))

is irreducible (Do
λo
,Ko)-module. If we denote by τo = s+(τ) the restriction of τ to

Qo = Q ∩ Xo, by the base change calculation, we get s+(i+(τ)) = I(Qo, τo), i.e.,
it is a standard module on Xo. The following result follows immediately from 6.5,
4.4 and 4.10.

Lemma 8.1. Let α ∈ Π and λ ∈ h∗. Let Q be a K-orbit in X and τ an irreducible
K-homogeneous connection on Q such that I(Q, τ) is irreducible. Then:

(i) if α is Q-complex and σQα /∈ Σ+, we have α (̌λ) /∈ Z;
(ii) if α is Q-real, τ satisfies the SL2-parity condition with respect to α.

We shall use this result and intertwining functors to study the irreducibility of
standard Harish-Chandra sheaves. We start with a discussion of a special case.

Assume that Qo is the open orbit of K in X. Then it is the Langlands orbit
attached to the conjugacy class of maximally split σ-stable Cartan subalgebras of
g. We say that the pair (g,K) is split if it satisfies the additional assumption:

(sp) there exists a σ-stable Cartan subalgebra in g on which σ acts as −1.

This implies that all roots in Σ are Q-real.

Proposition 8.2. Let (g,K) be a split Harish-Chandra pair. Let I(Qo, τ) be a
standard Harish-Chandra sheaf on Qo. Then the following conditions are equivalent:

(i) τ satisfies the SL2-parity condition for all α ∈ Σ;
(ii) I(Qo, τ) is an irreducible Harish-Chandra sheaf.
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Proof. Assume first that α ∈ Π and that it satisfies the SL2-parity condition. Then,
by 7.7, we have

Isα(I(Q, τ)) = I(Q, τ ′).
There are two possibilities:

(a) α (̌λ) /∈ Z. In this case Isα is an equivalence of categories. Hence I(Q, τ)
is irreducible if and only if I(Q, τ ′) is irreducible.

(b) p = −α (̌λ) ∈ Z. Then, by 7.8, we have

Isα(I(Q, τ)) = I(Q, τ ′) = I(Q, τ)(pα).
Hence, again I(Q, τ) is irreducible if and only if I(Q, τ ′) is irreducible.

By 7.9, this enables us to reduce the question of the SL2-parity condition for an
arbitrary root α to the case of simple root α. But in this case, the the irreducibility
implies that the SL2-parity condition holds by 8.1.(ii).

It remains to show the converse. Assume that τ satisfies the SL2-parity condition
for any root α. Then by the above discussion, for any w ∈W we have

Iw(I(Q, τ)) = I(Q, τw),
and I(Q, τ) is irreducible if and only if I(Q, τw) is irreducible. Assume that I(Q, τ)
is reducible. Let B be an irreducible quotient of I(Q, τ). Then its support is
irreducible and, by 3.1 and 3.5, there exists w ∈ W , with the following property:
supp Iw(B) is irreducible and dim supp Iw(B) = dimX−1. Since Iw is right exact,
we conclude that Iw(B) is a quotient of I(Q, τw).

Therefore, again by 7.9, it is enough to show that the SL2-parity condition
implies that there are no quotients of I(Q, τ) with irreducible support of dimension
dimX − 1. Assume that A is such quotient and that its support is the closure of
an orbit Q′ with dimQ′ = dimX − 1. Then there exists a simple root α ∈ Π which
is “transversal” to Q′, i.e., if pα : X −→ Xα is the natural projection of X onto the
variety Xα of all parabolic subalgebras of type α, dim p−1

α (pα(Q
′)) = dimQ′ + 1 =

dimX. This implies that the projection of Q′ into Xα is the open and dense orbit
of K in Xα. The fiber over an arbitrary point in this orbit is isomorphic to the flag
variety Xo

∼= P1 of sl(2,C). Let s : P1 −→ X be the corresponding map. Since α is
a Q-real root, the identity component of Ko is a one dimensional torus by 6.5.(iv).
By base change, s+(I(Q, τ)) = I(Qo, τo) is a standard Harish-Chandra sheaf on
Xo corresponding to the restriction τo of τ to the open orbit Qo of Ko, and it has
a nontrivial quotient supported in {0}∪{∞}. Since the SL2-parity condition holds
for α this is impossible by 4.10. □

We shall use 8.2 to prove a necessary and sufficient criterion for the irreducibil-
ity of standard Harish-Chandra sheaves on Zuckerman orbits. We start with the
following observation. Let O be a closed orbit of K in XΘ. Then V = p−1

Θ (O) is a

closed smooth subvariety of X and a union of K-orbits. Let M≤O
coh(Dλ,K) be the

full subcategory of Mcoh(Dλ,K) consisting of modules supported in V . The direct

image functor j+ is an equivalence of the categoryMcoh(Dj
λ,K) withM≤O

coh(Dλ,K).

Its inverse is j!. This, in combination with 7.3, leads to the following result.

Lemma 8.3. The functor RdimO(j◦s)! is an equivalence of the category M≤O
coh(Dλ,K)

with Mcoh(Do
λo
,Ko).

Let Q be a Zuckerman orbit. Then Σ+ is a set of positive roots of Zuckerman
type for (Σ, σQ). The set PQ = ΣQ,R ∪ Σ+ is a σQ-stable parabolic set of roots by
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5.10. Let Θ ⊂ Π be the corresponding set of simple roots, and XΘ the generalized
flag variety of all parabolic subalgebras of type Θ in g. Let O = pα(Q). By 6.16.(ii),
the orbit O is closed in XΘ.

The fibre Xo over y is identified with the flag variety of go. Since py is σ-stable,
the Lie algebra of φ−1(φ(K) ∩ Py) is equal to k ∩ py. Let c be a σ-stable Cartan
subalgebra in bx, R the root system of (g, c) in c∗, and R+ the set of positive roots
determined by bx. Then py is spanned by the Borel subalgebra bx and the root
subspaces gα for all real roots α ∈ R. Clearly c and gα, for all real roots α ∈ R,
span a σ-stable Levi factor lo of py, and go is canonically isomorphic to [lo, lo]. The
center of lo is the intersection of kernels of all real roots in c∗. The involution σ
induces an involution σo on go ∼= [lo, lo]. Therefore, the Lie algebra ko of Ko can be
identified with k ∩ [lo, lo] which is the set of fixed points of σo. The intersection of
c and [lo, lo] determines a Cartan subalgebra of go on which σo acts as −1. Thus
(go,Ko) is a split Harish-Chandra pair.

Proposition 8.4. Let Q be a Zuckerman orbit in X, λ an element of h∗, and τ a
K-homogeneous connection on Q compatible with λ. Then the following conditions
are equivalent:

(i) τ satisfies the SL2-parity condition for all Q-real roots α ∈ Σ;
(ii) the standard module I(Q, τ) is irreducible.

Proof. Let Qo = Q ∩Xo. Then Qo is a Ko-orbit in Xo of a Borel subalgebra of go
which contains a Cartan subalgebra on which σo acts as −1. This implies that all
roots in Σo are Qo-real, and that Qo is open in Xo. By base change,

RdimO(j ◦ s)!(I(Q, τ)) = I(Qo, τo),

where τo is the restriction of τ to Qo. Since all irreducible composition factors of
I(Q, τ) lie in M≤O

coh(Dλ,K), by 8.3, I(Q, τ) is irreducible if and only if I(Qo, τo) is
irreducible. Now τ satisfies the SL2-parity condition for all Q-real roots if and only
if τo satisfies the the SL2-parity condition for all Qo-real roots, i.e., for all roots in
Σo, so the assertion follows from 8.2. □

Next, we prove a result which reduces the problem of irreducibility of standard
Harish-Chandra sheaves to the special case of Zuckerman orbits.

Lemma 8.5. Let Q be a Zuckerman orbit, λ ∈ h∗, and w ∈ W . Suppose Σ+
w

consists of Q-complex roots, and Σ+
w ∩ σQ(Σ+

w) = ∅. Then the following conditions
are equivalent:

(i) Σ+
w ∩ Σλ = ∅ and I(Q, τ) is irreducible Dλ-module;

(ii) I(Qw, τw) is irreducible Dwλ-module.

Proof. First we remark that in this case D+(Q) consists of all positive Q-complex
roots. If Σ+

w∩Σλ = ∅, by 2.9, the intertwining functor Iw : Mqc(Dλ) −→ Mqc(Dwλ)
is an equivalence of categories and Iw−1 its inverse. By 7.2, we have

Iw(I(Q, τ)) = I(Qw, τw).

Therefore I(Q, τ) is irreducible if and only if I(Qw, τw) is an irreducible Dwλ-
module.

Now we shall prove, by induction on ℓ(w), that Σ+
w ∩ Σλ ̸= ∅ only if I(Qw, τw)

is a reducible Dwλ-module. If ℓ(w) = 0, w = 1 and Σ+
w = ∅, so the assertion is

obvious. Thus we assume the statement holds for all w′ ∈ W with ℓ(w′) < k. Let
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ℓ(w) = k. Then w = sαw
′ for some α ∈ Π and w′ ∈ W with ℓ(w′) = k − 1. As

we remarked in §2, Σ+
w = {w′−1

(α)} ∪ Σ+
w′ . Therefore, Σ+

w′ consists of Q-complex

roots and Σ+
w′ ∩ σQ(Σ+

w′) = ∅. By 2.5 and 7.2, we have

I(Qw, τw) = Iw(I(Q, τ)) = Isα(Iw′(I(Q, τ))) = Isα(I(Qw′ , τw′)),

and L−1Isα(I(Qw′ , τw′)) = 0.

If w′−1
(α) /∈ Σλ, i.e., α /∈ Σw′λ, we have Σ+

w ∩ Σλ = Σ+
w′ ∩ Σλ, and by the

induction assumption I(Qw′ , τw′) is a reducible Dw′λ-module if Σ+
w′ ∩ Σλ ̸= ∅.

Since, by 2.9, in this case Isα : Mqc(Dw′λ) −→ Mqc(Dwλ) is an equivalence of
categories, I(Qw, τw) is a reducible Dwλ-module if Σ+

w ∩ Σλ ̸= ∅.
If α ∈ Σw′λ, p = −α (̌w′λ) = α (̌wλ) is an integer, and −w−1α ∈ Σ+

w . This
implies that −w−1α is a positive Q-complex root, and −σQ(w−1α) /∈ Σ+

w . Since
σQw = w ◦ σQ ◦w−1 by 6.11, we see that α is a Qw-complex root and σQwα /∈ Σ+.
By 8.1.(i) this implies that I(Q, τ) is reducible. □

We shall need the following auxiliary result. Let g = sl(3,C) and σ an involution
on g given by σ(A) = J AJ−1, A ∈ g, with

J =

−1 0 0
0 −1 0
0 0 1

 .

Then σ is a Cartan involution for the real form su(2, 1) of sl(3,C). Let (g,K)
be a Harish-Chandra pair such that k is the Lie algebra of fixed points of σ. For
simplicity assume that K covers the subgroup of SL(3,C) consisting of all matrices
of the form  A

0
0

0 0 detA−1

 ,

where A is an arbitrary 2×2 matrix. Write ψ for the projection of K into SL(3,C).
Let c be the σ-stable Cartan subalgebra spanned by

H =

0 0 1
0 0 0
1 0 0

 and T =

1 0 0
0 −2 0
0 0 1

 ,

and C the corresponding Cartan subgroup of SL(3,C). Let R be the root system
of (g, c) in c∗. Then R contains a unique real root α such that the dual root Hα is
equal to H. The only other real root is −α, and the remaining roots are complex.
Recall the meaning of mα and nα, which were defined at the end of §6. Note that

mα = exp(iπHα) =

−1 0 0
0 1 0
0 0 −1

 = exp(iπT ).

Lemma 8.6. (i) The subgroup S = ψ−1(ψ(K) ∩ C) of K is isomorphic to C∗.
(ii) We can choose nα = exp(iπT ).
(iii) Let ω be a character of S and µ ∈ c∗ such that the differential of ω agrees

with the restriction of µ to the subspace of c spanned by T . If β is a complex root
such that β (̌µ) ∈ Z, we have

ω(nα) = e±iπαˇ(µ).
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Proof. (i) First we claim that ψ(K)∩C is the one-parameter subgroup in SL(3,C)
determined by T . Since the exponential map exp : c −→ C is surjective, any
k ∈ ψ(K) ∩ C has the form k = exp(aT + bH). From k = σ(k) we get k =
exp(aT − bH) and k−1 = exp(−aT + bH). This implies 1 = exp(2bH) and b ∈ iπZ.
Since mα = exp(iπH) = exp(iπT ), the assertion follows.

We can identify ψ(K) with GL(2,C). Then π(A, z) = zA defines a homomor-
phism of SL(2,C) × C∗ into ψ(K), which is a two-fold covering. The nontrivial
element of the kernel of π is (−I,−1). Since SL(2,C) is simply connected, the
fundamental group of ψ(K) is Z. For even n = 2k, the n-fold covering of ψ(K)
factors through SL(2,C)× C∗. Without any loss of generality we can assume that
K is the n-fold cover of ψ(K). Hence K ∼= SL(2,C)×C∗ and ψ(A, z) = zkA. This
implies that kerψ consists of all elements of the form (I, ζ) and (−I, eiπ

k ζ), where
ζ is an arbitrary k-th root of unity. Since

T =

 3
2 0 0
0 − 3

2 0
0 0 0

+

− 1
2 0 0
0 − 1

2 0
0 0 1

 ,

and since the first matrix lies in the image of the Lie algebra of SL(2,C) and the
second in the center of k, we see that the first component of exp(zT ) ∈ K =
SL(2,C)× C∗ is equal to

exp

(
3z
2 0
0 − 3z

2

)
=

(
e

3z
2 0

0 e−
3z
2

)
for any z ∈ C∗, hence the second is equal to e−

z
n . If z = 2πiq, q ∈ Z, exp(2qπiT )

is one of the elements of kerψ, and all of them are obtained in this way. This
completes the proof of (i).

(ii) The matrix

T +Xα +X−α =

2 0 0
0 −2 0
0 0 0


lies in the image of sl(2,C). Therefore,

exp(iπ(T +Xα +X−α)) = exp

2πi 0 0
0 −2πi 0
0 0 0

 = 1

in the image of SL(2,C), and this identity persists in K. Hence, in K,

exp(−iπ(Xα +X−α)) = exp(iπT ).

Since kα is spanned by Xα +X−α, and since

exp(t(Xα +X−α)) = exp

t 0 0
0 0 0
0 0 −t

 =

et 0 0
0 1 0
0 0 e−t

 ,

we see that

exp(t(Xα +X−α)) ̸= mα

for t /∈ iπ(2Z+ 1). This implies that nα = exp(iπT ) is a possible choice for nα.
(iii) We may assume that β is a complex root in c such that α = β − σβ. Then

α (̌β) = 1 and

eβ(mα) = eiπαˇ(β) = −1.
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On the other hand,

eβ(mα) = eiπβ(T ),

so β(T ) is an odd integer and T is a weight in the dual root system. Since
exp(2πiT ) = 1, T lies in the dual root lattice. Analogously, we see that sT ,
0 < s < 1, does not lie in the dual root lattice. This implies β(T ) = ±1 and

T = ±(βˇ+ (σβ)̌ ).

Hence

ω(nα) = eiπµ(T ) = eiπ(βˇ(µ)+(σβ)ˇ(µ)) = e−iπαˇ(µ)e2πiβˇ(µ) = e−iπαˇ(µ)

if T = βˇ+ (σβ)̌ , and

ω(nα) = eiπµ(T ) = e−iπ(βˇ(µ)+(σβ)ˇ(µ)) = eiπαˇ(µ)e−2πiβˇ(µ) = eiπαˇ(µ)

otherwise. □

Now we prove the irreducibility criterion in the general situation. Let Q be K-
orbit in X, σQ the induced involution on the root system Σ. As explained in §5,
the root system with involution (Σ,−σQ) determines a subset C(Σ+) ⊂ D(Σ+) of
Σ+, which we now denote by C−(Q).

Theorem 8.7. Let Q be a K-orbit in X, λ an element of h∗, and τ an irreducible K-
homogeneous connection on Q compatible with λ+ρ. Then the following conditions
are equivalent:

(i) C−(Q) ∩ Σλ = ∅, and τ satisfies the SL2-parity condition with respect to
every Q-real root in Σ;

(ii) the standard Dλ-module I(Q, τ) is irreducible.

Proof. By 6.13 there exist a Zuckerman orbit Q1 and w ∈ W , such that Σ+
w−1

consists of Q1-complex roots, Σw−1 ∩ (−σQ1(Σw−1)) = ∅, Q = (Q1)w−1 , Σw ∩
(−σQ(Σw)) = ∅, and

D−(Q) = Σw ∪ (−σQ(Σw)).

Also there exists an irreducible K-homogeneous connection τ ′ on Q1 such that
τ = τ ′w−1 . Then, by 8.5, the standard Dλ-module I(Q, τ) is irreducible if and only
if I(Q1, τ

′) is an irreducible Dwλ-module and Σw−1 ∩ Σwλ = ∅.
By 8.4, I(Q1, τ

′) is irreducible if and only if τ ′ satisfies the SL2-parity condition
for every Q1-real root in Σ. By 7.9.(i), this is equivalent to the SL2-parity condition
for τ and every Q-real root in Σ.

It remains to analyze the condition Σw−1 ∩Σwλ = ∅, which is equivalent also to
Σw ∩Σλ = ∅. We have to show that C−(Q) ∩Σλ = ∅ is equivalent to Σ+

w ∩Σλ = ∅
when the SL2-parity condition is satisfied for all Q-real roots in Σ.

By 5.6 we have Σ+
w ⊂ C−(Q), hence C−(Q) ∩ Σλ = ∅ implies Σ+

w ∩ Σλ = ∅. We
still must prove the opposite implication when the SL2-parity condition is satisfied
for τ and all Q-real roots in Σ.

By 5.6, it is enough to establish the following statement:

(*) Assume the SL2-parity condition is satisfied for τ and all Q-real roots in
Σ. Let α ∈ ΣQ,C be such that either
(a) closed root subsystem Σα of Σ generated by α and σQα is of type

A1 ×A1, or
(b) the closed root subsystem Σα of Σ generated by α and σQα is of type

A2, and α− σQα is a Q-real root.
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Then either {α, σQα} ⊂ Σλ or {α, σQα} ∩ Σλ = ∅.

By 7.9, this statement is equivalent to the analogous statement for the connection
τ ′ on Q1. Therefore, in proving (*) we can assume without any loss of generality
that Q is a Zuckerman orbit.

Let x ∈ Q and c a σ-stable Cartan subalgebra in bx. Then, by the specialization
corresponding to Q, the root subsystem Σα of Σ determines the semisimple Lie
subalgebra generated by the root subspaces gβ , β ∈ Σα, which we denote by g◦.
By its construction g◦ is σ-invariant. Let σ◦ be the involution on g◦ induced by
σ. Its fixed point set is the subalgebra k◦ = k ∩ g◦. Let N(g◦) be the connected
component of the normalizer of g◦ in K, C(g◦) the connected component of the
centralizer of g◦ in K, and put K◦ = N(g◦)/C(g◦). Then K◦ acts on g◦, and
the differential of this action defines an isomorphism of the Lie algebra of K◦ with
k◦. Therefore (g◦,K◦) is a Harish-Chandra pair. The subalgebra c◦ = g◦ ∩ c is a
Cartan subalgebra of g◦, which lies in the Borel subalgebra b◦ = g◦∩bx. If we let h◦
denote the Cartan algebra of g◦, we get a natural injection h◦ −→ c◦ −→ c −→ h.
This map induces a restriction map h∗ −→ h∗◦. The kernel of this map equals
{µ ∈ h∗ | α (̌µ) = (σα)̌ (µ) = 0}. The restriction map identifies the root subsystem
Σα with the root system of g◦ in h∗◦ and maps Σ+

α = Σα ∩Σ+ into a set of positive
roots Σ+

◦ . The set of simple roots Π◦ determined by Σ+
◦ corresponds to Πα under

this identification. In addition, if we let λ◦ denote the restriction of λ ∈ h∗ to h◦,
we see that β ∈ Σλ is equivalent to β ∈ (Σ◦)λ◦ for any β ∈ Σα.

In the case (a), g◦ ∼= sl(2,C) × sl(2,C), and σ◦ acts as σ◦(ξ, η) = (η, ξ) for
ξ, η ∈ sl(2,C). Thus k◦ is the diagonal in sl(2,C)× sl(2,C). This implies that the
groupK◦ is a covering of the group PSL(2,C), i.e., it is either SL(2,C) or PSL(2,C).
In the first case, K◦ is the diagonal subgroup of SL(2,C) × SL(2,C), and in the
second the diagonal subgroup of PSL(2,C)× PSL(2,C). The Harish-Chandra pair
(g◦,K◦) is therefore linear in this case. By 7.1.(ii), (Σ◦)λ◦ is either empty or equal
to Σ◦. This implies that either Σα ∩ Σλ = ∅ or Σα ⊂ Σλ. This proves (*) in this
case.

In the case (b), g◦ = sl(3,C) and the Harish-Chandra pair (g◦,K◦) is the one
described before 8.6 (by passing to a finite cover of K◦ if necessary). Let β = α−σα
be the unique positive Q-real root in Σ+

α . Suppose {α, σQα} ∩ Σλ ̸= ∅. Then,
without any loss of generality, we can assume that α (̌λ) ∈ Z.

Assume first β ∈ Π. Then β (̌ρ) = 1 and eiπβˇ(ρ) = −1. If ω is the rep-
resentation of the stabilizer Sx, by 8.6.(iii) we see that either ω(nβ)e

iπβˇ(λ+ρ) or

ω(nβ)e
−iπβˇ(λ+ρ) has an eigenvalue equal to 1. This implies that ω(nβ) has an

eigenvalue equal to −e±iπβˇ(λ). Hence the SL2-parity condition fails for β, contrary
to our assumption. It follows that α (̌λ) /∈ Z and we have a contradiction.

Assume now that β is not simple. Since Q is a Zuckerman orbit, by 5.10 we
see that the root system of Q-real roots has the set of all simple Q-real roots as a
basis. Therefore, β = w−1γ, where w is a product of simple reflections with respect
to Q-real roots, and γ a simple Q-real root satisfying γ = wα − σQwα. By 7.9,
the SL2-parity conditions hold for a connection τ ′ on Q which is compatible with
wλ+ρ. Therefore, by the preceding part of the proof, we conclude (wα)̌ (wλ) /∈ Z.
This in turn implies that α (̌λ) /∈ Z, and we have a contradiction again. Therefore
{α, σQα} ∩ Σλ = ∅, and (*) holds also in this case. □
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The preceding argument implies that we can replace C−(Q) by a smaller subset
which does not contain any element of the pair {α,−σQα} if Σα is of type A2,
since integrality with respect to one of these roots automatically implies that the
SL2-parity condition fails for the Q-real root β = α−σQα. Since the integrality of
λ with respect to a Q-complex root is easier to check than the parity condition, it
seems natural to leave this redundant condition.

The next corollary is the D-module version of a result of B. Speh and D. Vogan
([20]). It can be deduced directly from 8.2, 8.4 and 8.5, skipping a considerable
amount of combinatorics related to C−(Q).

Corollary 8.8. Let (g,K) be a linear Harish-Chandra pair. Let Q be a K-orbit,
λ ∈ h∗. Then the following conditions are equivalent:

(i) D−(Q) ∩ Σλ = ∅, and τ satisfies the SL2-parity condition for every Q-real
root in Σ;

(ii) I(Q, τ) is an irreducible Dλ-module.

Proof. Using the notation from the preceding proof, by 7.1.(ii), it follows that the
condition Σ+

w ∩ Σλ = ∅ is equivalent to

D−(Q) ∩ Σλ = (Σ+
w ∪ (−σQΣ+

w)) ∩ Σλ = ∅
for linear Harish-Chandra pairs. This, in conjunction with the preceding proof,
completes the argument. □

9. Geometric classification of irreducible Harish-Chandra modules

In this section we describe the geometric classification of irreducible Harish-
Chandra modules due to Beilinson and Bernstein [3].

Let V be an irreducible Harish-Chandra module. We can view V as an irreducible
object in the category Mfg(Uθ,K). Clearly, the real parts of the elements of θ form
a Weyl group orbit Re θ and contain a unique strongly antidominant element. If
we fix a strongly antidominant λ ∈ θ, Reλ is independent of the choice of λ. By
2.15.(ii), there exists a unique irreducible Dλ-module V such that Γ(X,V) = V .
Since this Dλ-module must be a Harish-Chandra sheaf, it is of the form L(Q, τ) for
some K-orbit Q in X and irreducible K-homogeneous connection τ on Q. Hence,
there is a unique pair (Q, τ) such that Γ(X,L(Q, τ)) = V . Therefore, if σQ is the
involution determined by Q, we can define

λQ =
1

2
(λ− σQλ)

and

λQ =
1

2
(λ+ σQλ).

Clearly, λ = λQ + λQ. Moreover, by 7.1.(i), we have α (̌λQ) ∈ R, i.e., λQ is a real
linear form on h∗. In addition,

λQ +ReλQ = Reλ

is an invariant which depends only on θ.
If λ is in addition regular, the above correspondence gives a parametrization of

equivalence classes of irreducible Harish-Chandra modules by all pairs (Q, τ). On
the other hand, if λ is not regular, some of pairs (Q, τ) correspond to irreducible
Harish-Chandra sheaves L(Q, τ) with Γ(X,L(Q, τ)) = 0. Therefore, to give a
precise formulation of this classification of irreducible Harish-Chandra modules, we
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have to determine a necessary and sufficient condition for nonvanishing of global
sections of irreducible Harish-Chandra sheaves L(Q, τ).

Let λ ∈ h∗ be strongly antidominant and Q a K-orbit in X.
If α is Q-imaginary root, its dual root αˇ vanishes on λQ, and α (̌λ) is real.
Let

Σ0 = {α ∈ Σ | Reα (̌λ) = 0}.
Put Σ+

0 = Σ0 ∩ Σ+ and Π0 = Π ∩ Σ0. Since λ is strongly antidominant, Π0 is the
basis of the root system Σ0 determined by the set of positive roots Σ+

0 . Let W0 be
the Weyl group of Σ0.

Let Σ1 = Σ0 ∩ σQ(Σ0); equivalently, Σ1 is the largest root subsystem of Σ0

invariant under σQ. Let Σ
+
1 = Σ1∩Σ+, and Π1 the corresponding basis of the root

system Σ1. Clearly, Π0 ∩ Σ1 ⊂ Π1, but this inclusion is strict in general.
If α ∈ Π0, there are the following possibilities:

(i) α is Q-imaginary root and α (̌λ) = 0;
(ii) α is Q-complex and σQα is positive;
(iii) α is Q-complex, −σQα is positive;
(iv) α is Q-real.

Simple roots in Π0 of type (i) and (iv) are automatically in Π1. The roots in Π0−Π1

must be of type (ii) or (iii).
Let

Σ2 = {α ∈ Σ1 | α (̌λ) = 0}.
If α ∈ Σ1, by a previous remark, we have

α (̌λQ) =
1

2
(Reα (̌λ) + Re(σQα)̌ (λ)) = 0.

Therefore, it follows that for α ∈ Σ2, we have (σQα)̌ (λ) = 0 and σQα ∈ Σ2. Hence,
Σ2 is also σQ-invariant. Let Σ

+
2 = Σ2 ∩Σ+, and Π2 the corresponding basis of the

root system Σ2. Again, Π0 ∩Σ2 ⊂ Π1 ∩Σ2 ⊂ Π2, but these inclusions are strict in
general.

The next theorem gives the simple necessary and sufficient condition for Γ(X,L(Q, τ)) ̸=
0, that was alluded to before. In effect, this completes the classification of irre-
ducible Harish-Chandra modules.

Theorem 9.1. Let λ ∈ h∗ be strongly antidominant. Let Q be a K-orbit in X and
τ a K-homogeneous irreducible connection on Q compatible with λ + ρ. Then the
following conditions are equivalent:

(i) Γ(X,L(Q, τ)) ̸= 0;
(ii) the following conditions hold for the pair (Q, τ):

(a) the set Π2 contains no compact Q-imaginary roots;
(b) for any Q-complex root α ∈ Σ+ with α (̌λ) = 0, the root σQα is also

positive;
(c) for any Q-real α ∈ Σ with α (̌λ) = 0, τ must satisfy the SL2-parity

condition with respect to α.

The proof is based on the following lemma.

Lemma 9.2. Let D−(Q) ∩Π0 = ∅. Then

(i) Π1 ⊂ Π0;
(ii) D−(Q) ∩ Σ+

0 = ∅.
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Proof. (i) Let Π′ = Π0 ∩ Σ1. Let β ∈ Σ+
1 . Then β =

∑
α∈Π0

nαα, nα ∈ Z+, and

σQβ =
∑
α∈Π′

nασQα+
∑

α∈Π0−Π′

nασQα.

Since Σ1 is σQ-invariant, σQβ and σQα, α ∈ Π′, are in Σ1. This implies that∑
α∈Π0−Π′

nασQα ∈ Q(Σ1) ⊂ Q(Σ0).

Hence, with respect to the canonical inner product on h∗0, we have

0 =

( ∑
α∈Π0−Π′

nασQα

∣∣∣∣Reλ
)

=
∑

α∈Π0−Π′

nα(σQα | Reλ).

Since Π0 does not contain roots of type (iii), roots α ∈ Π0 − Π′ are of type (ii).
Hence, the σQα are positive roots and (σQα | Reλ) ≤ 0. On the other hand, α /∈ Σ1

leads to (σQα|Reλ) ̸= 0. Therefore, (σQα | Reλ) < 0 for α ∈ Π0 −Π′, and nα = 0
for these roots. It follows that β =

∑
α∈Π′ nαα, i.e., Π

′ is a basis of Σ1. Hence,
Π1 = Π′ ⊂ Π0.

(ii) Let β ∈ D−(Q) ∩ Σ+
0 . Since β is a positive root in Σ0, we have β =∑

α∈Π0
mαα with mα ∈ Z+. By our assumption Π0 consists of simple roots of type

(i), (ii) and (iv) only. Therefore, Π0 = Π′
0 ∪Π′′

0 where Π′
0 contains the simple roots

of type (i) and (iv) and Π′′
0 contains the simple roots of type (ii). Since Π′

0 ⊂ Π1,
we have Re(σQα)̌ (λ) = 0 for α ∈ Π′

0. On the other hand, σQα are positive roots
for α ∈ Π′′

0 , hence Re(σQα)̌ (λ) ≤ 0. Since σQβ is a negative root, it follows that

0 ≤ (σQβ|Reλ) =
∑
α∈Π0

mα(σQα|Reλ)

=
∑
α∈Π′

0

mα(σQα|Reλ) +
∑
α∈Π′′

0

mα(σQα|Reλ) =
∑
α∈Π′′

0

mα(σQα|Reλ) ≤ 0.

Hence, Re(σQβ)̌ (λ) = 0, i.e., we have σQβ ∈ Σ0. Therefore, we proved that
β ∈ Σ+

1 , i.e., we have

D−(Q) ∩ Σ+
0 = D−(Q) ∩ Σ+

1 .

Since Σ1 is σQ-invariant, by 5.4, we see that Π1∩D−(Q) = ∅ implies Σ1∩D−(Q) =
∅. Therefore, we have D−(Q) ∩ Σ+

0 = ∅. □

Now we can prove 9.1. Let α ∈ Π0 be such that α (̌λ) ̸= 0. Then α (̌λ) is
purely imaginary and sαλ is also strongly antidominant. Hence, Isα : Mqc(Dλ) −→
Mqc(Dsαλ) is an equivalence of categories by 2.9. Therefore,

Isα(L(Q, τ)) = L(Q′, τ ′),

for some K-orbit Q′ and an irreducible K-homogeneous connection on Q′ compat-
ible with sαλ+ ρ. Also, by 2.10, we have

Γ(X,L(Q, τ)) = Γ(X,L(Q′, τ ′)).

Therefore, the conditions (i) for L(Q, τ) and L(Q′, τ ′) are equivalent.
We claim that the conditions (ii) for L(Q, τ) and L(Q′, τ ′) are also equivalent.

Clearly, α is either Q-complex or Q-real.
Assume first that α is Q-complex. By 6.5.(v), the set p−1

α (pα(Q)) is union of two
K-orbits Q and Q′′. Since Isα : Mqc(Dλ) −→ Mqc(Dsαλ) and Isα : Mqc(Dsαλ) −→



70 H. HECHT, D. MILIČIĆ, W. SCHMID, AND J. A. WOLF

Mqc(Dλ) are equivalences of categories, by 7.2, there exists a connection τ ′′ on
Q′′ compatible with sαλ + ρ such that Isα(I(Q′′, τ ′′)) = I(Q, τ). It follows that
Isα(L(Q, τ)) = L(Q′′, τ ′′). Therefore, Q′ = Q′′ and τ ′ = τ ′′. Since the situation is
completely symmetric, without any lack of generality, by possible switching of the
roles of the pairs (Q, τ) and (Q′, τ ′), we can assume that dimQ′ = dimQ−1. Since
σQ′ = sα ◦σQ ◦sα by 6.11, we see that sα maps compact Q-imaginary, noncompact
Q-imaginary, Q-complex and Q-real roots into compact Q′-imaginary, noncompact
Q′-imaginary, Q′-complex and Q′-real roots respectively. In addition, Σ0 is sα-
invariant. Hence, sα maps Σ1 into Σ1

′ and Σ2 into Σ2
′. Since α is not in Σ2, sα maps

Σ+
2 into (Σ2

′)+. Therefore, sα maps Π2 into Π
′
2. Therefore, the conditions (ii)(a) for

L(Q, τ) and L(Q′, τ ′) are equivalent. By 7.9.(i), the conditions (ii)(c) for L(Q, τ)
and L(Q′, τ ′) are also equivalent. By 6.11, D−(Q) = sα(D−(Q

′)) ∪ {α,−σQα}.
Therefore, D−(Q) ∩ Σ+

0 consists of sα(D−(Q
′) ∩ Σ+

0 ), α and possibly −σQα (if it
is in Σ+

0 ). Since Imα (̌λ) ̸= 0 and α (̌λQ) is real, we see that

Im(σQα)̌ (λ) = − Imα (̌λ) ̸= 0.

Hence, the conditions (ii)(b) for L(Q, τ) and L(Q′, τ ′) are also equivalent.
If α is Q-real, Isα(I(Q, τ)) = I(Q, τsα) by 7.7. Hence, Isα(L(Q, τ)) = L(Q, τsα)

and Q′ = Q and τ ′ = τsα in this case. Since sα commutes with σQ, it follows
that it maps Σ1 into Σ′

1 and Σ2 into Σ′
2. Since α is not in Σ2, sα maps Σ+

2 into
(Σ2

′)+. Therefore, sα maps Π2 into Π′
2. Clearly sα acts trivially on Q-imaginary

roots, and the conditions (ii)(a) for L(Q, τ) and L(Q, τ ′) are identical. Moreover,
sα permutes Q-real roots in this case and, by 7.9.(ii), the conditions (ii)(c) for
L(Q, τ) and L(Q, τ ′) are equivalent. Also, sα permutes positive Q-complex roots,
hence the conditions (ii)(b) for L(Q, τ) and L(Q, τ ′) are equivalent.

This completes the proof of our claim.
First we establish the implication (ii)⇒(i). Assume that Γ(X,L(Q, τ)) = 0. By

2.17, there exists w ∈ W0 such that Iw(L(Q, τ)) = 0. We prove that (ii) does not
hold by induction in ℓ(w). First, assume that ℓ(w) = 1. Then, w = sα, α ∈ Π0,
and the assertion follows from 7.5.

Assume that ℓ(w) = p > 1. Then there exists α ∈ Π0 and w′ ∈ W0 such that
w = w′sα and ℓ(w′) = p− 1. If Isα(L(Q, τ)) = 0, we are done by the previous step.
Therefore, we can assume that Isα(L(Q, τ)) ̸= 0. There are two possibilities:

(a) α (̌λ) = 0;
(b) α (̌λ) ̸= 0.

Assume first that (a) holds. Then, by 2.16.(ii) we see that L(Q, τ) is the unique
irreducible quotient of Isα(L(Q, τ)). Therefore, since Iw′ is right exact, Iw′(L(Q, τ))
is a quotient of

Iw′(Isα(L(Q, τ))) = Iw(L(Q, τ)) = 0,

i.e., Iw′(L(Q, τ)) = 0. By the induction assumption, (ii) cannot hold for L(Q, τ).
Assume now that (b) holds. In this case, by the previous discussion, Isα(L(Q, τ)) =

L(Q′, τ ′) and Γ(X,L(Q′, τ ′)) = Γ(X,L(Q, τ)) = 0. Therefore, Iw′(L(Q′, τ ′)) = 0
and by the induction assumption the condition (ii) fails for L(Q′, τ ′). The preced-
ing discussion now implies that (ii) also fails for L(Q, τ). This completes the proof
of the implication (ii)⇒(i).

Now we prove (i)⇒(ii). Assume that Γ(X,L(Q, τ)) ̸= 0. The first step in the
reduction to the case D−(Q) ∩ Σ+

0 = ∅. The proof is by downward induction on
Card(D−(Q)). Assume that D−(Q)∩Σ+

0 is not empty. By 9.2, there exists α ∈ Π0
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such that α is Q-complex and −σQα is positive. By 2.17 and 7.5.(ii), α (̌λ) = 0 is
impossible. Therefore, α (̌λ) ̸= 0 holds. By the preceding discussion, in this case
Isα(L(Q, τ)) = L(Q′, τ ′) and Γ(X,L(Q′, τ ′)) = Γ(X,L(Q, τ)) ̸= 0. Moreover, the
conditions (ii) for L(Q, τ) and L(Q′, τ ′) are equivalent. On the other hand, by 6.10,
we have CardD−(Q

′) = CardD−(Q)−2, and in finitely many steps we are reduced
to the situation where D−(Q) ∩ Σ+

0 is empty.
In this situation the condition (ii)(b) is vacuous. Now we prove that (ii)(c) holds.

For a simple Q-real root α ∈ Π1 there are two possibilities:

(a) α (̌λ) ̸= 0;
(b) α (̌λ) = 0;

If (a) holds, as before, we conclude that Isα(L(Q, τ)) = L(Q, τ ′) and Γ(X,L(Q, τ)) =
Γ(X,L(Q, τ ′)). Also, conditions (ii) for L(Q, τ) and L(Q, τ ′) are equivalent. There-
fore, we can replace (Q, τ) with (Q, τ ′).

If (b) holds, by 7.5, τ must satisfy the SL2-parity condition with respect to α.
In this case, by 7.8, we have Isα(I(Q, τ)) = I(Q, τ), i.e., τ ′ = τ . Moreover, by
7.9.(ii), the SL2-parity condition for τ is satisfied for Q-real root β if and only if it
is satisfied for the Q-real root sαβ.

By definition, Σ1 is σQ-invariant. Also, by 9.2, Σ1∩D−(Q) = ∅. Hence, Σ+
1 is of

Zuckerman type in Σ1 with respect to the induced involution. By 5.10.(i), Q-real
roots in Π1 form a basis of the root system of all Q-real roots in Σ1. By applying
consecutive reflections with respect to simple Q-real roots in Π1, we see that the
SL2-parity condition holds for all Q-real roots in Σ1. Hence the condition (ii)(c)
holds for L(Q, τ).

It remains to show that (ii)(a) holds. This is an immediate consequence of the
following lemma.

Lemma 9.3. Assume that the pair (Q, τ) satisfies Π1 ⊂ Π0 and the conditions
(ii)(b) and (ii)(c) from 9.1. Then the following conditions are equivalent:

(i) the set Π2 contains no compact Q-imaginary roots;
(ii) Γ(X,L(Q, τ)) ̸= 0;
(iii) Γ(X, I(Q, τ)) ̸= 0.

Proof. We already established that (i) implies (ii). That (ii) implies (iii) is obvious.
Therefore, we have to show that (iii) implies (i).

The root system Σ2 can be characterized as

Σ2 = {α ∈ Σ1 | Imα (̌λ) = 0}.
If λ satisfies the condition Imα (̌λ) ≤ 0 for all α ∈ Π1, we have Π2 ⊂ Π1 ⊂ Π0 ⊂ Π.
Hence, if α ∈ Π2 is a compact Q-imaginary root, α is a simple root. And in this
case, by 7.6, we have Isα(I(Q, τ)) = 0. Since λ is antidominant, by 2.10, this
implies by that

Γ(X, I(Q, τ)) = Γ(X, Isα(I(Q, τ))) = 0.

Hence, we have a contradiction and (i) holds.
Assume that the above condition on λ doesn’t hold. Then, there exist an element

w of minimal length in the Weyl group W1 generated by the reflections correspond-
ing to roots in Σ1 such that wλ satisfies this property. Put k = ℓ(w). We prove
that (i) holds by induction in k. Let w = w′sα, with w

′ ∈ W1, α ∈ Π1, satisfying
ℓ(w′) = k − 1. Then, by the minimality of ℓ(w), we have sα Imλ ̸= Imλ. There-
fore, Imα (̌λ) ̸= 0 and α is either Q-complex or a Q-real. By a previous argument,



72 H. HECHT, D. MILIČIĆ, W. SCHMID, AND J. A. WOLF

Isα is an equivalence of categories, there exists a K-orbit Q′ and an irreducible
K-homogeneous connection τ ′ compatible with sαλ + ρ such that Isα(I(Q, τ)) =
I(Q′, τ ′). Then, by 2.10, we have Γ(X, I(Q′, τ ′)) = Γ(X, I(Q, τ)) ̸= 0.

Since Σ0 is determined by Reλ, it doesn’t change if we replace λ by sαλ. There-
fore, Π0 is the same for (Q, τ) and (Q′, τ ′). If α is Q-complex, by 6.11, we have

σQ′ = sα ◦ σQ ◦ sα = σQ ◦ sσQα ◦ sα.
Since α ∈ Σ1, we have α ∈ Σ0 and σQα ∈ Σ0. It follows that

Σ′
1 = Σ0 ∩ σQ′(Σ0) = Σ0 ∩ σQ(Σ0) = Σ1,

and Π′
1 = Π1.

If α is Q-real, we know from a previous discussion that Q′ = Q, hence Π′
1 = Π1

in this case too. Therefore, the conditions of the lemma are satisfied for (Q′, τ ′).
Now, w′(sαλ) satisfies the above condition and ℓ(w′) = k−1. Hence, (i) holds for

I(Q′, τ ′) by the induction assumption. We already established that the condition
(i) holds for (Q, τ) if and only if it holds for (Q′, τ ′). Therefore, (i) holds for
I(Q, τ). □

Let V be an irreducible Harish-Chandra module in Mfg(Uθ,K). In general, the
Weyl group orbit θ contains several strongly antidominant elements. For different
strongly antidominant λ in θ, V ∼= Γ(X,L(Q, τ)) for different pairs (Q, τ), as one
can easily check in simple examples (like the discussions of SL(2,R) in the intro-
duction of [12] and SL(2,C) at the end of [19]). Still, the K-conjugacy class of
σ-stable Cartan subalgebras attached to K-orbits Q is uniquely determined by V :

Proposition 9.4. Let V be an irreducible Harish-Chandra module in Mfg(Uθ,K).
Let λ, λ′ ∈ θ be strongly antidominant, Q, Q′ be K-orbits in X and τ , τ ′ irreducible
K-homogeneous connections on Q, resp. Q′, compatible with λ + ρ, resp. λ′ + ρ,
such that

V ∼= Γ(X,L(Q, τ)) ∼= Γ(X,L(Q′, τ ′)).

Then:

(i) the orbits Q and Q′ are attached to the same K-conjugacy class of σ-stable
Cartan subalgebras in g;

(ii) ReλQ = Reλ′Q′ ;

(iii) λQ = (λ′)Q
′
.

Proof. Fix an antidominant λ in θ. Then, by 2.15.(ii), there exists a unique pair
(Q, τ) consisting of a K-orbit Q and an irreducible homogeneous connection τ on
Q compatible with λ+ ρ such that V = Γ(X,L(Q, τ)).

Let W0 = W (Reλ) be the stabilizer of Reλ in W . Then W0 is generated by
reflections with respect to the roots α ∈ Π orthogonal to Reλ. Clearly, wλ is
strongly antidominant if and only if w ∈W0. Consider the set S of pairs (Q′, λ′) of
K-orbits Q′ and strongly antidominant λ′ such that there exists an irreducible K-
homogeneous connection τ ′ onQ′ compatible with λ′+ρ satisfying Γ(X,L(Q′, τ ′)) ∼=
Γ(X,L(Q, τ)). Fix such pair (Q′, λ′). Let w be the shortest element inW0 such that
λ′ = wλ. We prove the statements (i) and (ii) by induction in ℓ(w). If ℓ(w) = 0,
by 2.15.(ii), we see that Q = Q′. Let ℓ(w) > 0. Then w = sαw

′, where w′ ∈ W0,
ℓ(w) = ℓ(w′) + 1, and α ∈ Π such that α (̌Reλ) = 0. Then, α (̌λ′) ̸= 0 by the
minimality of w; and α (̌λ′) is purely imaginary. Therefore, by 7.1.(i), α cannot be
a Q′-imaginary root.
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Moreover, by 2.9, Isα is an equivalence of categories. Hence Isα(L(Q′, τ ′)) =
L(Q′′, τ ′′) for some pair (Q′′, τ ′′), where τ ′′ is an irreducible K-homogeneous con-
nection on Q′′ compatible with λ′′ + ρ = sαλ

′ + ρ = w′λ+ ρ. By 2.10, we have

Γ(X,L(Q′′, τ ′′)) = Γ(X, Isα(L(Q′, τ ′))) = Γ(X,L(Q′, τ ′)) ∼= Γ(X,L(Q, τ))

Hence, by the induction assumption, Q′′ corresponds to the same conjugacy class
of σ-stable Cartan subalgebras as Q and Reλ′′Q′′ = ReλQ.

We already remarked that α is either Q′-real or Q′-complex. In the first case,
by 7.7, we have Isα(I(Q′, τ ′)) = I(Q′, τsα) for some irreducible K-homogeneous
connection τsα onQ′ compatible with λ′′+ρ. Therefore, Isα(L(Q′, τ ′)) = L(Q′, τsα).
It follows that Q′′ = Q′. Since Reλ′′ = Reλ′, we have

ReλQ = Reλ′′Q′′ = Re
1

2
(λ′′ − σQ′′λ′′) = Re

1

2
(λ′ − σQ′λ′) = Reλ′Q′ .

In the second case, by an analogous argument using 7.2, we see that Q′′ and Q′

correspond to the same K-conjugacy class of σ-stable Cartan subalgebras, and
σQ′′ = sα ◦ σQ′ ◦ sα by 6.11. Therefore,

ReλQ = Reλ′′Q′′ = Re
1

2
(λ′′ − σQ′′λ′′) = Re

1

2
(λ′′ − sασQ′sαλ

′′)

= Re
1

2
(λ′ − σQ′λ′) = Reλ′Q′ .

On the other hand, as we remarked before,

Reλ = λQ +ReλQ

depends only of θ. Hence, we have

λQ +ReλQ = (λ′)Q
′
+Reλ′Q′

and, finally, λQ = (λ′)Q
′
. □

Therefore, the invariants ReλQ and λQ do not depend on L(Q, τ) but only on
the Harish-Chandra module V = Γ(X,L(Q, τ)). Hence, can define

κV = ReλQ and κV = λQ

and call it them the Langlands invariant κV and the Vogan-Zuckerman invariant
κV of V .

In 11.7 we are going to show that an irreducible Harish-Chandra module V is
tempered if and only if κV = 0.

10. Decomposition of global sections of standard Harish-Chandra
sheaves

Let θ be a Weyl group orbit in h∗ and λ ∈ θ strongly antidominant. Let Q be
a K-orbit in the flag variety X and τ an irreducible K-homogeneous connection
on Q compatible with λ + ρ. Let I(Q, τ) be the standard Harish-Chandra sheaf
attached to (Q, τ) and L(Q, τ) its unique irreducible Harish-Chandra subsheaf. In
9.1 we established a necessary and sufficient criterion for Γ(X,L(Q, τ)) = 0. In
this section we want to prove some preliminary results on the structure of Harish-
Chandra modules Γ(X, I(Q, τ)). We start with the easy case.
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Lemma 10.1. Let θ be a Weyl group orbit in h∗, and λ ∈ θ antidominant. Let Q
be a K-orbit in the flag variety X and τ an irreducible K-homogeneous connection
on Q compatible with λ + ρ. Assume that Γ(X,L(Q, τ)) ̸= 0. Then Γ(X,L(Q, τ))
is the unique irreducible Harish-Chandra submodule in Γ(X, I(Q, τ)).

Proof. Let V = Γ(X,L(Q, τ)). Then, by 2.15.(i), V is an irreducible Harish-
Chandra module. Hence, it is an irreducible Harish-Chandra submodule of Γ(X, I(Q, τ)).
Assume that U is another irreducible Harish-Chandra submodule of Γ(X, I(Q, τ)).
Then the adjointness of ∆λ and Γ(X,−) implies that we have a nontrivial Dλ-
module morphism ϕ of ∆λ(U) into I(Q, τ). It follows that the image imϕ of ∆λ(U)
is a Harish-Chandra subsheaf of I(Q, τ) which contains L(Q, τ). Therefore, Γ(X,J )
is a Harish-Chandra submodule of Γ(X, I(Q, τ)) which contains V as a composition
factor. On the other hand, it must also be a quotient of Γ(X,∆λ(U)) = U , and we
have U = V . □

In particular, if Γ(X,L(Q, τ)) ̸= 0, Γ(X, I(Q, τ)) is an indecomposable Harish-
Chandra module.

Now we want to consider the general case. The main result is the following
theorem.

Theorem 10.2. Let θ be a Weyl group orbit in h∗, and λ ∈ θ strongly antidomi-
nant. Let Q be a K-orbit in the flag variety X and τ an irreducible K-homogeneous
connection on Q compatible with λ+ρ. Assume that Γ(X, I(Q, τ)) ̸= 0. Then, there
exist

(a) a unique family (Q1, Q2, . . . , Qp) of K-orbits in X;
(b) a unique family of K-homogeneous irreducible connections τi on Qi, 1 ≤

i ≤ p, compatible with λ+ ρ;

such that

(i) Vi = Γ(X,L(Qi, τi)) ̸= 0 for 1 ≤ i ≤ p;
(ii)

Γ(X, I(Q, τ)) =
p⊕

i=1

Γ(X, I(Qi, τi))

is the (unique) decomposition of Γ(X, I(Q, τ)) into a direct sum of inde-
composable Harish-Chandra modules.

Then Qi, 1 ≤ i ≤ p, are in the closure of Q.
The Langlands invariants and the Vogan-Zuckerman invariants of irreducible

Harish-Chandra modules Vi, 1 ≤ i ≤ p, are given by

κVi
= ReλQ and κVi = λQ for 1 ≤ i ≤ p.

If the pair (Q, τ) satisfies the condition (ii)(c) from 9.1 we have p = 1.
If the pair (Q, τ) satisfies the conditions (ii)(b) and (ii)(c) from 9.1, the condition

(ii)(a) from 9.1 is also satisfied.

Proof. Since the Harish-Chandra modules Γ(X, I(Qi, τi)) are indecomposable if
(i) holds, the decomposition of Γ(X, I(Q, τ)) is just the decomposition into inde-
composable direct summands. Hence, the modules Γ(X, I(Qi, τi)) are uniquely
determined. Moreover, each indecomposable direct summand Γ(X, I(Qi, τi)) has a
unique irreducible submodule Γ(X,L(Qi, τi)) by 10.1. Therefore, by 2.15, the irre-
ducible Dλ-modules L(Qi, τi) are uniquely determined. This proves the uniqueness
in (a) and (b).
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Clearly, the composition factors of the Harish-Chandra sheaf I(Q, τ) are of the
form L(Q′, τ ′) for some K-orbits Q′ ⊂ Q̄ and irreducible K-homogeneous con-
nections τ ′ on Q′. Since λ is antidominant, Γ(X,−) is exact and, by 2.15, the
composition factors of Γ(X, I(Q, τ)) are exactly such Γ(X,L(Q′, τ ′)) ̸= 0. There-
fore, Vi, 1 ≤ i ≤ p, are also of the form Γ(X,L(Q′, τ ′)). Applying 2.15 again, we
see that Qi must be among Q′, and Qi ⊂ Q̄.

It remains to prove the existence of the decomposition and its last two properties.
We use a reduction argument similar to the proof of 9.1. We use freely the notation
and results from this proof.

First we recall some results from the proof of 9.1. Let α be a root from Π0,
i.e., a simple root such that Reα (̌λ) = 0. Assume that α (̌λ) ̸= 0. Then Isα :
Mqc(Dλ) −→ Mqc(Dsαλ) is an equivalence of categories. Let Q be a K-orbit in X
and τ an irreducible K-homogeneous connection on Q compatible with λ + ρ. By
7.1.(i), α is either Q-complex or Q-real. If α is Q-complex, there exists a K-orbit
Q′ such that Q ∪Q′ = p−1

α (pα(Q)) and an irreducible K-homogeneous connection
τ ′ on Q′ compatible with sαλ+ρ, such that Isα(I(Q, τ)) = I(Q′, τ ′). If α is Q-real,
Isα(I(Q, τ)) = I(Q′, τ ′) for Q′ = Q and an irreducible K-homogeneous connection
τ ′ on Q′ compatible with sαλ + ρ. In addition, Isα(L(Q, τ)) = L(Q′, τ ′) in both
cases, and the conditions (ii)(a), (ii)(b) and (ii)(c) from 9.1 for the pairs (Q, τ) and
(Q′, τ ′) are equivalent.

Now we prove a reduction argument. Let Q be a K-orbit in X and τ and
irreducible K-homogeneous connection on Q-compatible with λ + ρ. Then, since
both λ and sαλ are antidominant, we have

Γ(X, I(Q, τ)) = Γ(X, Isα(I(Q′, τ ′))) = Γ(X, I(Q′, τ ′)).

Assume that the assertion of the theorem holds for I(Q′, τ ′), i.e., we have the
decomposition

Γ(X, I(Q′, τ ′)) =

p⊕
i=1

Γ(X, I(Q′
i, τ

′
i))

for some K-orbits Q′
i and irreducible K-homogeneous connections τ ′i on Q′

i com-
patible with sαλ+ρ. Clearly, Isα : Mqc(Dsαλ) −→ Mqc(Dλ) is also an equivalence
of categories. Therefore, as before, we get

Γ(X, I(Q, τ)) =
p⊕

i=1

Γ(X, Isα(I(Q′
i, τ

′
i))).

But, as we remarked before, Isα(I(Q′
i, τ

′
i)) = I(Qi, τi) for some K-orbits Qi in X

and irreducible K-homogeneous connections τi on Qi compatible with λ + ρ. In
addition,

Vi = Γ(X,L(Qi, τi)) = Γ(X, Isα(L(Q′
i, τ

′
i))) = Γ(X,L(Q′

i, τ
′
i)) = V ′

i ,

and we obtained a decomposition of Γ(X, I(Q, τ)) with the required properties.

Clearly, κVi = κV ′
i
and κVi = κV

′
i for 1 ≤ i ≤ p. On the other hand, we have

ReλQ = Re(sαλ)Q′ and λQ = (sαλ)
Q′

as in the proof of 9.4. Therefore, the
assertion of the theorem holds for I(Q, τ).

Now we prove the existence by induction in dimQ. If dimQ is minimal possi-
ble, Q is closed and I(Q, τ) is irreducible. Hence, by 9.1, the statement follows
immediately.
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Assume that dimQ is not minimal and that the assertions of the theorem hold
for all standard Harish-Chandra sheaves attached to the orbits of lower dimension.
If Γ(X,L(Q, τ)) ̸= 0, then the statement follows from 10.1. Hence, we can assume
that Γ(X,L(Q, τ)) = 0. Then, there exists a root in Σ which fails to satisfy one of
the conditions in 9.1.(ii).

Assume first that D−(Q)∩Π0 ̸= ∅. Let α ∈ D−(Q)∩Π0. Then α is a Q-complex
simple root and Reα(λ) = 0.

Assume first that α(λ) ̸= 0. As in the proof of 9.1, we conclude that Isα(I(Q, τ)) =
I(Q′, τ ′) for the other K-orbit Q′ in p−1

α (pα(Q)) and an irreducible connection τ ′

on Q′ compatible with sαλ+ ρ. Moreover, by 6.5.(v), dimQ′ = dimQ− 1. By the
reduction statement, we see that the assertions of the theorem for I(Q, τ) follow
from the induction assumption for I(Q′, τ ′).

Assume now that α (̌λ) = 0. In this case, by 7.2, there exists an irreducible K-
homogeneous connection τ ′ onQ′ compatible with λ+ρ and such that Isα(I(Q′, τ ′)) =
I(Q, τ). Hence,

Γ(X, I(Q, τ)) = Γ(X, Isα(I(Q′, τ ′))) = Γ(X, I(Q′, τ ′)) =

p⊕
i=1

Γ(X, I(Q′
i, τ

′
i))

and by the induction assumption applied to I(Q′, τ ′). Therefore, if we put Qi = Q′
i

and τi = τ ′i we get the existence of the decomposition having the properties (i) and

(ii). Moreover, as in the proof of 9.4, we see that λQ = λQ
′
and ReλQ = ReλQ′ .

Finally, as we remarked in the proof of 9.1, sα maps Q′-real roots into Q′-real roots
and by 7.9, τ satisfies the SL2-parity condition with respect to a Q-real root β if
and only if τ ′ satisfies the SL2-parity condition with respect to a Q′-real root sαβ.
Therefore, the theorem holds for I(Q, τ) by the induction assumption.

As in the proof of 9.1, by downward induction on CardD−(Q), we reduce this to
the case D−(Q)∩Σ+

0 = ∅. In this situation, the condition (ii)(b) from 9.1 becomes
vacuous.

Assume that the connection τ satisfies the SL2-parity condition with respect to
all Q-real roots β such that β (̌λ) = 0. Since we assumed that Γ(X,L(Q, τ)) = 0,
we have a contradiction with the assumption that Γ(X, I(Q, τ)) ̸= 0 by 9.3.

Therefore, for I(Q, τ) there exists a Q-real root β ∈ Σ0 such that τ fails the
SL2-parity condition with respect to β. In this situation, as we remarked in the
proof of 9.1, the Q-real roots in Π0 form a basis of all the root system of all Q-real
roots in Σ0. Let α be such Q-real simple root. Then we have either Imα (̌λ) ̸= 0
or α (̌λ) = 0.

Assume first that Imα (̌λ) ̸= 0. Then, Iα(I(Q, τ)) = I(Q, τsα) by 7.7. By the
reduction result, the theorem holds for I(Q, τ) if and only if it holds for I(Q, τsα).

Assume now that α (̌λ) = 0 and the SL2-parity condition holds for τ with respect
α. Then by 7.8 and 7.9, we see that for any Q-real root β, τ satisfies the SL2-parity
condition with respect to β if and only if it also satisfies the SL2-parity condition
with respect to sαβ.

Therefore, there exists w ∈ W which is a product of reflections with respect to
Q-real roots in Π0, an irreducible K-homogeneous connection τ ′ on Q compatible
with wλ+ρ and such that τ ′ fails the SL2-parity condition with respect to wβ ∈ Π0,
and the theorem holds for Γ(X, I(Q, τ)) if and only if it holds for Γ(X, I(Q, τ ′)).

Hence, we can assume that β is a Q-real simple root and the connection τ fails
the SL2-parity condition with respect to β. By 7.10, there exists a Harish-Chandra
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subsheaf C such that

O −→ C −→ I(Q, τ) −→ Q −→ 0,

Isβ (C) = 0 and Q is a direct sum of standard Harish-Chandra sheaves attached

to K-orbits in p−1
β (pβ(Q)) − Q. Hence, by 2.10, Γ(X, C) = Γ(X, Isβ (C)) = 0.

Therefore,

Γ(X, I(Q, τ)) = Γ(X,Q).

Since dim(p−1
β (pβ(Q))−Q) < dim(Q), by the induction assumption

Γ(X, I(Q, τ)) =
p⊕

i=1

Γ(X, I(Qi, τi))

for some K-orbits Qi and irreducible K-homogeneous connections τi on Qi. Let Q
′

be an orbit in p−1
β (pβ(Q)) − Q. Then, by 6.5 and 6.8, σQ′ = sβ ◦ σQ = σQ ◦ sβ .

Therefore, ReλQ = ReλQ′ and λQ
′
= λQ. Hence, by the induction assumption,

κVi
= ReλQ and κVi = λQ. □

11. n-homology of Harish-Chandra modules

In this section we specialize the results of §3 to Harish-Chandra modules.
The open K-orbit Qo ⊂ X is clearly a Langlands orbit. By 6.4, all Qo-imaginary

roots are compact, and by 5.10, the set P = ΣI ∪ Σ+ is a parabolic set of roots.
Therefore, for an arbitrary x ∈ Qo, P determines a parabolic subalgebra px ⊃ bx.
Let ux be the nilpotent radical of px. For any σ-stable Cartan subalgebra c in bx,
let c = t ⊕ a be the decomposition into the σ-eigenspaces with eigenvalues 1 and
−1 respectively. Then the centralizer of a in g is a σ-stable Levi factor of px. Since
all Qo-imaginary roots are compact, it is the direct product of the centralizer m of
a in k with a. Let M be the centralizer of a in K. Then M is a reductive subgroup
of K with Lie algebra m.

Let V be a Harish-Chandra module in Mfg(Uθ,K) for some W -orbit θ in h∗.
Then H0(ux, V ) is an algebraic M -module and an a-module. By the specializa-
tion we can view it as an aQo-module. The h-module H0(nx, V ) is a quotient of
H0(ux, V ), and the natural projection is a morphism of aQo-modules. It can be
viewed as the module of lowest weight vectors of H0(ux, V ). Since H0(nx, V ) is
finite-dimensional, H0(ux, V ) must be finite-dimensional too.

A nonzero restriction of a root from Σ to aQo
is called a restricted root. It is well-

known [1], that the set Σo of all restricted roots is a root system in aQo , the restricted
root system of the involutive Harish-Chandra pair (g,K). We define an ordering on
this root system by choosing Σ+

o to be the set consisting of all nonzero restrictions
of roots from Σ+. Denote by Πo the corresponding set of simple restricted roots.
This is the set of distinct non-zero restrictions of elements of Π. Let C be the
real cone in a∗Qo

consisting of restrictions of all λ ∈ h∗ such that 0 ≼ λ. In other
words, this is the cone consisting of all linear combinations of elements of Πo with
coefficients with nonnegative real part. We call C the tempered cone. We denote
the corresponding ordering on the vector space aQo by ≪.

Let δ = ρ|aQo . We say that a linear form µ ∈ a∗Qo
is a restricted exponent of V

if H0(ux, V )(µ+δ) ̸= 0. The set of restricted exponents is independent of the choice
of x ∈ Qo.
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In §3 we introduced the notion of an exponent of a finitely generated Uθ-module.
If λ ∈ h∗ is an exponent of V , H0(nx, V )(λ+ρ) ̸= 0 for all x in some open dense
subset of K. If V is a Harish-Chandra module, by K-equivariance, this set must
include the open K-orbit Qo. This implies the following result:

Lemma 11.1. The set of restricted exponents of V ∈ Mfg(Uθ,K) is equal to the
set of all restrictions of the exponents of V to aQo

.

A Harish-Chandra module V is tempered if all of its restricted exponents lie in
the tempered cone C. A tempered Harish-Chandra module is square-integrable if
all of its restricted exponents lie in the interior of the tempered cone C.

Remark 11.2. Let G0 be a connected semisimple Lie group with finite center
and K0 its maximal compact subgroup. Denote by g the complexified Lie algebra
of G0 and by K the complexification of K0. Let σ be the corresponding Car-
tan involution of g. Then our category Mcoh(Uθ,K) is the “classical” category of
Harish-Chandra modules with infinitesimal character corresponding to θ. In this
situation, the notions of tempered and square-integrable representations were in-
troduced by Harish-Chandra in terms of growth of K0-finite matrix coefficients on
G0. By the results of ([8], [16]) these two definitions are equivalent.

Now we use the results of §3 to obtain information on restricted exponents of
global sections of Harish-Chandra sheaves with irreducible support. Recall the
notation Qw, for K-orbits Q, introduced in §6.

Lemma 11.3. Let λ ∈ h∗ be strongly antidominant, Q a K-orbit in X and V ∈
Mcoh(Dλ,K) with supp(V) = Q̄. Let w ∈W be transversal to Q. Then:

(i) w(aQ) ⊂ aQw .

There exists a set Φw of mutually orthogonal Qw-real roots in Σ+ with the following
properties:

(ii) the roots in Φw vanish on w(aQ) and their dual roots span a complement
of w(aQ) in aQw ;

(iii) α (̌wλ) ≥ 0 for all α ∈ Φw.

Proof. We proceed by induction in ℓ(w). If ℓ(w) = 0, w = 1 and Φw = ∅. Thus we
may assume that ℓ(w) > 1. In this case, w = sαw

′, where α ∈ Π and w′ ∈W with
ℓ(w′) = ℓ(w)−1. If w is transversal to Q, w′ is transversal to Q and sα is transversal
to Qw′ by 6.6. Assume that α is Qw′ -complex. Then σQw

= sα ◦ σQw′ ◦ sα by 6.11.
Hence,

sα(aQw′ ) = aQw

and, by the induction assumption,

w(aQ) = sα(w
′(aQ)) ⊂ sα(aQw′ ) = aQw .

Also if β is a Qw′ -real root, sαβ is a Qw-real root. Since sα permutes positive roots
different from α, Φw = sα(Φw′) consists of positive Qw-real roots. The roots of
Φw′ vanish on w′(aQ), hence the roots of Φw vanish on w(aQ) = sαw

′(aQ). Also,
by induction assumption, the dual roots of the roots in Φw′ span a complement to
w′(aQ) in aQw′ . Hence, the dual roots of the roots in Φw span a complement to
w(aQ) = sα(w

′(aQ)) in aQw
= sα(aQw′ ). Moreover, for β ∈ Φw,

β (̌wλ) = β (̌sαw
′λ) = (sαβ)̌ (w

′λ) ≥ 0,

by the induction assumption.
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Assume now that α is noncompact Qw′ -imaginary. Then, by 6.8, σQw
= sα◦σQw′

and α vanishes on aQw′ . Hence, the roots in Φw′ are Qw-real and Qw-real root α
is orthogonal to them. Put Φw = Φw′ ∪ {α}. Since aQw is the direct sum of aQw′

and the line spanned by α ,̌ we see by the induction assumption that

w(aQ) = sα(w
′(aQ)) ⊂ sα(aQw′ ) = aQw′ ⊂ aQw

,

the root α vanishes on w(aQ) and the dual roots of the roots in Φw span a comple-
ment of w(aQ) in aQw

. Finally, for β ∈ Φw′ , since β is orthogonal to α,

β(wλ) = β(sαw
′λ) = (sαβ)̌ (w

′λ) = β (̌w′λ) ≥ 0,

by the induction assumption. On the other hand, since supp(V) = Q̄ and w′ is
transversal to Q, by 3.2.(i) and 3.5, supp Iw′(V) = Qw′ . Hence, Iw′(V) must contain
an irreducible composition factor isomorphic to L(Qw′ , τ) for some irreducible K-
homogeneous connection τ on Qw′ . Therefore, α (̌w′λ) ∈ R by 7.1. Since λ is
strongly antidominant and w′ ≤ w, we have w′λ ≼ wλ = sαw

′λ = w′λ− α (̌w′λ)α
by 3.9. Hence, 0 ≥ α (̌w′λ) = −α (̌wλ), i.e., α (̌wλ) ≥ 0. □

Let λ be strongly antidominant, Q a K-orbit and V ∈ Mcoh(Dλ,K) with
supp(V) = Q̄. Let w ∈ W be transversal to Q of maximal possible length. Denote
by dw the subspace of aQo spanned by roots dual to Φw. Then we have the direct
sum decomposition

aQo
= w(aQ)⊕ dw

and
h = tQo ⊕ w(aQ)⊕ dw.

On the other hand,
h = tQ ⊕ aQ,

Hence, w(tQ) = tQo
⊕ dw. Let λQ = 1

2 (λ − σQλ) be the linear form on h which
was introduced in the last section. Then, wλQ vanishes on tQo

⊕ dw, and we can
view it as a linear form on aQo

. On w(aQ) it agrees with wλ. On the other hand,
the restriction of wλ to dw is equal to 1

2

∑
α∈Φw

α (̌wλ)α. This implies that the
restriction of wλ to aQo

is equal to the sum of the restriction of wλQ to aQo
and

1
2

∑
α∈Φw

α (̌wλ)α. Therefore, by 11.3.(iii),

wλ|aQo
≫ wλQ.

Let ν be the unique element of the Weyl group orbit of ReλQ which lies in the
closure of the negative Weyl chamber in h∗.

Lemma 11.4. (i) The linear form ν ∈ h∗ vanishes on tQo
, i.e. it can be viewed as

an element of a∗Qo
.

(ii) Let Ψ be the subset of Πo consisting of all roots orthogonal to ν. There exists
w ∈W transversal to Q of maximal possible length such that wReλQ = ν. For any
such w

wReλ|aQo
= ν +

∑
β∈Ψ

cββ,

where cβ ≥ 0.

Proof. By the preceding discussion, (ii) implies (i). By applying 5.2 to Reλ we see
that there exists v ∈ W such that α (̌vReλQ) ≤ 0 for α ∈ Σ+ and Σ+

v ⊂ D+(Q).
By definition, this implies ν = vReλQ. Also, v is transversal to Q by 6.9, and
Qv is a Langlands orbit attached to the same conjugacy class of σ-stable Cartan
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subalgebras as Q by 5.2 and 6.11. Let u be an element of W transversal to Qv

of maximal length. Then, by 6.6, w = uv is transversal to Q of maximal length.
By 6.21, u ∈ WΘ, where Θ is the set of all Qv-imaginary simple roots. Since λQ
vanishes on tQ, ν = vReλQ vanishes on tQv

= vtQ. This implies uν = ν, i.e.,
ν = wReλQ.

Assume that w ∈W is any element transversal to Q of maximal possible length
such that ν = wReλQ. By the preceding discussion, wλQ vanishes on tQo

⊕ dw
and the roots in Φw vanish on w(aQ). Hence the roots in Φw are orthogonal to ν.
Moreover,

wReλ|aQo = ν +
1

2

∑
α∈Φw

α (̌wλ)α.

Let Σo,Ψ be the root subsystem of Σo generated by Ψ. Since ν lies in the closure
of the negative (restricted) Weyl chamber, Σo,Ψ is the set of all restricted roots
orthogonal to ν. On the other hand, Φw consists of Qo-real roots, what yields
Φw ⊂ Σo,Ψ ∩ Σ+

o . Hence

wReλ|aQo
= ν +

∑
β∈Ψ

cββ,

where cβ ≥ 0. □

Since ν ≼ w′λQ for all w′ ∈W , by 11.4.(i) and a preceding inequality, we have

ν ≪ wλ|aQo

for any w transversal to Q of maximal possible length. By 3.10.(i), it follows that
if ω is a restricted exponent of V = Γ(X,V), ν ≪ ω. This implies the following
result.

Proposition 11.5. Let λ ∈ θ be strongly antidominant, Q a K-orbit in X and V
a Harish-Chandra sheaf in Mcoh(Dλ,K) with suppV = Q̄. Then:

(i) if Reλ|aQ = 0, the Harish-Chandra module Γ(X,V) is either tempered or
zero;

(ii) if aQ = 0 and λ is regular, the Harish-Chandra module Γ(X,V) is square-
integrable.

Proof. (i) follows immediately from the preceding discussion, since Reλ|aQ = 0
implies ReλQ = 0 and ν = 0.

(ii) In this case, by 3.10.(i), for any restricted exponent ω there exists w ∈ W
transversal to Q of maximal possible length such that wλ|aQo

≪ ω. By the preced-
ing discussion, this implies that ω ≫ 1

2

∑
α∈Φw

α (̌wλ)α. Since in our situation Φw

consists of positive roots which span a∗Qo
and the coefficients are strictly positive

by regularity and 11.3.(iii), we conclude that ω is in the interior of the tempered
cone C. □

Conversely,

Proposition 11.6. Let λ ∈ θ be strongly antidominant, Q a K-orbit in X and V
an irreducible Harish-Chandra sheaf in Mcoh(Dλ,K) with suppV = Q̄ such that
V = Γ(X,V) ̸= 0. Then:

(i) if V is tempered, Reλ|aQ = 0;
(ii) if V is square-integrable, aQ = 0 and λ is regular.
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Proof. (i) By 3.10.(ii), wλ|aQo
is a restricted exponent for any w ∈W transversal to

Q of maximal possible length. Choose w which satisfies the conditions of 11.4.(ii).
Since ν is a linear combination of (restricted) fundamental weights corresponding
to simple roots from Πo−Ψ with negative coefficients, we see that wλ|aQo

is in the
tempered cone only if ν = 0. This in turn implies that Reλ|aQ = 0.

(ii) Since V is tempered, by (i) it follows that ν = 0. Let w ∈W be the element
transversal to Q of maximal possible length constructed in the proof of 11.4.(ii).
The argument there can be sharpened as follows. Since u ∈WΘ,

w(aQ) = uv(aQ) = u(aQv
) = aQv

,

Φw consists of Qv-imaginary roots by 11.3.(ii). Since Qv is a Langlands orbit, Qv-
imaginary roots are generated by the set of simple Qv-imaginary roots by 5.10.
Their non-zero restrictions to aQo form a subset Θo of the set Πo of all simple
restricted roots such that their span contains Φw. Hence, Θo ⊂ Ψ and as in the
proof of 11.4.(ii)

wλ|aQo
=
∑
β∈Θo

cββ,

where cβ ≥ 0. If wλ|aQo
is in the interior of tempered cone, Θo must be equal to

Πo. Since the roots in Θo vanish on aQv
, this is possible only if aQv

= 0. This in
turn implies that aQ = 0.

It remains to show that λ is regular. Since aQ = 0, the orbit Q is closed by
6.16 and all roots are Q-imaginary. Therefore, V = L(Q, τ) = I(Q, τ) for some
irreducible K-homogeneous connection τ on Q. Assume that α (̌λ) = 0 for α ∈ Π.
If α is compact, LIsα(D(V)) = D(V)[1] by 7.5. This in turn implies, by 2.17, that
Γ(X,V) = 0 contradicting our assumption. If α is noncompact, sα is transversal
to Q by 6.7. Also, Q′ = Qsα is a K-orbit such that aQ′ is spanned by αˇ by
6.8. Hence, λ|aQ′ = 0. The argument from the preceding paragraph implies that
there exists w ∈W transversal to Q′ of maximal possible length such that wλ|aQo

is not in the interior of the tempered cone. By 6.6, wsα is transversal to Q and
ℓ(wsα) = ℓ(w) + 1 = codimQ′ + 1 = codimQ, i.e., it has the maximal possible
length. In addition, wsαλ|aQo

= wλ|aQo
is not in the interior of the tempered

cone, contradicting square-integrability of Γ(X,V). Hence, λ must be regular. □

Finally, by combining 11.5 and 11.6, we get the following result which explains
the meaning of the vanishing of the Langlands invariant κV .

Corollary 11.7. Let V be an irreducible Harish-Chandra module. Then the fol-
lowing conditions are equivalent:

(i) V is tempered;
(ii) κV = 0.

12. Tempered Harish-Chandra modules

In this section we reprove some “classical” results about tempered Harish-Chandra
modules. These results are certainly well-known, but our arguments are completely
new and we think much simpler and conceptual than the traditional ones.

Let V be an irreducible Harish-Chandra module in M(Uθ,K). Let λ ∈ θ be
strongly antidominant. As we discussed in the last section, there exists a unique
pair (Q, τ) consisting of a K-orbit Q and an irreducible K-homogeneous connection
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τ onK compatible with λ+ρ, such that V ∼= Γ(X,L(Q, τ)). The orbit Q determines
an involution σQ on h∗. As before, we put

Σ1 = {α ∈ Σ | Reα (̌λ) = Re(σQα)̌ (λ) = 0}.
The following sufficient condition is useful in determining if a root is in Σ1.

Observation 12.1. Let λ be strongly antidominant. Let α be a root such that
Reα (̌λQ) = 0. Assume that α is either in D−(Q) or Q-real. Then α is in Σ1.

Proof. First, α (̌λ)− (σQα)̌ (λ) is imaginary, i.e.,

Reα (̌λ) = Re(σQα)̌ (λ).

This immediately implies the statement if α is Q-real. In the other case, since
−σQα ∈ Σ+ and λ is strongly antidominant, it follows that Re(σQα)̌ (λ) ≥ 0, and
Reα (̌λ) = 0. □

In particular, if ReλQ = 0, all roots α ∈ D−(Q) and all Q-real roots are in Σ1.
Hence, 12.1 has the following consequence which was first proved by Ivan Mirković
[17].

Theorem 12.2. Let λ ∈ h∗ be strongly antidominant. Let Q be a K-orbit in X and
τ an irreducible K-homogeneous connection on Q compatible with λ + ρ. Assume
that ReλQ = 0. Then Γ(X,L(Q, τ)) ̸= 0 implies that I(Q, τ) is irreducible, i.e.,
L(Q, τ) = I(Q, τ).

Proof. As we already remarked, all roots α ∈ D−(Q) and all Q-real roots are in Σ1.
Therefore, by 12.1, for all Q-complex positive roots α ∈ D−(Q) we have α (̌λ) ̸= 0.
In addition, for all Q-real roots the SL2-parity condition is satisfied. Hence, I(Q, τ)
is irreducible by 8.7. □

Theorem 12.2, in conjuction with 11.7, provides also a classification of the
tempered irreducible Harish-Chandra modules. Specifically, by 11.7, the condi-
tion ReλQ = 0 is equivalent to the temperedness of the Harish-Chandra module
Γ(X,L(Q, τ)). Thus 12.2 explains the simplicity of the classification of tempered
irreducible Harish-Chandra modules: every tempered irreducible Harish-Chandra
module is the space of global sections of an irreducible standard Harish-Chandra
sheaf.

In combination with 10.2, we get the following result.

Corollary 12.3. Let λ ∈ h∗ be strongly antidominant. Let Q be a K-orbit in
X and τ an irreducible K-homogeneous connection on Q compatible with λ + ρ.
Assume that ReλQ = 0. Then Γ(X, I(Q, τ)) is a direct sum of tempered irreducible
Harish-Chandra modules.

If Γ(X, I(Q, τ)) is reducible, the SL2-parity condition for τ fails for some Q-real
root α.

The situation becomes especially simple in the case of square-integrable irre-
ducible Harish-Chandra modules. We reprove Harish-Chandra’s celebrated results
[10]. First, we have his criterion for existence of square-integrable Harish-Chandra
modules.

Theorem 12.4. Assume that Mfg(Uθ,K) contains square-integrable Harish-Chandra
modules. Then

(i) rank g = rankK;
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(ii) the orbit θ is regular and real.

Proof. Assume that V is an irreducible square-integrable Harish-Chandra module.
Then, by the above discussion there exist a strongly antidominant λ ∈ θ, a K-orbit
Q in X and an irreducible K-homogeneous connection τ on Q compatible with
λ+ ρ, such that V = Γ(X,L(Q, τ)). By 11.6.(ii), this implies that λ is regular and
that aQ = 0. The latter condition this is equivalent with the equality of ranks and,
by 7.1, it also implies that λ is real. □

Harish-Chandra’s enumeration of the discrete series is thus equivalent to the
following result. By 12.4, we assume that rank g = rankK. As we remarked in the
proof of 12.4, if Γ(X,L(Q, τ)) is square-integrable, we have aQ = 0 and σQ = 1.
Hence, all Borel subalgebras in Q are σ-stable. By 6.16, theK-orbit Q is necessarily
closed. The stabilizer of a point in Q in K is a Borel subgroup of K. Therefore,
on Q there exists an irreducible K-homogeneous connection τQ,λ compatible with
λ+ ρ if and only if λ+ ρ specializes to the differential of a character of this Borel
subgroup. The connection τQ,λ is completely determined by λ+ρ. In this case, the
standard module I(Q, τQ,λ) is irreducible.

Since θ is real, it contains a unique strongly antidominant λ. It determines a
subset Oθ of closed K-orbits Q in X which allow an irreducible K-homogeneous
connection compatible with λ + ρ. For Q ∈ Oθ, the global sections of I(Q, τQ,λ)
form an irreducible Harish-Chandra module by the equivalence of categories. By
11.5.(ii), Γ(X, I(Q, τQ,λ)) is square-integrable.

Theorem 12.5. The map Oθ 7−→ Γ(X, I(Q, τQ,λ)) is a bijection between closed K-
orbits in X and equivalence classes of irreducible square-integrable Harish-Chandra
modules in Mfg(Uθ,K).

By definition, the discrete series is the set of equivalence classes of irreducible
square-integrable Harish-Chandra modules.

Now we relax the regularity condition. Then we have to consider vanishing of
global sections of irreducible Harish-Chandra sheaves. The next result is an obvious
consequence of 9.1.

Theorem 12.6. Suppose that rank g = rankK. Let λ be strongly antidominant, Q
a closed K-orbit in X and τ an irreducible K-homogeneous connection compatible
with λ+ ρ. Then:

(i) Γ(X, I(Q, τ)) ̸= 0 if and only if there exists no compact Q-imaginary root
α ∈ Π such that α (̌λ) = 0;

(ii) if Γ(X, I(Q, τ)) ̸= 0, this is a tempered irreducible Harish-Chandra module.

These Harish-Chandra modules constitute the limits of discrete series [18].
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