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Introduction. Let G0 be a connected real semisimple Lie group with finite center. Let
K0 be a maximal compact subgroup of G0. Denote by g the complexification of the Lie
algebra of G0 and by K the complexification of K0. Then K is a connected reductive
complex algebraic group and it acts algebraically on g. The differential of this action
identifies the Lie algebra k of K with a subalgebra in g.

Denote by U(g) the enveloping algebra of g. Let M(g) be the category of U(g)-modules
and M(g, K) the subcategory of Harish-Chandra modules for the pair (g, K).

Let T be a complex torus in K and t its Lie algebra. Then analogously we can consider
the category M(g, T ) of Harish-Chandra modules for the pair (g, T ). Clearly, M(g, T ) is
a full subcategory of M(g) and M(g, K) is a full subcategory of M(g, T ). The natural
forgetful functors M(g, T ) −→ M(g), M(g, K) −→ M(g) and M(g, K) −→ M(g, T ) have
right adjoints ΓT : M(g) −→ M(g, T ), ΓK : M(g) −→ M(g, K) and ΓK,T : M(g, T ) −→
M(g, K). These adjoints are called the Zuckerman functors. Clearly, ΓK = ΓK,T ◦ ΓT .

Zuckerman functors are left exact and have finite right cohomological dimension. There-
fore, one can consider their right derived functors RpΓT , RqΓK and RsΓK,T . They are
related by the obvious Grothendieck spectral sequence

RpΓK,T (RqΓT (V )) ⇒ Rp+qΓK(V )

for any V in M(g).
Let h be a Cartan subalgebra of g containing t. Let R be the root system of (g, h) in

h∗. Fix a set of positive roots R+ in R. Then it determines a nilpotent algebra n spanned
by the root subspaces corresponding to the positive roots and the corresponding Borel
subalgebra b = h + n.

Let ρ be the half-sum of roots in R+. Let λ ∈ h∗ be such that the restriction of λ−ρ to
t is the differential of a character of T . Then the Verma module M(λ) = U(g) ⊗U(b) Cλ+ρ

is in M(g, T ). By a result of Duflo and Vergne ([3], [6]), we have

RqΓT (M(λ)) = M(λ) ⊗
∧q

t∗.
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This implies, together with the above spectral sequence, that we have a spectral sequence

RpΓK,T (M(λ)) ⊗
∧q

t∗ ⇒ Rp+qΓK(M(λ)).

The main result of this note is that this spectral sequence degenerates. In fact, the following
formula holds.

Theorem A.

RpΓK(M(λ)) =

dim T
⊕

q=0

Rp−qΓK,T (M(λ)) ⊗
∧q

t∗.

This result was suggested by our calculation of the cohomology of standard Harish-
Chandra sheaves on the flag variety of g and the analysis of the duality theorem of Hecht,
Miličić, Schmid and Wolf ([5], [7]). It is an immediate consequence of the following decom-
position result for derived Zuckerman functors which strengthens the above Duflo-Vergne
formula. For an abelian category A, we denote by Db(A) its bounded derived category.
Also, for an integer p, we denote by C· 7−→ C·[p] the translation functor in Db(A) which
translates a complex C· by p steps to the left, and by D : A −→ Db(A) the standard
embedding functor (see §2). Let RΓT : Db(M(g)) −→ Db(M(g, T )) denote the derived
Zuckerman functor. Then we have the following result.

Theorem B.

RΓT (D(M(λ))) =
dim T
⊕

q=0

D(M(λ))[−q] ⊗
∧q

t∗.

The proof of this result is inspired by some ideas from an analogous result of Deligne
[2].

In the first section we review the definition and basic properties of the Zuckerman func-
tors ΓK,T and their derived functors including the Duflo-Vergne formula. In the second
section we analyze the endomorphism algebra of a bounded complex in a derived cate-
gory. We establish that a bounded complex (satisfying certain finiteness conditions) is
isomorphic to the direct sum of its cohomologies if and only if its endomorphism algebra
has maximal possible dimension. In the third section we study the derived functors of
the right adjoint to a forgetful functor. In the fourth section we discuss some results in
Lie algebra cohomology. Finally, in the last section we prove a decomposition formula for
derived Zuckerman functors for tori, which leads immediately to the above theorems.

1. Zuckerman functors. In this section we recall basic definitions and results about
Zuckerman functors which are needed in the paper. The details with proofs can be found
in [6].

Let g be a complex semisimple Lie algebra and K an algebraic group acting on g by a
morphism φ : K −→ Int(g) such that its differential k −→ g is an injection. In this situation
we can identify k with a Lie subalgebra of g. A Harish-Chandra module (π, V ) for the pair
(g, K) is

(i) a U(g)-module;
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(ii) an algebraic K-module, i.e, V is a union of finite dimensional K-invariant subspaces
on which K acts algebraically;

(iii) the actions of g and K are compatible; i.e.,

(a) the differential of the K-action agrees with the action of k as a subalgebra of
g;

(b)

π(k)π(ξ)π(k−1)v = π(φ(k)ξ)v

for k ∈ K, ξ ∈ g and all v ∈ V .

A morphism of Harish-Chandra modules is a linear map between Harish-Chandra modules
which intertwines the actions of g and K. If V and W are two Harish-Chandra modules
for (g, K), Hom(g,K)(V, W ) denotes the space of all morphisms between V and W . Let
M(g, K) be the category of Harish-Chandra modules for the pair (g, K). This is clearly
an abelian C-category. It has enough of injective objects, and if K is reductive it also has
enough of projective objects.

Let T be a closed algebraic subgroup of K. Then we have a natural forgetful functor
M(g, K) −→ M(g, T ). The Zuckerman functor ΓK,T : M(g, T ) −→ M(g, K) is by definition
the right adjoint functor to this forgetful functor.

Let D+(M(g, K)) be the derived category of the abelian category M(g, K) consisting
of complexes bounded from below. Let Db(M(g, K)) be its full subcategory of bounded
complexes, i.e., the derived category of M(g, K) consisting of bounded complexes.

Since the category M(g, T ) has enough of injectives, the Zuckerman functor ΓK,T has
a right derived functor RΓK,T : D+(M(g, T )) −→ D+(M(g, K)). The right cohomolog-
ical dimension of ΓK,T is finite, so RΓK,T induces a right derived functor between the
corresponding bounded derived categories, i.e., RΓK,T : Db(M(g, T )) −→ Db(M(g, K)).

If H is a closed algebraic subgroup of K such that T ⊂ H ⊂ K, we have

RΓK,T = RΓK,H ◦ RΓH,T .

This leads to the corresponding Grothendieck’s spectral sequence

RpΓK,H(RqΓH,T (V )) ⇒ Rp+qΓK,T (V )

for any Harish-Chandra module V in M(g, T ).

Assume that T is reductive. Let L be a Levi factor of H containing T and l its Lie
algebra. Let H† be the subgroup of H generated by the identity component of H and
T . Let IndH

H†(1) be the space of complex functions on H which are constant on right H†-
cosets. It has a natural structure of Harish-Chandra module, with trivial action of g and
right regular action of H. For any Harish-Chandra module V for the pair (l, T ), we denote
by H ·(l, T ; V ) the relative Lie algebra cohomology for the pair (l, T ), i.e., Ext·(l,T )(C, V ).

The following result is the Duflo-Vergne formula we mentioned in the introduction ([3],
[6], 1.10).
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1.1. Lemma. Let V be a Harish-Chandra module for the pair (g, H). Then

RpΓH,T (V ) = Hp(l, T ; C)⊗ IndH
H†(1) ⊗ V,

where the action on Hp(l, T ; C) is trivial, for all p ∈ Z+.

In particular, the above Grothendieck spectral sequence leads to the spectral sequence

Hq(l, T ; C)⊗RpΓK,H(IndH
H†(1)⊗V ) = RpΓK,H(Hq(l, T ; C)⊗IndH

H†(1)⊗V ) ⇒ Rp+qΓK,T (V )

for any V in M(g, H).
In general, this spectral sequence is not degenerate, as follows from the following exam-

ple.

1.2. Example. Let g = sl(2, C) be the Lie algebra of two-by-two complex matrices with
trace zero and let K = SL(2, C) be the group of unimodular two-by-two matrices. The
group K acts on g = k by the adjoint action. Let H ⊂ K be the subgroup consisting of
diagonal matrices; so H ∼= C∗. Let T be the identity subgroup.

Consider a (g, K)-module V , i.e., an algebraic representation of K. By 1.1,

RpΓK(V ) = Hp(k; C)⊗ V,

and
RpΓK,H(V ) = Hp(k, H; C)⊗ V

for p ∈ Z+. These Lie algebra cohomology spaces are well known: Hp(k; C) is equal to
C for p = 0, 3 and to zero for all other p, while Hp(k, H; C) is equal to C for p = 0, 2
and to zero for all other p. This can either be calculated directly from the definitions, or
one can use the following argument. It is obvious that H0(k; C) and H0(k, H; C) are equal
to C. By Weyl’s Theorem, H1(k; C) and H1(k, H; C) are equal to 0, since these are the
self-extensions of C in the category of k-modules (respectively (k, H)-modules). The rest
now follows from the Poincaré duality for (relative) Lie algebra cohomology. Also, it is
clear that H0(h, C) = H1(h, C) = C and all other Hp(h, C) vanish.

So, we see that R1ΓK(V ) = 0 cannot have a filtration such that the corresponding
graded object is R1ΓK,H(V ) ⊕ R0ΓK,H(V ) = V . In other words, the spectral sequence
does not degenerate in this case.

A sufficient condition for degeneracy of the above spectral sequence is that

RΓH,T (D(V )) =

dim(L/T )
⊕

q=0

D(RqΓH,T (V ))[−q] =

dim(L/T )
⊕

q=0

Hq(l, T ; C)⊗IndH
H†(1)⊗D(V )[−q].

Our main result (5.1) establishes this decomposition in a special case. This explains
the degeneracy of the spectral sequence in the introduction. In 5.6 we show that this
decomposition is not necessary for the degeneracy of the spectral sequence.
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2. Endomorphism algebra of a bounded complex. Let A be an abelian C-category
and Db(A) the corresponding derived category of bounded complexes. Let C· be a com-
plex in Db(A). Assume that Hs(C·) = 0 for s > p and s < q. Then we say that the
(cohomological) length of C· is ≤ p − q + 1.

We recall the definition of the truncation functors ([4], Ch. IV, §4). If C· is a bounded
complex, for s ∈ Z, we define the truncated complex τ≤s(C

·) as the subcomplex of C·

given by

τ≤s(C
·)p =











Cp, if p < s

ker ds, if p = s

0, if p > s.

Let α : τ≤s(C
·) −→ C· be the canonical inclusion morphism. Then the morphisms Hp(α) :

Hp(τ≤s(C
·)) −→ Hp(C·) are isomorphisms for p ≤ s and 0 for p > s.

We also define the truncated complex τ≥s(C
·) as a quotient complex of C·:

τ≥s(C
·)p =











0, if p < s

coker ds−1, if p = s

Cp, if p > s.

Let β : C· −→ τ≥s(C
·) be the canonical projection morphism. Then the morphisms Hp(β) :

Hp(C·) −→ Hp(τ≥s(C
·)) are isomorphisms for p ≥ s and 0 for p < s.

It is evident that β : C· −→ τ≥s+1(C
·) factors through the quotient of C· by τ≤s(C

·),
moreover the induced morphism is a quasiisomorphism. Hence, we have the canonical
distinguished triangle

τ≤s(C
·)

α
−→ C· β

−→ τ≥s+1(C
·)

[1]
−→ τ≤s(C

·)[1]

in Db(A).
The endomorphisms of C· form a complex algebra with identity which we denote by

EndDb(A)(C
·). In this section we study some elementary properties of this algebra.

Clearly,
EndDb(A)(C

·) = EndDb(A)(C
·[q]),

for any q ∈ Z, i.e., the endomorphism algebra of a complex and its translate are isomorphic.
Denote by D : A −→ Db(A) the functor which attaches to an object A in A the complex

. . . −→ 0 −→ 0 −→ A −→ 0 −→ 0 −→ . . .

in Db(A), where A appears in degree zero.
It is well known that D : A −→ Db(A) is fully faithful ([4], Ch. III, §5, no. 2). Therefore,

the endomorphism algebras satisfy

EndA(A) = EndDb(A)(D(A))
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for any object A in A. Let C· be a complex of length ≤ 1. Then there exists p0 ∈ Z such
that Hp(C·) = 0 for p 6= p0. Moreover, the complex C· is isomorphic to D(Hp0(C·))[−p0].
Therefore, the above formula describes the endomorphism algebras of complexes of length
≤ 1.

Now we consider an arbitrary complex C· of length p+1. By translation, we can assume
that Hs(C·) = 0 for s < 0 and s > p. Moreover, τ≤p−1(C

·) is a complex of length ≤ p and
τ≥p(C

·) is a complex of length ≤ 1, hence τ≥p(C
·) = D(Hp(C·))[−p]. The distinguished

triangle of truncations therefore looks like

τ≤p−1(C
·)

α
−→ C· β

−→ D(Hp(C·))[−p]
[1]
−→ τ≤p−1(C

·)[1].

Applying the functor HomDb(A)(−, D(Hp(C·))[−p]) to the above distinguished triangle
leads to the following long exact sequence

. . . −→ HomDb(A)(τ≤p−1(C
·)[1], D(Hp(C·))[−p]) −→ EndDb(A)(D(Hp(C·))[−p])

−→ HomDb(A)(C
·, D(Hp(C·))[−p]) −→ HomDb(A)(τ≤p−1(C

·), D(Hp(C·))[−p]) −→ . . . .

Since Hq(τ≤p−1(C
·)) = 0 for q > p−1, the linear spaces HomDb(A)(τ≤p−1(C

·), D(Hp(C·))[−p])
and HomDb(A)(τ≤p−1(C

·)[1], D(Hp(C·))[−p]) are equal to zero. It follows that the above
long exact sequence gives an isomorphism

EndA(Hp(C·)) = EndDb(A)(D(Hp(C·)))

= EndDb(A)(D(Hp(C·))[−p]) −→ HomDb(A)(C
·, D(Hp(C·))[−p]).

This proves the following result.

2.1. Lemma. The linear map U 7−→ D(U)[−p] ◦ β is an isomorphism of EndA(Hp(C·))
onto HomDb(A)(C

·, D(Hp(C·))[−p]).

In particular, the morphism β ∈ HomDb(A)(C
·, D(Hp(C·))[−p]) corresponds to the

identity in EndA(Hp(C·)) under this isomorphism.
The composition with α : τ≤s−1(C

·) −→ C· induces a linear map from HomDb(A)(C
·, τ≤p−1(C

·))
into EndDb(A)(τ≤p−1(C

·)). If C· ∼= τ≤p−1(C
·) ⊕ D(Hp(C·))[−p], this map is clearly

surjective. On the other hand, if this map is surjective, there exists a morphism γ ∈
HomDb(A)(C

·, τ≤p−1(C
·)) such that γ ◦ α = 1τ≤p−1(C·). Then γ ⊕ β is a morphism of C·

into τ≤p−1(C
·) ⊕ D(Hp(C·))[−p]. Clearly, γ ⊕ β is a quasiisomorphism, i.e., we have the

following splitting criterion.

2.2. Lemma. The following conditions are equivalent.

(i) C· is isomorphic to

τ≤p−1(C
·) ⊕ D(Hp(C·))[−p];

(ii) the linear map U 7−→ U ◦α of HomDb(A)(C
·, τ≤p−1(C

·)) into EndDb(A)(τ≤p−1(C
·))

is surjective.

Now, we want to establish a sufficient criterion for the finite dimensionality of the
endomorphism algebra EndDb(A)(C

·). We start with an auxiliary result.
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2.3. Lemma. Let A be an object in A and D· a complex in Db(A). Then

dimHomDb(A)(D(A), D·) ≤
∑

q∈Z+

dim Extq
A(A, H−q(D·)).

Proof. The proof is by induction on the length of D·. If D· is of length ≤ 1, we have
D· = D(Hr(D·))[−r] for some r ∈ Z. Therefore,

HomDb(A)(D(A), D·) = HomDb(A)(D(A), D(Hr(D·))[−r]) = Ext−r
A (A, Hr(D·)).

Consider now the case of a complex D· of length ≥ 2. Then, for s ∈ Z, we have a
distinguished triangle of truncations and the corresponding long exact sequence

. . . −→ HomDb(A)(D(A), τ≤s−1(D
·))

−→ HomDb(A)(D(A), D·) −→ HomDb(A)(D(A), τ≥s(D
·)) −→ . . . .

Hence, we have

dim HomDb(A)(D(A), D·)

≤ dim HomDb(A)(D(A), τ≥s(D
·)) + dim HomDb(A)(D(A), τ≤s−1(D

·)).

Clearly, we can pick such s that the lengths of τ≥s(D
·) and τ≤s−1(D

·) are strictly smaller
than the length of D·. Therefore, by the induction assumption

dim HomDb(A)(D(A), D·)

≤
∑

q∈Z+

dim Extq
A(A, H−q(τ≥s(D

·))) +
∑

q∈Z+

dim Extq
A(A, H−q(τ≤s−1(D

·)))

=
∑

q∈Z+

dimExt−q
A (A, Hq(D·)). �

The finite dimensionality criterion is given in the following proposition.

2.4. Proposition. Let C· be a bounded complex in Db(A). If Extq
A(Hp+q(C·), Hp(C·))

are finite dimensional for all p ∈ Z and q ∈ Z+, then EndDb(A)(C
·) is a finite dimensional

algebra. More precisely,

dim EndDb(A)(C
·) ≤

∑

q∈Z+

∑

p∈Z

dim Extq
A(Hp+q(C·), Hp(C·)).

Proof. As before, consider the complex C· of length p + 1 with cohomologies vanish-
ing outside the interval [0, p]. The long exact sequence corresponding to the functor
HomDb(A)(C

·,−) and the distinguished triangle of truncations is

. . . −→ HomDb(A)(C
·, τ≤p−1(C

·))

−→ EndDb(A)(C
·) −→ HomDb(A)(C

·, D(Hp(C·))[−p]) −→ . . . .



8 DRAGAN MILIČIĆ AND PAVLE PANDŽIĆ

Hence, by 2.1, we have

dim EndDb(A)(C
·) ≤ dim HomDb(A)(C

·, τ≤p−1(C
·)) + dim EndA(Hp(C·)).

On the other hand, applying the functor HomDb(A)(−, τ≤p−1(C
·)) to the same distin-

guished triangle leads to the long exact sequence

. . . −→ HomDb(A)(D(Hp(C·))[−p], τ≤p−1(C
·))

−→ HomDb(A)(C
·, τ≤p−1(C

·)) −→ EndDb(A)(τ≤p−1(C
·)) −→ . . . ,

and

dim HomDb(A)(C
·, τ≤p−1(C

·))

≤ dim HomDb(A)(D(Hp(C·))[−p], τ≤p−1(C
·)) + dimEndDb(A)(τ≤p−1(C

·)).

It follows that

dim EndDb(A)(C
·) ≤ dimHomDb(A)(D(Hp(C·))[−p], τ≤p−1(C

·))

+ dim EndDb(A)(τ≤p−1(C
·)) + dimEndA(Hp(C·)).

By 2.3, we get

dim HomDb(A)(D(Hp(C·))[−p], τ≤p−1(C
·))

= dimHomDb(A)(D(Hp(C·)), τ≤p−1(C
·)[p]) ≤

∑

q∈Z+

dimExtq
A(Hp(C·), H−q(τ≤p−1(C

·)[p]))

=
∑

q∈Z+

dimExtq
A(Hp(C·), Hp−q(τ≤p−1(C

·))) =

p
∑

q=1

dim Extq
A(Hp(C·), Hp−q(C·)).

Hence, we have

dim EndDb(A)(C
·) ≤

p
∑

q=1

dim Extq
A(Hp(C·), Hp−q(C·))

+ dim EndDb(A)(τ≤p−1(C
·)) + dim EndA(Hp(C·))

=

p
∑

q=0

dim Extq
A(Hp(C·), Hp−q(C·)) + dimEndDb(A)(τ≤p−1(C

·)).

By induction on the length of the complex C·, we have

dim EndDb(A)(C
·) ≤

∑

r∈Z

∑

q∈Z+

dim Extq
A(Hr(C·), Hr−q(C·))

=
∑

q∈Z+

∑

r∈Z

dim Extq
A(Hr+q(C·), Hr(C·)) < ∞. �
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Let C· be a complex in Db(A) such that Extq
A(Hp+q(C·), Hp(C·)) are finite dimensional.

Consider the family C(C·) of all complexes D· in Db(A) such that Hq(D·) = Hq(C·) for
all q ∈ Z. Then, by 2.4, EndDb(A)(D

·) are finite dimensional algebras and

dim EndDb(A)(D
·) ≤

∑

q∈Z+

∑

p∈Z

dim Extq
A(Hp+q(C·), Hp(C·)).

for all D· in C(C·).
Clearly, the complex

S· =
⊕

p∈Z

D(Hp(C·))[−p]

is in C(C·). Moreover, we have

EndDb(A)(S
·) =

⊕

p,q∈Z

HomDb(A)(D(Hq(C·))[−q], D(Hp(C·))[−p])

=
⊕

p,q∈Z

HomDb(A)(D(Hq(C·)), D(Hp(C·))[q − p])

=
⊕

p,q∈Z

Extq−p
A (Hq(C·), Hp(C·)) =

⊕

q∈Z+, p∈Z

Extq
A(Hp+q(C·), Hp(C·))

and
dim EndDb(A)(S

·) =
∑

q∈Z+

∑

p∈Z

dimExtq
A(Hp+q(C·), Hp(C·)).

Hence, by 2.4, the maximal possible value of the function D· 7−→ dimEndDb(A)(D
·) on

C(C·) is attained at S·.
The next result shows that this property characterizes the complex S·.

2.5. Theorem. For a complex D· in C(C·), the following conditions are equivalent:

(i) D· is isomorphic to
⊕

p∈Z

Hp(C·)[−p];

(ii) the dimension of EndDb(A)(D
·) is maximal possible.

If these conditions are satisfied,

dim EndDb(A)(D
·) =

∑

q∈Z+

∑

p∈Z

dim Extq
A(Hp+q(C·), Hp(C·)).

Proof. We already know that (i) implies (ii), and that the maximal dimension is given by
the above formula. It remains to show that (ii) implies (i). The proof is by induction on
the length of C·. As before, we can assume that the length of C· is ≤ p + 1 and that its
cohomologies vanish outside the interval [0, p].
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Let D· in C(C·) be a complex such that its endomorphism algebra has maximal possible
dimension, i.e.,

dim EndDb(A)(D
·) =

∑

q∈Z+

∑

r∈Z

dim Extq
A(Hr+q(C·), Hr(C·))

=

p
∑

r=0

r
∑

q=0

dim Extq
A(Hr(C·), Hr−q(C·)).

As we remarked in the proof of 2.4,
p
∑

r=0

r
∑

q=0

dim Extq
A(Hr(C·), Hr−q(C·)) = dim EndDb(A)(D

·)

≤ dim HomDb(A)(D
·, τ≤p−1(D

·)) + dim EndA(Hp(C·))

≤ dim HomDb(A)(D(Hp(C·))[−p], τ≤p−1(D
·)) + dimEndDb(A)(τ≤p−1(D

·))

+ dim EndA(Hp(C·)) ≤

p
∑

q=0

dim Extq
A(Hp(C·), Hp−q(C·)) + dimEndDb(A)(τ≤p−1(D

·)).

Hence, we have

p−1
∑

r=0

r
∑

q=0

dim Extq
A(Hr(C·), Hr−q(C·)) ≤ dim EndDb(A)(τ≤p−1(D

·)).

By 2.4, we see that this inequality must be an equality and that the dimension of the
endomorphism algebra EndDb(A)(τ≤p−1(D

·)) is maximal possible in C(τ≤p−1(C
·)). By the

induction assumption, we have

τ≤p−1(D
·) ∼=

p−1
⊕

r=0

D(Hr(C·))[−r].

Moreover, since all the above inequalities must be equalities, it follows that

dim HomDb(A)(D
·, τ≤p−1(D

·))

= dimHomDb(A)(D(Hp(C·))[−p], τ≤p−1(D
·)) + dimEndDb(A)(τ≤p−1(D

·)).

Consider the long exact sequence corresponding to the distinguished triangle of truncations
and the functor HomDb(A)(−, τ≤p−1(D

·)). It looks like

. . . −→ HomDb(A)(D(Hp(C·))[−p], τ≤p−1(D
·))

−→ HomDb(A)(D
·, τ≤p−1(D

·)) −→ EndDb(A)(τ≤p−1(D
·)) −→ . . . .

Hence the above equality is possible only if the linear map from HomDb(A)(D
·, τ≤p−1(D

·))
into EndDb(A)(τ≤p−1(D

·)) is surjective. By 2.2, this implies that

D· ∼= τ≤p−1(D
·) ⊕ D(Hp(C·))[−p] ∼=

p
⊕

r=0

D(Hr(C·))[−r]. �
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3. A splitting result for adjoint functors. Let A and B be two additive categories.
Assume that the objects of B are objects in A and that there is an additive functor
G : B −→ A which is the identity on objects. Assume that there exists an additive functor
F : A −→ B which is right adjoint to the functor G, i.e., such that

HomA(X, Y ) = HomA(G(X), Y ) = HomB(X, F (Y ))

for any object X in B and Y in A.
Let X be an object in the category B. Then F (X) is an object of B. Also, by the

adjointness, the identity morphism X −→ X determines the canonical morphism ǫX : X −→
F (X) in B, which is just one of the adjointness morphisms in this special case. The map
φ from HomA(X, Y ) into HomB(X, F (Y )) is given by

φ(f) = F (f) ◦ ǫX .

Conversely, for any Y in A, the identity morphism F (Y ) −→ F (Y ) determines the canonical
morphism ηY : F (Y ) −→ Y in A, which is the second adjointness morphism. The inverse
of the map φ is given by

φ−1(g) = ηY ◦ G(g).

Applying this to ǫX : X −→ F (X) we get

1X = φ−1(ǫX) = ηX ◦ G(ǫX ),

i.e., the composition

X
G(ǫX )
−−−−→ F (X)

ηX
−−→ X

is equal to the identity.
Assume now that B is a full subcategory of A and G : B −→ A is the inclusion

functor. Then for any X in B, the functors Y 7→ HomB(Y, X) = HomA(Y, X) and
Y 7→ HomB(Y, F (X)) from B into the category of abelian groups are isomorphic, and
this isomorphism is induced by ǫX . Therefore, ǫX is an isomorphism. This implies that
ηX is also an isomorphism. Therefore we have the following result.

3.1. Lemma. Let B be a full subcategory of A. Then for any object X in B, the natural

morphisms ǫX : X −→ F (X) and ηX : F (X) −→ X are mutually inverse isomorphisms.

Assume now that A is an abelian category and B is a full abelian subcategory. Then, by
3.1, for any object X in B, F (X) ∼= X . Assume that the category A has enough injectives.
Let D+(A) and D+(B) be the corresponding derived categories of complexes bounded from
below. Then the embedding of B into A defines an exact functor ι : D+(B) −→ D+(A)
which acts as identity on objects (but, in general, D+(B) doesn’t have to be a subcategory
of D+(A)). Also, the functor F has its right derived functor RF : D+(A) −→ D+(B).
Moreover, RF is the right adjoint of ι, i.e., we have the following relation

HomD+(A)(X
·, Y ·) = HomD+(B)(X

·, RF (Y ·))
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for any two complexes X · in D+(B) and Y · in D+(A).
Let X · be a complex in D+(B). Then the adjointness morphisms define canonical

morphisms X · ǫX·

−−→ RF (X ·) and RF (X ·)
ηX·

−−→ X ·. Also, the composition of morphisms

X · ι(ǫX· )
−−−−→ RF (X ·)

ηX·

−−→ X ·

is the identity in D+(A).
Let X be an object in B. Then D(X) is a complex in D+(B) and the composition of

the adjointness morphisms

D(X)
α
−→ RF (D(X))

β
−→ D(X)

is the identity in D+(A). In particular, the induced map of 0-th cohomologies

X
H0(α)
−−−−→ H0(RF (D(X)))

H0(β)
−−−−→ X

∥

∥

∥

F (X)

is the identity. This is the composition of the adjointness morphisms discussed before 3.1.
Let Cα be the cone of α in D+(A). Then we have the distinguished triangle

D(X)
α
−→ RF (D(X))

γ
−→ Cα −→ D(X)[1].

The corresponding long exact sequence of cohomology is

0 −→ X
H0(α)
−−−−→ F (X)

H0(γ)
−−−−→ H0(Cα) −→ 0 −→ . . .

−→ 0 −→ RpF (X)
Hp(γ)
−−−−→ Hp(Cα) −→ 0 −→ . . . ;

hence we conclude that H0(Cα) = 0 and Hp(Cα) = RpF (X) for p ≥ 1.
Now we can consider the morphism δ = β ⊕ γ : RF (D(X)) −→ D(X) ⊕ Cα. Then

H0(δ) = H0(β) ⊕ H0(γ) = H0(β)

is an isomorphism of H0(RF (D(X))) = F (X) onto H0(D(X) ⊕ Cα) = X , and

Hp(δ) = Hp(β) ⊕ Hp(γ) = Hp(γ)

is an isomorphism of Hp(RF (D(X))) = RpF (X) onto Hp(D(X) ⊕ Cα) = Hp(Cα) for
p ≥ 1.

Therefore, we have proved the following result.
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3.2. Lemma. Let X be an object of B. Then RF (D(X)) ∼= D(X) ⊕ Cα in D+(A).

In particular, assume that the right cohomological dimension of F is ≤ 1. Then we have
the following result.

3.3. Proposition. Let X be an object of B. Then

RF (D(X)) ∼= D(X) ⊕ D(R1F (X))[−1]

in D(A).

Proof. In this case the cone Cα satisfies Hp(Cα) = 0 for p 6= 1 and H1(Cα) = R1F (X).
Hence, we have Cα = D(R1F (X))[−1]. �

Of course, since Db(B) is not a full subcategory of Db(A) in general, RF (D(X)) doesn’t
have to be isomorphic to D(X) ⊕ D(R1F (X))[−1] in Db(B).

3.4. Corollary. Let X be an object of B. Then

EndD(B)(RF (D(X))) = EndB(X) ⊕ Ext1A(R1F (X), X).

Proof. Using the adjunction and 3.3 we see that

EndD(B)(RF (D(X))) = HomD(A)(RF (D(X)), D(X))

= HomD(A)(D(X) ⊕ D(R1F (X))[−1], D(X))

= HomD(A)(D(X), D(X))⊕ HomD(A)(D(R1F (X))[−1], D(X))

= EndA(X) ⊕ Ext1A(R1F (X), X).

Since B is a full subcategory of A, EndA(X) = EndB(X). �

4. Some remarks on Lie algebra cohomology. In this section we collect some well
known facts about Lie algebra cohomology. We include proofs of some of them in cases
where we do not know any appropriate reference.

Let a be a complex Lie algebra and B an algebraic group acting on a by automorphisms.
Let φ : B −→ Aut(a) be the action homomorphism. The differential of φ is a Lie algebra
homomorphism of the Lie algebra b of B into the Lie algebra Der(a) of derivations of a.
We assume that the differential of φ factors through a monomorphism b −→ a. Therefore,
we can identify b with a subalgebra of a. For such a pair (a, B) we can define the cate-
gory M(a, B) of (a, B)-modules analogous to the categories of Harish-Chandra modules
discussed in §1. Denote by Db(M(a, B)) the bounded derived category of (a, B)-modules.

First we recall the well known relation between the Ext·(a,B)(−,−) groups and relative

Lie algebra cohomology groups H ·(a, B;−) = Ext·(a,B)(C,−).

Let U and V be two (a, B)-modules. Assume that U is finite dimensional. Then U ⊗ V
and HomC(U, V ) have natural structures of (a, B)-modules. Therefore, V 7−→ U ⊗ V and
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V 7−→ HomC(U, V ) are exact functors from M(a, B) into itself. In addition, we have the
following adjointness relation for a fixed finite dimensional (a, B)-module W :

Hom(a,B)(U ⊗ W, V ) = Hom(a,B)(U, HomC(W, V )).

This leads to the adjointness relation

HomDb(M(a,B))(U
· ⊗ W, V ·) = HomDb(M(a,B))(U

·, HomC(W, V ·))

for corresponding functors on Db(M(a, B)). Therefore, we have

Extp
(a,B)(U ⊗ W, V ) = Extp

(a,B)(U, HomC(W, V )).

In particular, for U = C, we have

Extp
(a,B)(W, V ) = Extp

(a,B)(C, HomC(W, V )) = Hp(a, B; HomC(W, V )).

4.1. Lemma. Let U and V be two (a, B)-modules. Assume that U is finite dimensional.

Then

Extp
(a,B)(U, V ) = Hp(a, B; HomC(U, V ))

for p ∈ Z+.

Assume now that we have such a pair (a, B) where a is an abelian Lie algebra and B
is reductive, i.e., its identity component is a torus. Therefore the Lie algebra b is a Lie
subalgebra of a, invariant under the action of B. Let c = a/b. Then c is a B-module. The

standard complex N ·(c) = U(c)⊗
∧−·

c is a left resolution of C in M(a, B). On the other
hand,

U(c) ⊗
∧p

c = U(a) ⊗U(b)

∧p
c

for all p ∈ Z. Hence, by the proof of ([6], 1.4), this is a projective resolution of C in
M(a, B). Therefore, we have

Hp(a, B; U) = Extp
(a,B)(C, U)

= Hp(Hom(a,B)(U(a) ⊗U(b)

∧−·
c, U)) = Hp(HomB(

∧−·
c, U)).

Assume now that the action φ of B on a is trivial. Then

Hp(a, B; U) = Hp(HomC(
∧−·

c, UB)) = Hp(c, UB)

for p ∈ Z+.
Let V be an (a, B)-module. For any linear form µ on a, we define

Vµ = {v ∈ V | (ξ − µ(ξ))pv = 0 for any ξ ∈ a and sufficiently large p ∈ Z+}.

Clearly, Vµ is a submodule of V . If Vµ is nonzero, we say that µ is a weight of V and that
Vµ is a (generalized) weight subspace of V corresponding to µ. If V is a finite dimensional
module, it is a direct sum of its weight subspaces.



COMPOSITION OF ZUCKERMAN FUNCTORS 15

4.2. Lemma. Let U and V be finite-dimensional modules in M(a, B) such that U = Uµ

for some µ ∈ a∗. Then

Extp
(a,B)(U, V ) = Extp

(a,B)(U, Vµ)

for all p ∈ Z+.

Proof. By 4.1, we know that

Extp
(a,B)(U, V ) = Hp(a, B; HomC(U, V )).

Moreover, from the above formula, we conclude that

Hp(a, B; HomC(U, V )) = Hp(c, HomB(U, V )).

Therefore, the result follows immediately from ([1], Exercice 7, §1, Chap. VII.). �

Assume now that g is a complex semisimple Lie algebra. Let b be a Borel subalgebra
of g. Let T be an algebraic group and φ : T −→ Int(g) a homomorphism such that its
differential is a monomorphism of the Lie algebra t of T into g. Assume that the action
of T on g leaves b invariant. Then the differential of φ maps t into the normalizer of b,
i.e., into b. Hence, we can define the categories M(g, T ) and M(b, T ). Clearly, we have a
natural forgetful functor For : M(g, T ) −→ M(b, T ). For U in M(b, T ), we can define the
module Φ(U) = U(g) ⊗U(b) U , where g acts by left multiplication in the first factor and
T by the tensor product of the action φ with the natural action on U . It is easy to check
that such a module is in M(g, T ). Moreover, U 7−→ Φ(U) defines a functor from M(b, T )
into M(g, T ). By the Poincaré-Birkhoff-Witt theorem, this functor is exact. Also, one can
check that it is right adjoint to the functor For, i.e.,

Hom(g,T )(Φ(U), V ) = Hom(b,T )(U, V )

for any Harish-Chandra module V in M(g, T ) and U in M(b, T ).
Denote by Db(M(g, T )) and Db(M(b, T )) the bounded derived categories of M(g, T )

and M(b, T ). Then, Φ and For induce the corresponding functors between them and we
have the adjointness relation

HomDb(M(g,T ))(Φ(U ·), V ·) = HomDb(M(b,T ))(U
·, V ·)

for any complex V · in Db(M(g, T )) and U · in Db(M(b, T )). In particular, if U is a module
in M(b, T ) and V a module in M(g, T ), we have

Extp
(g,T )(Φ(U), V ) = HomDb(M(g,T ))(Φ(D(U)), D(V )[p])

= HomDb(M(b,T ))(D(U), D(V )[p]) = Extp
(b,T )(U, V )

for any p ∈ Z+.
Therefore, we established the following result.
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4.3. Lemma. Let U be a module in M(b, T ) and V a module in M(g, T ). Then we have

Extp
(g,T )(Φ(U), V ) = Extp

(b,T )(U, V )

for all p ∈ Z+.

Assume now that T is reductive. Then, φ(T ) is a reductive subgroup of the Borel
subgroup attached to b, i.e., it is a closed subgroup of some maximal torus H in Int(g)
which is contained in this Borel subgroup. The Lie algebra t of T is contained in the Lie
subalgebra h of g, which is a Cartan subalgebra of g. Let n = [b, b]. Then b is a semidirect
product of h and n. Let M(h, T ) be the category of Harish-Chandra modules for the pair
(h, T ). Any object U in M(h, T ) can be viewed as an object in M(b, T ) on which n acts
trivially. Therefore, we have an exact functor i : M(h, T ) −→ M(b, T ). Let V be an
object in M(b, T ). Then the space of n-invariants V n is clearly a submodule on which n

acts trivially. Hence, we can consider it as a functor Invn : V 7−→ V n from M(b, T ) into
M(h, T ). It is easy to check that we have the adjointness relation

Hom(b,T )(i(U), V ) = Hom(h,T )(U, Invn(V )).

Let Db(M(h, T )) be the bounded derived category of M(h, T ). Then i defines an exact
functor i : Db(M(h, T )) −→ Db(M(b, T )).

We claim that the right derived functors of the functor Invn of n-invariants are the
Lie algebra cohomology modules, i.e., that Rp Invn(−) = Hp(n,−), p ∈ Z+. First, let
s = t⊕n. Then s is a solvable Lie subalgebra of b stable for the action of T . Therefore, we
can define the category M(s, T ). Since the forgetful functor from M(b, T ) into M(s, T )
is the right adjoint of the functor U 7−→ U(b)⊗U(s) U from M(s, T ) into M(b, T ), it maps
injectives into injectives. Hence, the right derived functors of Invn calculated in M(b, T )
and M(s, T ) are isomorphic as representations of T .

Let V be a finite-dimensional algebraic representation of T . Then we can view it as an
object in M(s, T ) with trivial action of n. As above, for any U in M(s, T ) we have

Hom(s,T )(V, U) = HomT (V, Invn(U)).

Moreover, since HomT (V,−) is an exact functor, it follows that

Extp
(s,T )(V, U) = HomT (V, Rp Invn(U)), for p ∈ Z+.

By 4.1, we have

Extp
(s,T )(V, U) = Hp(s, T ; HomC(V, U)),

and finally, by ([6], p. 217), it follows that

Extp
(s,T )(V, U) = Hp(n, HomC(V, U))T = HomC(V, Hp(n, U))T = HomT (V, Hp(n, U))
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since the action of n on V is trivial. This leads to

HomT (V, Rp Invn(U)) = HomT (V, Hp(n, U)), for p ∈ Z+,

and our assertion follows, since any object in M(T ) is a direct sum of finite dimensional
irreducible representations.

Since the functor Invn has finite right cohomological dimension, it defines a derived
functor R Invn : Db(M(b, T )) −→ Db(M(h, T )) which is the right adjoint of i, i.e., we have

HomDb(M(b,T ))(i(U
·), V ·) = HomDb(M(h,T ))(U

·, R Invn(V ·))

for U · in Db(M(h, T )) and V · in Db(M(b, T )). This leads to the following spectral se-
quence.

4.4. Lemma. Let U be a module in M(h, T ) and V a module in M(b, T ). Then we have

the bounded spectral sequence

Extp
(h,T )(U, Hq(n, V )) ⇒ Extp+q

(b,T )(U, V ).

Combining the last two lemmas we get the following result.

4.5. Proposition. Let U be a module in M(h, T ) and V a module in M(g, T ). Then we

have the bounded spectral sequence

Extp
(h,T )(U, Hq(n, V )) ⇒ Extp+q

(g,T )(Φ(U), V ).

We want to use this result to calculate Extp
(g,T )(Φ(U), Φ(U)), p ∈ Z+, for an indecom-

posable finite-dimensional module U in M(h, T ). Since a finite-dimensional module U is a
direct sum of weight subspaces Uµ for µ ∈ h∗, for an indecomposable module U , we have
U = Uµ for some µ ∈ h. We start with the following observation.

4.6. Lemma. Let U be a finite-dimensional module in M(h, T ) such that U = Uµ for

some µ ∈ h. Then

(i) the n-homology modules Hq(n, Φ(U)), considered as h-modules, are direct sums of

finite-dimensional weight spaces;

(ii)

Hq(n, Φ(U))µ =

{

U for q = 0;

0 for q > 0.

Proof. Let n̄ be the nilpotent Lie algebra spanned by the root subspaces corresponding
to the negative roots of (g, h). Then, g = n̄ ⊕ h ⊕ n as an h-module. By the Poincaré-
Birkhoff-Witt theorem, Φ(U) is isomorphic to U(n̄)⊗ U as an h-module. Therefore, Φ(U)
is a direct sum of finite-dimensional weight spaces as an h-module. Moreover Φ(U)λ 6= 0
implies that µ − λ is a sum of positive roots (or zero).
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The n-cohomology of Φ(U) is given as the cohomology of the complex Hom(
∧·

n, Φ(U)).
With the natural action of h, this complex is a complex of modules with finite-dimensional
weight spaces. Therefore, the cohomology modules have the same property. This estab-
lishes (i).

To prove (ii) we just need to remark that the weights of Hom(
∧p

n, Φ(U)) are the
differences of a weight of Φ(U) and a sum of p different positive roots. Therefore, µ

appears as a weight only in Hom(
∧0

n, Φ(U)) = Φ(U). Therefore, µ can be a weight of
H0(n, Φ(U)) only. On the other hand, Φ(U)µ

∼= U by the above remark, and it clearly
consists of n-invariants. �

Now we can summarize these results.

4.7. Theorem. Let U be an indecomposable finite-dimensional module in M(h, T ). Then

Extp
(g,T )(Φ(U), Φ(U)) = Extp

(h,T )(U, U).

Proof. Assume that U = Uµ for some µ ∈ h∗. First, by 4.5, we have

Extp
(h,T )(U, Hq(n, Φ(U))) ⇒ Extp+q

(g,T )(Φ(U), Φ(U)).

Then, by 4.2 and 4.6.(i), it follows that

Extp
(h,T )(U, Hq(n, Φ(U))) = Extp

(h,T )(U, Hq(n, Φ(U))µ)

for all q ∈ Z+. Finally, by 4.6.(ii), we see that

Extp
(h,T )(U, Hq(n, Φ(U))) =

{

Extp
(h,T )(U, U) for q = 0;

0 for q > 0;

for all p ∈ Z+. Therefore, the above spectral sequence collapses. �

5. Zuckerman functors for tori. As in the last section, we assume that g is a complex
semisimple Lie algebra and b a Borel subalgebra of g. Assume that T is a complex torus
which acts on g by automorphisms which leave b invariant and that the differential of this
action is an injection of the Lie algebra t of T into g. In this case, t is a Lie subalgebra of
b. Let h be a Cartan subalgebra of g which contains t and which is contained in b. For
any finite dimensional module U in M(h, T ), we can define the module Φ(U) in M(g, T ).
The main result of this section is the following theorem.

5.1. Theorem. For any finite dimensional module U in M(h, T ), we have

RΓT (D(Φ(U))) =

dim T
⊕

p=0

D (Φ(U) ⊗
∧p

t∗) [−p]
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in D(M(g, T )).

If we take for U a one dimensional representation of (h, T ), we get Theorem B from the
introduction.

Clearly, to prove 5.1, we can assume that U is an indecomposable module in M(g, T ).
Hence, in the following we assume that U = Uµ for some µ ∈ h∗.

Assume that S is a torus of codimension one in T . Then,

Hp(t, S; C) =
∧p

(t/s)∗

for any p ∈ Z, which is C for p = 0, 1 and 0 otherwise. Therefore, by 1.1, we have

RpΓT,S(Φ(U)) =

{

0, p 6= 0, 1

Φ(U) p = 0, 1.

By 3.4, we know that

EndDb(M(g,T ))(RΓT,S(D(Φ(U)))) = Endg(Φ(U)) ⊕ Ext1(g,S)(Φ(U), Φ(U)),

since End(g,S)(Φ(U)) = Endg(Φ(U)). Therefore, we have the following formula for the
dimension of the endomorphism algebra of RΓT,S(D(Φ(U))).

5.2. Lemma.

dim EndDb(M(g,T ))(RΓT,S(D(Φ(U)))) = dim Endg(Φ(U)) + dim Ext1(g,S)(Φ(U), Φ(U)).

By 4.7, we know that Extp
(g,T )(Φ(U), Φ(U)), p ∈ Z+, are finite dimensional linear spaces.

Hence, the main results of §2 apply to the complex RΓT,S(D(Φ(U))) in Db(M(g, T )). In
particular, the splitting criterion from 2.5, combined with the following lemma and 5.2,
implies that

RΓT,S(D(Φ(U))) ∼= D(Φ(U)) ⊕ D(Φ(U))[−1].

5.3. Lemma. We have

dimExtq
(g,S)(Φ(U), Φ(U)) = dimExtq

(g,T )(Φ(U), Φ(U)) + dim Extq−1
(g,T )(Φ(U), Φ(U))

for q ∈ Z+.

Proof. By 4.7, it is enough to prove that

dimExtq
(h,S)(U, U) = dim Extq

(h,T )(U, U) + dim Extq−1
(h,T )(U, U)

for q ∈ Z+. In addition, from the proof of 4.2, we know that

Extp
(h,T )(U, U) = Hp(h/t, Endt(U)) and Extp

(h,S)(U, U) = Hp(h/s, Ends(U))
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for p ∈ Z+. Clearly, T acts algebraically on Ends(U), hence Ends(U) is a semisimple
t/s-module. Any isotypic component of the t/s-module Ends(U) is h/s-invariant. By 4.2,
it follows that

Extp
(h,S)(U, U) = Hp(h/s, Ends(U)) = Hp(h/s, H0(t/s, Ends(U))) = Hp(h/s, Endt(U)).

Let c = h/s. Denote by d the image of t in c. Then d is one dimensional. Let e be
a complement of d in c. Then, by Hochschild-Serre spectral sequence for Lie algebra
cohomology, we have

Hp(c/e, Hq(e, Endt(U))) ⇒ Hp+q(c, Endt(U)) = Hp+q(h/s, Endt(U)) = Extp+q
(h,S)(U, U).

Moreover, we have

Hq(e, Endt(U)) = Hq(h/t, Endt(U)) = Extq
(h,T )(U, U).

Since d acts trivially on Extq
(h,T )(U, U), it follows that

Hp(c/e, Hq(e, Endt(U))) = Hp(d, Extq(h,T )(U, U)) = Hp(d, C)⊗ Extq
(h,T )(U, U).

The algebra d is one dimensional, hence Hp(d, C) = 0 for p 6= 0, 1 and H0(d, C) =
H1(d, C) = C. Therefore, since the differential of the E2-term has bidegree (2,−1), we see
that this spectral sequence degenerates. In particular, for any q ∈ Z+, we have

dim Extq
(h,T )(U, U) + dim Extq−1

(h,T )(U, U) = dimExtq
(h,S)(U, U). �

This leads to the following result.

5.4. Lemma. Let T be a torus and S its subtorus such that h ⊃ t ⊃ s. Then we have

RΓT,S(D(Φ(U))) ∼=

dim(T/S)
⊕

p=0

D (Φ(U) ⊗
∧p

(t/s)∗) [−p]

in D(M(g, T )).

Proof. The proof is by induction on the codimension of S in T . We already established
the claim if it is equal to 1.

In general, let T ′ be a subtorus of T such that T ′ ⊃ S and dim T ′ = dim S + 1. Then,
by the induction assumption, the assertion holds for RΓT,T ′ and RΓT ′,S. Therefore, we
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have

RΓT,S(D(Φ(U))) = RΓT,T ′(RΓT ′,S(D(Φ(U)))

= RΓT,T ′(D(Φ(U)) ⊕ D(Φ(U))[−1]) = RΓT,T ′(D(Φ(U))) ⊕ RΓT,T ′(D(Φ(U)))[−1]

=

dim(T/T ′)
⊕

p=0

D (Φ(U) ⊗
∧p

(t/t′)∗) [−p] ⊕

dim(T/T ′)
⊕

p=0

D (Φ(U) ⊗
∧p

(t/t′)∗) [−p − 1]

=

dim(T/T ′)
⊕

p=0

D (Φ(U) ⊗
∧p

(t/t′)∗) [−p] ⊕

dim(T/T ′)+1
⊕

p=1

D
(

Φ(U) ⊗
∧p−1

(t/t′)∗
)

[−p]

=

dim(T/S)
⊕

p=0

D (Φ(U) ⊗
∧p

(t/s)∗) [−p]. �

In particular, if S is trivial, we get 5.1.
Consider now an arbitrary algebraic group K and a torus T ⊂ K such that h ⊃ t. Then,

we have

RΓK(D(Φ(U))) = RΓK,T (RΓT (D(Φ(U))))

= RΓK,T

(

dim T
⊕

p=0

D (Φ(U) ⊗
∧p

t∗) [−p]

)

=
dim T
⊕

p=0

(RΓK,T (Φ(U)) ⊗
∧p

t∗) [−p].

5.5. Corollary. Let K be an algebraic group and T ⊂ K a torus such that h ⊃ t. Then

we have

RΓK(D(Φ(U))) =
dim T
⊕

p=0

(RΓK,T (Φ(U)) ⊗
∧p

t∗) [−p]

in D(M(g, K)).

For a one dimensional module U , by taking the cohomology in this formula we get
Theorem A from the introduction.

5.6. Example. Finally, we give an example that 5.1 is not necessary for the degeneration
of the spectral sequence in Theorem A.

Let G = Int(g) and let V be an irreducible finite-dimensional representation of G. Then
V determines an object in M(g, T ), for any one-dimensional torus T in G.

Clearly, Endg(V ) = C and Ext1g(V, V ) = Ext1(g,T )(V, V ) = 0 by the Weyl’s theorem. By

the result of Duflo and Vergne, ΓT (V ) = V and R1ΓT (V ) = V . Therefore, by 3.4, we have

EndD(M(g,T ))(RΓT (D(V ))) = Endg(V ) ⊕ Ext1g(V, V ) = C.

On the other hand,

EndD(M(g,T ))(D(V ) ⊕ D(V )[−1]) = Endg(V ) ⊕ Endg(V ) ⊕ Ext1(g,T )(V, V ) = C
2,
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hence, RΓT (D(V )) 6= D(V ) ⊕ D(V )[−1] in D(M(g, T )).
Let K ⊃ T be another torus in G. Although the decomposition of RΓT (D(V )) fails for

the above V , the spectral sequence corresponding to RΓK(D(V )) = RΓK,T (RΓT (D(V )))
still degenerates; actually, Theorem A from the introduction holds for V . Namely, using
1.1 one can calculate both sides of the equality in Theorem A for V , and see that they are
the same.
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