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Introduction

In this paper we revisit some now classical constructions of modern rep-
resentation theory: Zuckerman’s cohomological construction and the localiza-
tion theory of Bernstein and Beilinson. These constructions made an enor-
mous impact on our understanding of representation theory during the last
decades (see, for example, [19]). Our present approach and interest is slightly
different than usual. We approach these constructions from the point of view
of a student in homological algebra and not representation theory. Therefore,
we drop certain assumptions natural from the point of view of representation
theorists and stress some unifying principles.

Although both constructions have common heuristic origins in various
attempts to generalize the classical Borel-Weil-Bott realization of irreducible
finite-dimensional representations of compact Lie groups, they are remarkably
different in technical details. Still, the duality theorem of Hecht, Miličić,
Schmid and Wolf [11] indicated that there must exist a strong common thread
between these constructions. This paper is an attempt to explain the unifying
homological principles behind these constructions, which lead to the duality
theorem as a formally trivial consequence.

In the first section we present an elementary and self-contained intro-
duction to a generalization of the Zuckerman construction. Let g be a com-
plex semisimple Lie algebra and K a complex algebraic group that is a fi-
nite covering of a closed algebraic subgroup of the complex algebraic group
Int(g). Let M(g,K) be the category of Harish-Chandra modules for the
pair (g,K). Let H be a closed algebraic subgroup of K. Zuckerman ob-
served that the forgetful functor M(g,K) −→ M(g,H) has a right adjoint
ΓK,H : M(g,H) −→ M(g,K). The functor ΓK,H is left exact, and its right-
derived modules are the core of Zuckerman’s approach.

As we mentioned before, Zuckerman’s inspiration was in the Borel-Weil-
Bott theorem and he wanted to construct a formal analogue of the sheaf coho-
mology functor. Therefore in his approach it was natural to assume that both
groups K and H are reductive. In our exposition we drop this assumption.
The main result of this section is a formula for derived Zuckerman functors
which is a generalization of a result of Duflo and Vergne [9]. This formula
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allows us to realize the derived category of M(g,K) as a full triangulated
subcategory of the derived category ofM(g, L) for a Levi factor L of K.

To relate Zuckerman’s construction to the localization theory, we have
to reinterpret the construction in terms of the equivariant derived categories.
This is done in the second and third sections, where we review the construction
of the equivariant derived category D(g,K) of Harish-Chandra modules due
to Beilinson and Ginzburg, construct the equivariant analogues of Zuckerman
functors and relate them to the classical Zuckerman construction [17].

In the fourth section we discuss the localization of the previous construc-
tions. The idea of Beilinson and Bernstein was to generalize the Borel-Weil-
Bott theorem in the algebro-geometric setting to an equivalence of categories
of modules over the enveloping algebra of g with categories of sheaves of D-
modules on the flag variety X of g. This approach ties representation theory
with the theory of D-modules. To relate this construction with the construc-
tions of the preceding sections, we define the equivariant derived category of
Harish-Chandra sheaves on the flag variety X of g and discuss the correspond-
ing version of the localization theory. This allows us, on purely formal grounds,
to construct a geometric version of the equivariant Zuckerman functor.

The final section contains a sketch of the proof of the duality theorem of
[11]. In our approach, this is just a formula for the cohomology of standard
Harish-Chandra sheaves on X in terms of derived Zuckerman functors. While
the original proof required a tedious and not very illuminating calculation,
the argument sketched here is just slightly more than a diagram chase. It
is inspired by Bernstein’s argument to prove a special case of the duality
theorem.

In this paper we freely use the formalism of derived categories. We think
that this should be a necessary part of the toolbox of any representation
theorist. An interested reader lacking this background should find [10] and
[18] invaluable references.

We would like to thank David Vogan for his remarks and questions which
led to considerable improvement and clarification of the results in the first
and second sections.

1. Zuckerman functors

Let g be a complex semisimple Lie algebra and K an algebraic group
acting on g by a morphism φ : K −→ Int(g) such that its differential k −→ g is
an injection. In this situation we can identify k with a Lie subalgebra of g. A
Harish-Chandra module (V, π) for the pair (g,K) is

(HC1) a U(g)-module;
(HC2) an algebraic K-module, i.e., V is a union of finite-dimensional K-

invariant subspaces Vi on which K acts algebraically, that is, via alge-
braic group morphisms K −→ GL(Vi);

(HC3) the actions of g and K are compatible; i.e.,
(a) the differential of the K-action agrees with the action of k as

a subalgebra of g;
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(b)
π(k)π(ξ)π(k−1)v = π(φ(k)ξ)v

for all k ∈ K, ξ ∈ g and v ∈ V .

A morphism of Harish-Chandra modules is a linear map that intertwines the
actions of g and K. If V and W are two Harish-Chandra modules for (g,K),
Hom(g,K)(V,W ) denotes the space of all morphisms between V and W . Let
M(g,K) be the category of Harish-Chandra modules for the pair (g,K). This
is clearly an abelian C-category.

Let T be a closed algebraic subgroup of K. Then we have a natural forget-
ful functor M(g,K) −→M(g, T ). The Zuckerman functor ΓK,T :M(g, T ) −→
M(g,K) is by definition the right adjoint functor to this forgetful functor.

First we describe a construction of this functor. Let R(K) be the ring of
regular functions onK. Then for any vector space V , we can view R(K)⊗V as
the vector space of all regular maps from K into V and denote it by R(K,V ).
We define an algebraic representation ρ of K on R(K,V ) as the tensor product
of the right regular representation of K on R(K) and trivial action on V .

Now let V be an algebraic K-module. Then we have the natural matrix

coefficient map c : V −→ R(K,V ) which maps a vector v ∈ V into the function
k 7−→ π(k)v. Clearly, c is an injective morphism of K-modules.

If we define the representation λ of K on R(K,V ) as the tensor product
of the left regular representation of K on R(K) with the natural action on V ,
it commutes with the action ρ. The image of c is in the space of all λ-invariant
functions in R(K,V ). Moreover, c is an isomorphism of V onto the space of
λ-invariants, and the inverse morphism is the evaluation at 1 ∈ K.

If V is a Harish-Chandra module inM(g,K), we define a representation
ν of g on R(K,V ) by

(ν(ξ)F )(k) = π(φ(k)ξ)F (k), k ∈ K,

for ξ ∈ g and v ∈ V . By a direct calculation, we see that c : V −→ R(K,V )
intertwines g-actions. The representation ν also commutes with the λ-action.

Therefore, the Harish-Chandra module V can be reconstructed from the
image of the matrix coefficient map. We use this observation to construct the
Zuckerman functor.

Let W be a Harish-Chandra module inM(g, T ). Then we can define the
structure of a U(g)-module on R(K,W ) by the ν-action, and the structure
of an algebraic K-module by the ρ-action as above. The action ν is K-
equivariant, i.e.,

ρ(k)ν(ξ)ρ(k−1) = ν(φ(k)ξ)

for ξ ∈ U(g) and k ∈ K. Let λ be the tensor product of the left regular
representation of k and T on R(K) with the natural action on W . This defines
a structure of Harish-Chandra module for (k, T ) on R(K,W ). One can check
that these actions of k and T commute with the representations ν and ρ.

Therefore, the subspace of (k, T )-invariants

ΓK,T (W ) = R(K,W )(k,T )
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in R(K,W ) (with respect to λ) is a g- and K-submodule.

1.1. Lemma. Let W be a Harish-Chandra module for (g, T ). Then ΓK,T (W )
is a Harish-Chandra module for (g,K).

Proof. We already mentioned that ν is K-equivariant. Also, for ξ ∈ k and
F ∈ ΓK,T (W ) we have

(ρ(ξ)F )(k) = d
dtF (k exp(tξ))

∣

∣

t=0
= d

dtF (exp(t(φ(k)ξ))k)
∣

∣

t=0

= π(φ(k)ξ)F (k) = (ν(ξ)F )(k), k ∈ K,

since F is λ-invariant. Therefore, the differential of ρ agrees with the restric-
tion of ν to k on ΓK,T (W ), i.e., the actions ν and ρ define a structure of
Harish-Chandra module on ΓK,T (W ). �

Let V and W be two Harish-Chandra modules for (g, T ) and α ∈
Hom(g,T )(V,W ). Then α induces a linear map 1 ⊗ α : R(K,V ) −→ R(K,W ).
Clearly, 1⊗ α intertwines the actions ν, ρ and λ on these modules. Hence, it
induces a morphism ΓK,T (α) : ΓK,T (V ) −→ ΓK,T (W ). It follows that ΓK,T is
an additive functor fromM(g, T ) into M(g,K).

Let V be a Harish-Chandra module inM(g,K). Then, as we saw above,
the matrix coefficient map cV of V is a (g,K)-morphism of V into ΓK,T (V ).
It is easy to check that the maps cV actually define a natural transformation
of the identity functor on M(g,K) into the composition of ΓK,T with the
forgetful functor.

On the other hand, let W be a Harish-Chandra module for (g, T ) and
eW : ΓK,T (W ) −→ W the linear map given by eW (F ) = F (1). Then eW

is a (g, T )-morphism from ΓK,T (W ) into W . Clearly, the maps eW define a
natural transformation of the composition of the forgetful functor with the
functor ΓK,T into the identity functor onM(g, T ).

Using these natural transformations, we get the following result.

1.2. Proposition. The functor ΓK,T :M(g, T ) −→M(g,K) is right adjoint

to the forgetful functor from M(g,K) into M(g, T ).

Proof. Let V be a Harish-Chandra module in M(g,K) and W a Harish-
Chandra module in M(g, T ). For α ∈ Hom(g,T )(V,W ), the composition ᾱ =
ΓK,T (α) ◦ cV : V −→ ΓK,T (W ) is in Hom(g,K)(V,ΓK,T (W )). Thus we have a
linear map α 7−→ ᾱ of Hom(g,T )(V,W ) into Hom(g,K)(V,ΓK,T (W )).

Also, if β ∈ Hom(g,K)(V,ΓK,T (W )), β̃ = eW ◦ β ∈ Hom(g,T )(V,W ). Thus

we have a linear map β 7−→ β̃ of Hom(g,K)(V,ΓK,T (W )) into Hom(g,T )(V,W ).
By a direct calculation, we see that these maps are inverse to each

other. �

The functor ΓK,T is called the Zuckerman functor.
Let ΓK = ΓK,{1}. Since ΓK is right adjoint to the forgetful functor from

M(g,K) into M(g), it maps injectives into injectives. This has the following
consequence.
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1.3. Lemma. The category M(g,K) has enough injectives.

Proof. Let V be an object in M(g,K). Then there exists an injective ob-
ject I in M(g) and a g-monomorphism i : V −→ I. Since ΓK is left exact,
ΓK(i) : ΓK(V ) −→ ΓK(I) is also a monomorphism. By the arguments in the
proof of 1.2, the adjunction morphism V −→ ΓK(V ) is also a monomorphism.
Therefore, the composition of these two morphisms defines a monomorphism
V −→ ΓK(I) of V into an injective object inM(g,K). �

Let U be an algebraic representation of K. Then P (U) = U(g) ⊗U(k) U ,
with the K-action given by the tensor product of the action φ on U(g) and the
natural action on U , is an algebraic representation of K. Moreover, it also has
a natural structure of a U(g)-module, given by left multiplication in the first
factor. It is straightforward to check that P (U) is a Harish-Chandra module.
Therefore, P is an exact functor from the category of algebraic representations
of K into M(g,K). In addition,

Hom(g,K)(P (U), V ) = HomK(U, V )

for any Harish-Chandra module V , i.e., P is left adjoint to the forgetful functor
fromM(g,K) into the category of algebraic representations of K.

Assume now that K is reductive. Then the category of algebraic repre-
sentations of K is semisimple, and every object in it is projective. Therefore,
Harish-Chandra modules P (U) are projective in M(g,K) for arbitrary alge-
braic representation U of K.

This leads to the following result.

1.4. Lemma. If K is a reductive algebraic group, the category M(g,K) has

enough projectives.

In addition, every finitely generated object in M(g,K) is a quotient of a

finitely generated projective object.

Proof. This is analogous to the proof of 1.3, using the fact that for any Harish-
Chandra module V , the adjointness morphism P (V ) −→ V is surjective. The
last remark is obvious from the previous discussion. �

Let D+(M(g,K)) and D+(M(g, T )) be the derived categories of com-
plexes bounded from below corresponding to M(g,K) and M(g, T ). Since
the category M(g, T ) has enough injectives, there exists the derived functor

RΓK,T : D+(M(g, T )) −→ D+(M(g,K))

of ΓK,T . Also, RΓK,T is the right adjoint of the natural “forgetful” functor
from D+(M(g,K)) into D+(M(g, T )).

This immediately implies the following remark. Let H be a closed
algebraic subgroup of K such that T ⊂ H ⊂ K. Then the func-
tors RΓK,H ◦ RΓH,T and RΓK,T are right adjoint to the natural functor
D+(M(g,K)) −→ D+(M(g, T )), hence they are isomorphic, i.e., we have the
following theorem.
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1.5. Theorem. RΓK,T = RΓK,H ◦RΓH,T .

The next theorem is our version of the main result of [9]. In the following
we assume that T is in addition reductive. For any Harish-Chandra module
W in M(k, T ) we denote by

Hp(k, T ;W ) = Extp
(k,T )(C,W )

the pth relative Lie algebra cohomology group of W .

1.6. Theorem. Assume that T is reductive. Let V be a Harish-Chandra

module in M(g, T ). Then

RpΓK,T (V ) = Hp(k, T ;R(K,V ))

for p ∈ Z+, where the relative Lie algebra cohomology is calculated with respect

to the λ-action.

To prove this result we need some preparation.
As we mentioned before, the categoryM(g, T ) has enough injectives. Let

V be a Harish-Chandra module for (g, T ) and V −→ I · a right resolution of V
by injective modules in M(g, T ). Then

RpΓK,T (V ) = Hp(Hom(k,T )(C, R(K, I ·))).

Here R(K, I ·) are viewed as (k, T )-modules with respect to the actions λ of
k and T . To prove the theorem it is enough to prove that for any injective
object I inM(g, T ), the module R(K, I) viewed as a Harish-Chandra module
for (k, T ) with respect to the action λ, is acyclic for the functor Hom(k,T )(C,−).
This is proved in the next lemma.

1.7. Lemma. Let I be an injective object inM(g, T ). Then R(K, I), viewed

as a Harish-Chandra module for (k, T ) with respect to the action λ, satisfies

Extp
(k,T )(C, R(K, I)) = 0

for p > 0.

Proof. First, let S be a module inM(k, T ). Then, we can define the action of
g on U(g)⊗U(k)S as left multiplication in the first variable and the action of T
as the tensor product of the adjoint action on the first factor with the natural
action on the second factor. It is easy to check that for any Harish-Chandra
module W in M(g, T ) we have

Hom(g,T )(U(g)⊗U(k) S,W ) = Hom(k,T )(S,W ).

Therefore, the forgetful functor fromM(g, T ) intoM(k, T ) is the right adjoint
of the exact functor S −→ U(g) ⊗U(k) S. Hence it preserves injectives; in
particular, I is an injective object in M(k, T ).
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Second, if F is a finite-dimensional algebraic representation of K and F ∗

its contragredient, we have

Hom(k,T )(R,F ⊗W ) = Hom(k,T )(R ⊗ F
∗,W )

for any two Harish-Chandra modules R and W inM(k, T ). Therefore, W 7−→
F ⊗W is the right adjoint of the exact functor R 7−→ R⊗F ∗. It follows that
F ⊗ I is an injective object in M(k, T ).

Let U be an algebraic representation of K considered as a Harish-Chandra
module for (k, T ). Then on U ⊗ I we can define the tensor product structure
of Harish-Chandra module for (k, T ). Since U is an algebraic representation,
U is a union of finite-dimensional K-invariant subspaces Uj , j ∈ J ; i.e., U =
lim−→j∈J Uj . Therefore, for any R in M(k, T ), finitely generated over U(k),

Hom(k,T )(R,U ⊗ I) = lim−→
j∈J

Hom(k,T )(R,Uj ⊗ I).

By 1.4, since T is reductive, C has a left resolution P · by projective finitely
generated Harish-Chandra modules in M(k, T ). Therefore, since the direct
limit functor is exact,

Extp
(k,T )(C, U ⊗ I) = Hp(Hom(k,T )(P

·, U ⊗ I))

= Hp(lim−→
j∈J

Hom(k,T )(P
·, Uj ⊗ I)) = lim−→

j∈J

Hp(Hom(k,T )(P
·, Uj ⊗ I))

= lim−→
j∈J

Extp
(k,T )(C, Uj ⊗ I).

But the last expression is zero, since Uj ⊗ I is an injective (k, T )-module by
the above discussion. In particular,

Extp
(k,T )(C, U ⊗ I) = 0

for p > 0. Applying this for U = R(K), we get 1.7, and thus also 1.6. �

Now we want to study one of the adjointness morphisms attached to the
adjoint pair consisting of the forgetful functor and the derived Zuckerman
functor RΓK,T .

Let V be a Harish-Chandra module in M(g,K), with action π. We can
view it as an object inM(g, T ). We want to calculate the derived Zuckerman
functors RpΓK,T (V ), p ∈ Z+. To do this, we have to calculate the relative
Lie algebra cohomology modules from 1.6. The calculation is based on the
following observations. First, the matrix coefficient map V −→ R(K,V ) defines
a linear map γ of R(K,V ) into itself, given by

γ(F )(k) = c(F (k))(k) = π(k)F (k), k ∈ K,

for F ∈ R(K,V ). This map is clearly an isomorphism of linear spaces and its
inverse is given by

δ(F )(k) = π(k−1)F (k), k ∈ K,
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for F ∈ R(K,V ). We can define the following actions on R(K,V ): the repre-
sentation 1⊗π of g which is the tensor product of the trivial representation on
R(K) and the natural representation on V , the representation τ of K which
is the tensor product of the right regular representation of K on R(K) with
the natural representation on V , and the representation µ of K which is the
tensor product of the left regular representation of K on R(K) with the trivial
representation on V .

By a direct calculation we check that the following result holds.

1.8. Lemma. For any V in M(g,K), the linear map γ : R(K,V ) −→
R(K,V ) is a linear space automorphism. Also,

(i) γ intertwines the representation 1⊗ π of g with ν;
(ii) γ intertwines the representation τ of K with ρ;
(iii) γ intertwines the representation µ of K with λ.

Therefore, to calculate Hp(k, T ;R(K,V )), we can assume that the actions
of k and T are given by µ. In this case, we have

RpΓK,T (V ) = Hp(k, T ;R(K,V )) = Hp(k, T ;R(K)) ⊗ V.

Here the relative Lie algebra cohomology of R(K) is calculated with respect
to the left regular action. The action of g on the last module is given as the
tensor product of the trivial action on the first factor and the natural action on
V , while the action of K is given as the tensor product of the action induced
by the right regular representation on R(K) with the natural action on V .

Let K† be the subgroup of K generated by the identity component K0 of
K and T .

Assume first that K is reductive. Then the left regular representation on
R(K) is a direct sum of irreducible finite-dimensional representations of K†.
It is well known that, for any nontrivial finite-dimensional irreducible repre-
sentation F of K†, the relative Lie algebra cohomology modules Hp(k, T ;F )

are zero for any p ∈ Z+. Let IndK
K†(1) be the space of functions on K that

are constant on right K†-cosets. It follows that the inclusion of IndK
K†(1) into

R(K) induces isomorphisms

Hp(k, T ; IndK
K†(1)) = Hp(k, T ;R(K)), p ∈ Z+.

Therefore, in this case we have

RpΓK,T (V ) = Hp(k, T ; IndK
K†(1))⊗V = Hp(k, T ; C)⊗IndK

K†(1)⊗V, p ∈ Z+,

and the action of K is the tensor product of the trivial action on the first
factor, the right regular action on the second factor and the natural action
on the third factor. The action of g is given by the tensor product of trivial
actions on the first two factors with the natural action on the third factor.

Now we drop the assumption that K is reductive. Denote by U the
unipotent radical in K. Since T is reductive, T ∩ U = {1}. Moreover, there
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exists a Levi factor L of K, such that T ⊂ L. Denote by L† the subgroup of
L generated by the identity component L0 of L and T . By 1.5, we have the
spectral sequence

RpΓK,L(RqΓL,T (V ))⇒ Rp+qΓK,T (V ).

Since L is reductive, by the above discussion we have

RqΓL,T (V ) = Hq(l, T ; C)⊗ IndL
L†(1) ⊗ V, q ∈ Z+.

Since the restriction to L induces an isomorphism of IndK
K†(1) with IndL

L†(1),
we also have

RqΓL,T (V ) = Hq(l, T ; C)⊗ IndK
K†(1)⊗ V, q ∈ Z+.

Hence, it remains to study RpΓK,L(V ), p ∈ Z+, for V in M(g,K). Let u

and l be the Lie algebras of U and L respectively. Let N ·(u) be the standard

complex of u. Then Np(u) = U(u)⊗C

∧−p
u, p ∈ Z, are algebraic K-modules

for the tensor products of the adjoint actions on U(u) and
∧·

u. Therefore,

if we write Np(u) as U(k) ⊗U(l)

∧−p
u, p ∈ Z, we see that they are algebraic

L-modules and also U(k)-modules for the left multiplication in the first factor.
In this way we see that

U(k)⊗U(l)

∧−·
u

is a projective resolution of C in M(k, L). It is usually called the relative
standard complex for the pair (k, l). It follows that for any object W in
M(k, L) we have

Hp(k, L;W ) = Extp
(k,L)(C,W ) = Hp(Hom(k,L)(U(k) ⊗U(l)

∧·
u,W ))

= Hp(HomL(
∧·

u,W )) = Hp(HomC(
∧·

u,W )L)

for p ∈ Z+. Since L is reductive, we have

Hp(k, L;W ) = Hp(u,W )L, p ∈ Z+.

In particular, we have

Hp(k, L;R(K)) = Hp(u, R(K))L, p ∈ Z+.

The quotient map K −→ K/U induces a natural inclusion of R(K/U) into
R(K) as algebraic K-modules for the left regular action.

1.9. Lemma. We have

Hp(u, R(K)) =

{

R(K/U) if p = 0;

0 if p > 0.
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Proof. We prove a slightly more general statement which allows induction.
Let N be a normal unipotent subgroup of K and n the Lie algebra of N . We
claim that

Hp(n, R(K)) =

{

R(K/N) if p = 0;

0 if p > 0.

Since H0(n, R(K)) consists of functions constant on N -cosets, the statement
for p = 0 is evident.

Hence, we just have to establish the vanishing for p > 0. The map
(u, l) 7−→ u · l from U × L into K is an isomorphism of varieties. More-
over, if we assume that N acts by left multiplication on the first factor in
U × L and by left multiplication on K, it is an N -equivariant isomorphism.
Therefore, the corresponding algebraic representations of N on R(K) and
R(U × L) = R(U)⊗R(L) are isomorphic. This implies that

Hp(n, R(K)) = Hp(n, R(U)⊗R(L)) = Hp(n, R(U)) ⊗R(L), p ∈ Z+,

as linear spaces. Assume first that N is abelian. Since U is an affine space,
R(U) is a polynomial algebra. Moreover, Hp(n, R(U)), p ∈ Z+, is just the
cohomology of the Koszul complex with coefficients in this algebra. By the
polynomial version of the Poincaré lemma we see that Hp(n, R(U)) = 0 for
p > 0.

Now we proceed by induction on dimN . If dimN > 0, the commutator
subgroup N ′ = (N,N) is a unipotent group and dimN ′ < dimN . Moreover,
N ′ is a normal subgroup of K. Therefore, its Lie algebra n′ = [n, n] is an ideal
in k. By the Hochschild-Serre spectral sequence of Lie algebra cohomology we
have

Hp(n/n′,Hq(n′, R(K)))⇒ Hp+q(n, R(K)).

Also, by the induction assumption this spectral sequence collapses, i.e., we
have

Hp(n/n′, R(K/N ′)) = Hp(n, R(K))

for p ∈ Z+. Finally, by the first part of the proof, the left side is 0 if p > 0
since N/N ′ is abelian. �

As an immediate consequence, we have

Hp(k, L;R(K)) = Hp(u, R(K))L =

{

R(K/U)L = R(L)L = C for p = 0;

0 for p > 0.

It follows that for V in M(g,K), we have

ΓK,L(V ) = V

and
RpΓK,L(V ) = 0 for p > 0.

Therefore, the spectral sequence we considered earlier collapses, and we im-
mediately get the following consequence.
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1.10. Proposition. Let T be a reductive subgroup of K and L a Levi factor

of K containing T . Let V be a module in M(g,K). Then we have

RpΓK,T (V ) = Hp(l, T ; C)⊗ IndK
K†(1)⊗ V, p ∈ Z+.

Now we prove a result about derived categories of Harish-Chandra mod-
ules which reduces the case of general pairs (g,K) to the study of categories
with reductive group K.

Assume that K is arbitrary. Let U be the unipotent radical and L a Levi
factor of K. The category M(g,K) is a subcategory of M(g, L). Moreover,
since U is connected, any (g, L)-morphism between two objects inM(g,K) is
automatically a (g,K)-morphism. Therefore, M(g,K) is a full subcategory
ofM(g, L). Moreover, (g, L)-subobjects and (g, L)-quotients of any object in
M(g,K) are objects in M(g,K).

1.11. Lemma. The category M(g,K) is a thick subcategory of M(g, L).

Proof. It remains to show that the subcategoryM(g,K) ofM(g, L) is closed
under extensions. Consider a short exact sequence

0 −→ V −→ V ′ −→ V ′′ −→ 0

in M(g, L). Then the adjointness morphism of the zero-th Zuckerman func-
tor of a module into the module implies the commutativity of the following
diagram:

0 −−−−→ ΓK,L(V ) −−−−→ ΓK,L(V ′) −−−−→ ΓK,L(V ′′) −−−−→ R1ΓK,L(V )




y





y





y

0 −−−−→ V −−−−→ V ′ −−−−→ V ′′ −−−−→ 0

.

Assume that V and V ′′ are objects in M(g,K). Then, by 1.10, we have the
commutative diagram

0 −−−−→ V −−−−→ ΓK,L(V ′) −−−−→ V ′′ −−−−→ 0
∥

∥

∥





y

∥

∥

∥

0 −−−−→ V −−−−→ V ′ −−−−→ V ′′ −−−−→ 0

,

and the middle vertical arrow is also an isomorphism, i.e., V ′ ∼= ΓK,L(V ′). �

Let D∗(M(g,K)), where ∗ is either b, +, − or nothing, be the derived
category of M(g,K) consisting of bounded, bounded from below, bounded
from above or arbitrary complexes, respectively.

We can consider the full subcategory D∗
M(g,K)(M(g, L)) of all complexes

in D∗(M(g, L)) with cohomology in M(g,K). By a standard argument us-
ing 1.11 and the long exact sequence of cohomology modules attached to a
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distinguished triangle, we can conclude that for any distinguished triangle in
D∗(M(g, L)), if two vertices are in D∗

M(g,K)(M(g, L)), the third one is there

too, i.e., D∗
M(g,K)(M(g, L)) is a triangulated subcategory of D∗(M(g, L)).

In addition, we have the natural forgetful functor For from D∗(M(g,K))
to D∗(M(g, L)) and its image is inside D∗

M(g,K)(M(g, L)). Denote by α the

induced functor from D∗(M(g,K)) into D∗
M(g,K)(M(g, L)).

1.12. Theorem. The functor α : D∗(M(g,K)) −→ D∗
M(g,K)(M(g, L)) is an

equivalence of categories.

Proof. Clearly, it is sufficient to prove this statement for the derived categories
of unbounded complexes. Since the functor RΓK,L has finite right cohomologi-
cal dimension by 1.6, the adjointness of the forgetful functor For :M(g,K) −→
M(g, L) and ΓK,L :M(g, L) −→M(g,K) implies that RΓK,L is also the right
adjoint of the forgetful functor from D(M(g,K)) −→ D(M(g, L)). Since, by
1.10, the objects in M(g,K) are ΓK,L-acyclic, we have

RΓK,L(For(V ·)) = ΓK,L(For(V ·)) = V ·

for any complex V · in D(M(g,K)). In addition, we have the adjointness mor-
phism For(RΓK,L(U ·)) −→ U · for any U · in D(M(g, L)). If U · is a complex in
DM(g,K)(M(g, L)), its cohomology modules are ΓK,L-acyclic by 1.10. There-
fore, by a standard argument, Hp(RΓK,L(U ·)) = ΓK,L(Hp(U ·)) = Hp(U ·),
for p ∈ Z, and the adjointness morphism is a quasiisomorphism. Hence, α is
an equivalence of categories. �

It follows that we can view D∗(M(g,K)) as a triangulated subcategory
in D∗(M(g, L)).

Now we can discuss the consequences of 1.12 with respect to Zuckerman
functors. Let H be a subgroup of K and T its Levi factor. Then we have the
following commutative diagram

D+(M(g, T ))
RΓH,T

−−−−→ D+(M(g,H))

RΓK,T





y





y

RΓK,H

D+(M(g,K)) D+(M(g,K))

.

Finally, by replacing the top left corner with D+
M(g,H)(M(g, T )) and inverting

the top horizontal arrow, we get the commutative diagram

D+
M(g,H)(M(g, T ))

α
←−−−− D+(M(g,H))

RΓK,T





y





y

RΓK,H

D+(M(g,K)) D+(M(g,K))

,

i.e., RΓK,H is the restriction of RΓK,T to D+(M(g,H)). Since the right coho-
mological dimension of RΓK,T is ≤ dim(K/T ) by 1.6, the right cohomological
dimension of RΓK,H is also ≤ dim(K/T ). Therefore, both functors extend to
the categories of unbounded complexes, and we have the following result.
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1.13. Theorem. The Zuckerman functor RΓK,H is the restriction of RΓK,T

to the subcategory D(M(g,H)) of D(M(g, T )).

2. Equivariant derived categories

As we already remarked in the introduction, in certain instances the con-
struction of Zuckerman functors is not sufficiently flexible for applications.
The problem lies in the construction of the derived category D(M(g,K)). In
this section we discuss a more appropriate construction due to Beilinson and
Ginzburg [3].

The first, and critical, step is a “two-step” definition of Harish-Chandra
modules.

A triple (V, π, ν) is called a weak Harish-Chandra module for the pair
(g,K) if:

(W1) V is a U(g)-module with an action π;
(W2) V is an algebraic K-module with an action ν;
(W3) for any ξ ∈ g and k ∈ K we have

π(φ(k)ξ) = ν(k)π(ξ)ν(k)−1;

i.e., the g-action map g⊗ V −→ V is K-equivariant.

The action ν of K differentiates to an action of k which we denote also by
ν. We put ω(ξ) = ν(ξ) − π(ξ) for ξ ∈ k. The following simple observation is
critical.

2.1. Lemma. Let V be a weak Harish-Chandra module. Then

(i) ω is a representation of k on V ;

(ii) ω is K-equivariant, i.e.,

ω(Ad(k)ξ) = ν(k)ω(ξ)ν(k)−1

for ξ ∈ k and k ∈ K;

(iii)
[ω(ξ), π(η)] = 0,

for η ∈ g and ξ ∈ k.

Proof. By (W3), the representation π of k is K-equivariant. Since the rep-
resentation ν of k is obviously K-equivariant, (ii) follows immediately. By
differentiating (W3) we also get

[π(ξ), π(η)] = π([ξ, η]) = [ν(ξ), π(η)]

for ξ ∈ k and η ∈ g. This implies that

[ω(ξ), π(η)] = 0
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for ξ ∈ k and η ∈ g; i.e., (iii) holds.
Hence, we have

[ω(ξ), ω(η)] = [ω(ξ), ν(η)] − [ω(ξ), π(η)] = [ω(ξ), ν(η)] =

[ν(ξ), ν(η)]−[π(ξ), ν(η)] = ν([ξ, η])−[π(ξ), π(η)] = ν([ξ, η])−π([ξ, η]) = ω([ξ, η]),

for any ξ, η ∈ k. �

We see that a weak Harish-Chandra module V is a Harish-Chandra mod-
ule if and only if ω = 0. A morphism α : V −→W of two weak Harish-Chandra
modules is a linear map that is a morphism for both U(g)- and K-module
structures. We denote byM(g,K)w the category of all weak Harish-Chandra
modules for the pair (g,K). Clearly, the categoryM(g,K) of Harish-Chandra
modules is a full subcategory ofM(g,K)w. Also,M(g,K)w is an abelian cat-
egory.

Now we define a functor fromM(g) intoM(g,K)w. Let V be a g-module.
We consider the linear space R(K,V ) with the following actions of g and K,

(i)
(π(ξ)F )(k) = πV (φ(k)ξ)F (k), k ∈ K,

for ξ ∈ g and F ∈ R(K,V );
(ii)

(ν(k)F )(h) = F (hk), h ∈ K,

for k ∈ K and F ∈ R(K,V ).

As remarked in §1, the action π is K-equivariant. Hence, Indw(V ) = R(K,V )
is a weak Harish-Chandra module. If for a g-morphism α : V −→W we define
Indw(α) = 1⊗ α, Indw becomes an exact functor fromM(g) intoM(g,K)w.

Let V be a weak Harish-Chandra module. As in §1, we see that the
matrix coefficient map cV from V into Indw(V ), defined by cV (v)(k) = νV (k)v
for v ∈ V and k ∈ K, is a (g,K)-morphism. Furthermore, the maps cV
define a natural transformation of the identity functor onM(g,K)w into the
composition of Indw and the forgetful functor fromM(g,K)w into M(g).

On the other hand, for any W in M(g), we define a linear map eW :
Indw(W ) −→ W by eW (F ) = F (1) for F ∈ Indw(W ). As in §1, we see
that eW is a morphism of g-modules, and that the maps eW define a natural
transformation of the composition of the forgetful functor fromM(g,K)w into
M(g) with Indw into the identity functor onM(g).

Proceeding as in the proof of 1.2, we get

2.2. Lemma. The functor Indw :M(g) −→M(g,K)w is right adjoint to the

forgetful functor from M(g,K)w into M(g).

This immediately leads to the following result analogous to 1.3.

2.3. Lemma. The category M(g,K)w has enough injectives.

Let U be in M(g,K)w. Denote by

U k = {u ∈ U | ω(ξ)u = 0, ξ ∈ k}.
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Then, by 2.1, U k is the largest Harish-Chandra submodule of U . Clearly, for
any Harish-Chandra module V , we have

Hom(g,K)(V,U) = Hom(g,K)(V,U
k).

Therefore, U 7−→ U k is the right adjoint of the forgetful functor M(g,K) −→
M(g,K)w.

Therefore, the composition V 7−→ Indw(V )k is the right adjoint of the for-
getful functor from the category M(g,K) into M(g). This is the Zuckerman
functor ΓK .

2.4. Lemma. For any V in M(g), we have

ΓK(V ) = Indw(V )k.

To make this more explicit we calculate the ω-action on Indw(V ). We
have

(λ(Ad(k)ξ)F )(k) = (γ(Ad(k)ξ)F )(k) + πV (Ad(k)ξ)F (k)

= (π(ξ)F )(k) − (ν(ξ)F )(k) = −(ω(ξ)F )(k), k ∈ K,

for ξ ∈ k, where we denoted by γ the left regular representation of k on
R(K) tensored by the trivial representation on V . Hence, we established the
following formula:

(ω(ξ)F )(k) = −(λ(Ad(k)ξ)F )(k), k ∈ K.

This implies that the largest Harish-Chandra submodule ΓK(V ) = Indw(V )k

of Indw(V ) can be characterized as the submodule of all λ-invariants in
Indw(V ).

This agrees with the construction in §1.
Denote by D(g,K)w = D(M(g,K)w) the derived category of the cat-

egory M(g,K)w of weak Harish-Chandra modules. Then we can consider
the forgetful functors D(M(g,K)) −→ D(g,K)w and D(g,K)w −→ D(M(g)).
Their composition is the forgetful functor from D(M(g,K)) into D(M(g)).
Therefore, the right adjoint functor RΓK : D(M(g)) −→ D(M(g,K)) is the
composition of the right adjoint functor V · 7−→ Indw(V ·) from D(M(g)) into
D(g,K)w with the right derived functor of the functor U 7−→ U k. This leads
us back to the setup of §1.

Instead of proceeding like in the last step, Beilinson and Ginzburg inter-
pret the condition ω = 0, which makes a weak Harish-Chandra module an
ordinary Harish-Chandra module, as a homotopic condition.

An equivariant Harish-Chandra complex V · is a complex of weak Harish-
Chandra modules equipped with a linear map i from k into graded linear maps
from V · to V · of degree −1. This map satisfies the following conditions:

(E1) iξ, ξ ∈ k, are g-morphisms, i.e.,

π(η)iξ = iξπ(η), for η ∈ g;
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(E2) iξ, ξ ∈ k, are K-equivariant, i.e.

iAd(k)ξ = ν(k)iξν(k
−1) for k ∈ K;

(E3)
iξiη + iηiξ = 0

for ξ, η ∈ k;
(E4)

diξ + iξd = ω(ξ)

for ξ ∈ k.

Clearly, (E4) implies that cohomology modules of equivariant Harish-Chandra
complexes are Harish-Chandra modules.

A morphism φ of equivariant Harish-Chandra complexes is a morphism
of complexes of weak Harish-Chandra modules that also satisfies

φ ◦ iξ = iξ ◦ φ

for all ξ ∈ k. Let C∗(g,K) be the abelian category of equivariant Harish-
Chandra complexes with the appropriate boundedness condition. Two mor-
phisms φ,ψ : V · −→W · in this category are homotopic if there exists a homo-
topy Σ of the corresponding complexes of weak Harish-Chandra modules that
in addition satisfies

Σ ◦ iξ = −iξ ◦ Σ

for any ξ ∈ k. We denote by K∗(g,K) the corresponding homotopic cat-
egory of equivariant complexes. This category has a natural structure of
a triangulated category [18]. Quasiisomorphisms form a localizing class of
morphisms in K∗(g,K). The localization of K∗(g,K) with respect to quasi-
isomorphisms is the equivariant derived category D∗(g,K) of Harish-Chandra
modules. Clearly, D∗(g,K) inherits the structure of a triangulated category
from K∗(g,K), but a priori D∗(g,K) doesn’t have to be a derived category
of an abelian category (still, in this particular case, the reader should consult
2.14 at this point).

We have a natural functor ι : D∗(M(g,K)) −→ D∗(g,K) that maps a
complex of Harish-Chandra modules V · into the equivariant Harish-Chandra
complex V · with iξ = 0 for all ξ ∈ k.

In particular, for a Harish-Chandra module V we denote by D(V ) the
complex

. . . −→ 0 −→ V −→ 0 −→ . . .

where V is in degree zero, and the corresponding equivariant Harish-Chandra
complex. A straightforward modification of the standard argument proves
that D :M(g,K) −→ D(g,K) is fully faithful, i.e,

Hom(g,K)(V,W ) = HomD(g,K)(D(V ),D(W ))
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for any two Harish-Chandra modules V and W . Hence, if we equip D∗(g,K)
with the standard truncation functors, its core is isomorphic to M(g,K).

Therefore, we have a natural sequence of functors

D∗(M(g,K))
ι
−→ D∗(g,K) −→ D∗(g,K)w −→ D∗(M(g))

where the last two are just the corresponding forgetful functors.
In various applications, like the ones we discuss later in the paper, it is

necessary to consider simple variants of the above construction. Let Z(g)
be the center of the enveloping algebra U(g). Let h be an (abstract) Cartan
algebra of g ([14], §2). Denote by W the Weyl group of the root system Σ
of g in h∗. By a classical result of Harish-Chandra, the space of maximal
ideals Max(Z(g)) is isomorphic to the space h∗/W of W -orbits in h∗. Let
θ be a W -orbit in h∗, and denote by Jθ the corresponding maximal ideal of
Z(g). Let λ ∈ θ. We denote by χλ the unique homomorphism of Z(g) into C

with its kernel equal to Jθ. We denote by Uθ the quotient of the enveloping
algebra U(g) by the ideal generated by Jθ. Then we can view the category
M(Uθ) of Uθ-modules as a full subcategory of the category M(g). Following
the classical terminology, the objects of M(Uθ) are just U(g)-modules with
infinitesimal character χλ.

Since the image of φ is in Int(g), the group K acts trivially on Z(g), hence
also on Max(Z(g)). Therefore, we can define the category M(Uθ,K) as the
full subcategory of M(g,K) of Harish-Chandra modules with infinitesimal
character χλ. Clearly, for any Harish-Chandra module V in M(g,K), the
module

Uθ ⊗U(g) V = V/JθV

is in M(Uθ,K). Therefore, we have the right exact functor Pθ :M(g,K) −→
M(Uθ,K). It is straightforward to check the following result.

2.5. Lemma. The functor Pθ :M(g,K) −→M(Uθ,K) is the left adjoint of

the forgetful functor from M(Uθ,K) into M(g,K).

Analogously, we can define the category M(Uθ,K)w of weak Harish-
Chandra modules with infinitesimal character χλ, and the corresponding de-
rived categories D∗(Uθ,K)w and D∗(Uθ,K). In addition, the definition of Pθ

obviously extends to the corresponding categories of weak Harish-Chandra
modules and we have an obvious analogue of 2.5. Let U be an algebraic K-
module. Then U(g)⊗U , equipped with the U(g)-action by left multiplication
on the first factor and the tensor product of natural algebraic actions of K,
is a weak Harish-Chandra module. Since it is a flat U(g)-module, it is also
acyclic for Pθ. Since any weak Harish-Chandra module V is a quotient of
U(g) ⊗ V , Pθ has its left derived functor LPθ : D−(g,K)w −→ D−(Uθ,K)w.
Moreover, the homological dimension of U(g) is finite, so LPθ extends to the
derived categories of unbounded complexes. Also, this functor is the left ad-
joint of the forgetful functor from D(Uθ,K)w into D(g,K)w. Finally, it also
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induces the left derived functor1

LPθ : D(g,K) −→ D(Uθ,K).

This is again the left adjoint of the forgetful functor:

2.6. Proposition. The functor LPθ : D(g,K) −→ D(Uθ,K) is the left adjoint

of the forgetful functor from D(Uθ,K) into D(g,K).

Clearly, ifH is a closed subgroup of K, we have the following commutative
diagram:

M(g,K)
Pθ−−−−→ M(Uθ,K)





y





y

M(g,H)
Pθ−−−−→ M(Uθ,H)

.

This leads to the commutative diagram

D(g,K)
LPθ−−−−→ D(Uθ,K)





y





y

D(g,H) −−−−→
LPθ

D(Uθ,H)

where the vertical arrows represent forgetful functors.
The following result is proved in [17].

2.7. Theorem. The forgetful functor from D+(g,K) into D+(g,H)

(resp. from D+(Uθ,K) into D+(Uθ,H)) has the right adjoint RΓequi
K,H :

D+(g,H) −→ D+(g,K) (resp. RΓequi
K,H : D+(Uθ,H) −→ D+(Uθ,K)).

If H is reductive, the amplitude of RΓequi
K,H is finite. In this situation, the

above claims hold also for unbounded equivariant derived categories.

We are going to discuss the construction of this equivariant Zuckerman

functor RΓequi
K,H in the next section.

As in the case of ordinary Zuckerman functors, the following result holds.

2.8. Proposition. Let T ⊂ H be algebraic subgroups of K. Then we have

the isomorphism of functors

RΓequi
K,T = RΓequi

K,H ◦RΓequi
H,T .

If H is reductive, the functor RΓequi
K,H extends to the equivariant derived

categories of unbounded complexes, and preserves its adjointness property.
Therefore, by taking the adjoints of the above diagram, we get the following
result (which also follows from the explicit formula for RΓequi

K,H we are going

to discuss in the next section).

1Since equivariant derived categories are not derived categories in the standard sense, this
requires some additional care (see [8], [17]).
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2.9. Lemma. If H is a reductive subgroup of K, the following diagram

commutes
D(Uθ,H) −−−−→ D(g,H)

RΓequi
K,H





y





y

RΓequi
K,H

D(Uθ,K) −−−−→ D(g,K)

.

This explains the ambiguity in our notation.
Another simple consequence of the construction of the equivariant Zuck-

erman functor and 1.6 is the following result ([17], 6.2.7).

2.10. Lemma. Assume that H is a reductive subgroup of K. Let V be a

Harish-Chandra module in M(g,H). Then

Hp(RΓequi
K,H(D(V ))) = RpΓK,H(V )

for any p ∈ Z+.

Let K be an arbitrary algebraic group and L a Levi subgroup of K. As
we remarked in 1.11, M(g,K) is a thick subcategory of M(g, L). Clearly,
the same applies to the subcategory M(Uθ,K) of M(Uθ, L). Therefore, we
can define full triangulated subcategories D∗

M(g,K)(g, L) and D∗
M(Uθ ,K)(Uθ, L)

of D∗(g, L), resp. D∗(Uθ, L), consisting of equivariant Harish-Chandra com-
plexes with cohomology in M(g,K), resp. M(Uθ,K).

Clearly, we have natural forgetful functors D∗(g,K) −→ D∗
M(g,K)(g, L)

and D∗(Uθ,K) −→ D∗
M(Uθ ,K)(Uθ, L). The following result is an equivariant

analogue of 1.12.

2.11. Theorem. The natural forgetful functors

D∗(g,K) −→ D∗
M(g,K)(g, L) and D∗(Uθ,K) −→ D∗

M(Uθ ,K)(Uθ, L)

are equivalences of categories.

Proof. The proofs of these equivalences are identical. Therefore, we discuss
the case of modules over the enveloping algebra.

Also, it is sufficient to prove this statement for the derived categories of
unbounded complexes. The functor RΓequi

K,L is the right adjoint of the forgetful

functor For : D(g,K) −→ D(g, L). Therefore, we have the natural transfor-

mation of the identity functor on D(g,K) into RΓequi
K,L ◦ For. Assume that

V · is an equivariant complex in D(g,K). Then we have a natural morphism

V · −→ RΓequi
K,L(V ·). Since Hp(V ·), p ∈ Z, are Harish-Chandra modules in

M(g,K), they are ΓK,L-acyclic by 1.10. By a standard argument using 2.10,
this implies that

Hp(RΓequi
K,L(V ·)) = ΓK,L(Hp(V ·)) = Hp(V ·)
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and the natural morphism V · −→ RΓequi
K,L(V ·) is a quasiisomorphism.

On the other hand, we have the adjointness morphism For(RΓequi
K,L(U ·)) −→

U · for any U · in D(g, L). If U · is a complex in DM(g,K)(g, L), its cohomology

modules are ΓK,L-acyclic by 1.10. Therefore, as before, Hp(RΓequi
K,L(U ·)) =

Hp(U ·), for p ∈ Z, and the adjointness morphism is a quasiisomorphism.
Hence, D∗(g,K) −→ D∗

M(g,K)(g, L) is an equivalence of categories. �

It follows that we can view D∗(g,K) and D∗(Uθ,K) as triangulated sub-
categories in D∗(g, L) and D∗(Uθ, L) respectively.

Now we can discuss the consequences of 2.11 with respect to equivariant
Zuckerman functors. Let H be a subgroup of K and T a Levi factor of H.
Then we have the following commutative diagram

D+(g, T )
RΓequi

H,T

−−−−→ D+(g,H)

RΓequi
K,T





y





y

RΓequi
K,H

D+(g,K) D+(g,K)

.

Finally, by replacing the top left corner with D+
M(g,H)(g, T ) and inverting the

top horizontal arrow, we get the commutative diagram:

D+
M(g,H)(g, T ) ←−−−− D+(g,H)

RΓequi
K,T





y





y

RΓequi
K,H

D+(g,K) D+(g,K)

,

i.e., RΓequi
K,H is the restriction of RΓequi

K,T to D+(g,H). Since the amplitude of

RΓequi
K,T is finite by 2.7, the amplitude of RΓequi

K,H is also finite. Both functors
extend to the categories of unbounded complexes, and we have the following
result.

2.12. Theorem. The equivariant Zuckerman functor RΓequi
K,H is the restric-

tion of RΓequi
K,T to the subcategory D(g,H) (resp. D(Uθ,H)) of D(g, T ) (resp.

D(Uθ, T )).

2.13. Remark. We can now eliminate the assumption of H being reductive
from 2.7, 2.9 and 2.10. We already noted that above for 2.7. For 2.9 it follows
from 2.12, and for 2.10 from 2.12 and 1.13.

Finally, we quote a result of Bernstein and Lunts [5] which completely
explains 2.10.2

2Bernstein and Lunts treat the case of derived categories bounded from below. The general
case follows from [17].
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2.14. Theorem. The natural functor ι : D(M(g,K)) −→ D(g,K) is an

equivalence of categories.

Proof. For reductive K, the claim is proved in [17], Section 5.8. For arbitrary
K, let L be a Levi factor of K. The equivalence ι : D(M(g, L)) −→ D(g, L) in-
duces an equivalence of subcategories DM(g,K)(M(g, L)) and DM(g,K)(g, L).
The first of these is equivalent toD(M(g,K)) by 1.12, and the second is equiv-
alent to D(g,K) by 2.11. The induced functor is clearly ι : D(M(g,K)) −→
D(g,K), and it is an equivalence. �

3. Equivariant Zuckerman functors

In this section we sketch the construction of equivariant Zuckerman func-
tors RΓequi

K,H . The details can be found in [17]. For simplicity, we will de-

scribe the definitions and the arguments for U(g)-modules. However, anal-
ogous statements hold also for the variant with Uθ-modules, with identical
proofs.

Let N ·(k) = U(k)⊗
∧−·

k be the standard complex of k. It can be viewed
as an equivariant (k,H)-complex in the following way: k acts by left multipli-
cation on the first factor, H acts by the tensor product of the adjoint actions
on both factors, and the map i is given by

iξ(u⊗ λ) = −u⊗ λ ∧ ξ,

for ξ ∈ h and u⊗ λ ∈ N ·(k).
The standard complex has a natural structure of an algebra. It is gen-

erated by the subalgebra U(k) ⊗ 1 isomorphic to the enveloping algebra U(k)
and the subalgebra 1 ⊗

∧

k isomorphic to the exterior algebra
∧

k. The mul-
tiplication is defined by the relations

(u⊗ 1) · (1⊗ λ) = u⊗ λ,

for u ∈ U(k) and λ ∈
∧

k, and

(1⊗ ξ) · (η ⊗ 1)− (η ⊗ 1) · (1⊗ ξ) = 1⊗ [ξ, η]

for ξ, η ∈ k. With this multiplication and with its natural grading and differ-
ential, N ·(k) becomes a differential graded algebra, namely a graded algebra
which is also a complex of vector spaces, such that for any two homogeneous
elements x and y,

d(x · y) = dx · y + (−1)deg xx · dy.

Furthermore, the principal antiautomorphism of U(k) and the linear isomor-
phism of k ⊂

∧

k defined by ξ 7−→ −ξ extend to a principal antiautomorphism

ι of N ·(k); it satisfies

ι(x · y) = (−1)deg x deg y ιy · ιx
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for homogeneous x, y ∈ N ·(k).
Any equivariant (g,K)-complex can be viewed as a graded module over

N ·(k), if we let k ⊂ U(k) act via the ω-action, and k ⊂
∧

k via the map i. We
will denote this action of N ·(k) by ω again.

Let V · be an equivariant (g,H)-complex. If we forget the H-action and
the equivariant structure, R(K,V ·) = R(K)⊗ V · = Indw(V ·) is a complex of
weak Harish-Chandra modules for (g,K). On the other hand, we can consider
R(K,V ·) as an equivariant (k,H)-complex with respect to the λ-action of §1.
That is, k and H act by the left regular representation tensored by the natural
action on V , and the map i on R(K,V ·) is given by

iR(K,V ·),ξ(f ⊗ v) = f ⊗ iV ·,ξ(v)

for ξ ∈ h, f ∈ R(K) and v ∈ V · (here iV · is the i-map of V · as an equivariant
(g,H)-complex).

We can now consider the complex of vector spaces

Γequi
K,H(V ·) = Hom·

(k,H)(N
·(k), R(K,V ·)).

Here Hom·
(k,H) consists of graded linear maps of equivariant (k,H)-complexes

N ·(k) and R(K,V ·) described above. These linear maps f intertwine the
actions of k and H, and,

f ◦ iN ·(k),ξ = (−1)deg f iR(K,V ·),ξ ◦ f

for ξ ∈ h. The differential of this complex is given by

df = dR(K,V ·) ◦ f − (−1)deg ff ◦ dN ·(k),

for a homogeneous f ∈ Γequi
K,H(V ·).

The (g,K)-action on R(K,V ·) defines, by composition, a (g,K)-action on

Γequi
K,H(V ·). In this way, Γequi

K,H(V ·) becomes a complex of weak (g,K)-modules.
Moreover, if we define the map i by

(iξf)(u⊗ λ)(k) = −(−1)deg ff((1⊗Ad(k)ξ) · (u⊗ λ))(k),

for ξ ∈ k, a homogeneous f ∈ Γequi
K,H(V ·), u ⊗ λ ∈ N ·(k) and k ∈ K, the com-

plex Γequi
K,H(V ·) becomes an equivariant (g,K)-complex. One can check that

Γequi
K,H is a functor from the category of equivariant (g,H)-complexes C(g,H)

into C(g,K). It also induces a functor between the corresponding homotopic
categories K(g,H) and K(g,K).

Moreover, we have
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3.1. Theorem. The functor Γequi
K,H is right adjoint to the forgetful functor

from C(g,K) into C(g,H) (resp. K(g,K) into K(g,H)).

Proof. We just define the adjointness morphisms, and leave tedious checking
to the reader. For an equivariant (g,K)-complex V ·, we define ΦV · : V · −→

Γequi
K,H(V ·) by

ΦV ·(v)(u ⊗ λ)(k) = (−1)deg v deg λωV ·(ι(u⊗ λ))νV ·(k)v,

for homogeneous v ∈ V ·, λ ∈
∧

k, u ∈ U(k) and k ∈ K. The other adjointness
morphism is much simpler: for an equivariant (g,H)-complex W ·, we define

ΨW · : Γequi
K,H(W ·) −→ W · by

ΨW ·(f) = f(1⊗ 1)(1)

for f ∈ Γequi
K,H(W ·). �

By results of Bernstein and Lunts, Γequi
K,H always has a right derived functor

RΓequi
K,H : D+(g,H) −→ D+(g,K).

The proof of this uses the existence of K-injective resolutions of equivariant
complexes. Their existence is established in [5] (see [17] for a more detailed
account). However, these resolutions are very complicated and it is unclear
when they are bounded above. The following theorem gives an explicit formula
for RΓequi

K,H in case H is reductive.

3.2. Lemma. Assume that H is reductive. Then for any acyclic equivariant

(g,H)-complex V ·, the complex Γequi
K,H(V ·) is acyclic.

Proof. It is obvious that R(K,V ·) is an acyclic equivariant (k,H)-complex.
Therefore, it is enough to prove that the functor

Hom·
(k,H)(N

·(k),−),

from equivariant (k,H)-complexes to complexes of vector spaces, preserves
acyclicity.

This follows from the fact that the (k,H)-complex N ·(k), is K-projective

(see [4], [18]3 or [17]). It is proved by induction, using the Hochschild-Serre

filtration F·N
·(k), associated to the subalgebra h, of the standard complex

N ·(k) ([17], 6.1). Namely, one can see that the graded pieces corresponding to
this filtration are K-projective. Then one shows that the short exact sequences

0 −→ Fp−1N
·(k) −→ FpN

·(k) −→ GrpN
·(k) −→ 0

define distinguished triangles in the homotopic category of equivariant (k,H)-
complexes. If two vertices of a distinguished triangle are K-projective, then
so is the third vertex. Since the filtration is finite, the theorem follows. �

Hence, the functor Γequi
K,H preserves acyclic complexes. It follows that it

also preserves quasiisomorphisms. Therefore, it is well defined on morphisms
in the derived category. Hence, Γequi

K,H defines a functor on the level of derived

categories which is equal to Γequi
K,H on objects, i.e., we have the following result.

3Verdier calls such objects “free on the left.”
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3.3. Theorem. Assume that H is reductive. Then for any equivariant

(g,H)-complex V ·, we have

RΓequi
K,H(V ·) = Γequi

K,H(V ·) = Hom·
(k,H)(N

·(k), R(K,V ·)).

In particular, RΓequi
K,H has finite amplitude.

4. Localization of Zuckerman functors

In this section we sketch the localization of equivariant Zuckerman func-
tors. The details will appear in [15].

First we recall the basic constructions and results of the localization theory
of Beilinson and Bernstein (cf. [1], [14]). LetX be the flag variety of g. For any
λ in the dual h∗ of the abstract Cartan algebra h, Beilinson and Bernstein
construct a twisted sheaf of differential operators Dλ on X and an algebra
homomorphism U(g) −→ Γ(X,Dλ). They prove that

Γ(X,Dλ) = Uθ and Hp(X,Dλ) = 0 for p > 0,

where θ = W · λ. LetMqc(Dλ) be the category of quasicoherent Dλ-modules
on X. Then, for any object V in Mqc(Dλ) its global sections are an object
in M(Uθ), i.e., the functor of global sections Γ is a left exact functor from
Mqc(Dλ) into M(Uθ). It has a left adjoint ∆λ :M(Uθ) −→Mqc(Dλ) defined
by

∆λ(V ) = Dλ ⊗Uθ
V

for any Uθ-module V . This functor is the localization functor.
The functor Γ has finite right cohomological dimension. Therefore, it

defines a functor RΓ : D(Dλ) −→ D(Uθ) from the derived category ofMqc(Dλ)
into the derived category of M(Uθ). On the other hand, the functor ∆λ has
finite left cohomological dimension if and only if the orbit θ is regular [12].
Therefore, in general, we have the left derived functor L∆λ : D−(Uθ) −→
D−(Dλ) which is the left adjoint of RΓ : D−(Dλ) −→ D−(Uθ). If θ is regular,
L∆λ extends to D(Uθ) and is the left adjoint of RΓ : D(Dλ) −→ D(Uθ).
Moreover, for regular θ, we have the following result [2].

4.1. Theorem. If θ ∈ h∗ is regular, the functor RΓ : D(Dλ) −→ D(Uθ) is an

equivalence of categories. Its quasi-inverse is L∆λ : D(Uθ) −→ D(Dλ).

Clearly, the group Int(g) acts algebraically on the sheaf of algebras Dλ.
Let K be an algebraic group satisfying the conditions from §1. Then K acts
algebraically on X and Dλ. V is a weak Harish-Chandra sheaf on X if

(i) V is a quasicoherent Dλ-module;
(ii) V is a K-equivariant OX -module (cf. [16]);
(iii) the action morphism Dλ ⊗OX

V −→ V is a morphism of K-equivariant
OX -modules.
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A weak Harish-Chandra sheaf V is a Harish-Chandra sheaf 4 if the differential
of the K-action on V agrees with the action of k given by the map k −→
U(g) −→ Dλ. A morphism of weak Harish-Chandra sheaves is a Dλ-module
morphism which is also a morphism of K-equivariant OX -modules. We denote
by Mqc(Dλ,K)w the abelian category of weak Harish-Chandra sheaves, and
byMqc(Dλ,K) its full subcategory of Harish-Chandra sheaves.

For any V inMqc(Dλ,K)w, the module Γ(X,V) of global sections of V is
inM(Uθ,K)w. Conversely, the localization ∆λ(V ) of a weak Harish-Chandra
module fromM(Uθ,K)w is in Mqc(Dλ,K)w. Also,

Hom(Dλ,K)(∆λ(U),V) = Hom(Uθ,K)(U,Γ(X,V)),

for any U inM(Uθ,K)w and V in Mqc(Dλ,K)w, i.e., the functors ∆λ and Γ
are again an adjoint pair. Moreover, if V is a Harish-Chandra sheaf, Γ(X,V)
is a Harish-Chandra module. Also, if V is a Harish-Chandra module, ∆λ(V )
is a Harish-Chandra sheaf.

Let Σ be the root system in h∗ attached to g, and let Q(Σ) be the cor-
responding root lattice. For any ν ∈ Q(Σ), let O(ν) be the corresponding
Int(g)-homogeneous invertible OX -module on X. Then we have the natural
twist functor V 7−→ V(ν) = V ⊗OX

O(ν) from Mqc(Dλ) into Mqc(Dλ+ν)
([14], §4). This functor is clearly an equivalence of categories and its quasi-
inverse isW 7−→ W(−ν). The twist functor preserves (weak) Harish-Chandra
sheaves, hence it induces equivalences ofMqc(Dλ,K)w withMqc(Dλ+ν ,K)w

(resp.Mqc(Dλ,K) with Mqc(Dλ+ν ,K)).
For a root α ∈ Σ, let αˇ be its dual root. By the Borel-Weil theorem,

there exists a unique set of positive roots Σ+ in Σ such that Hp(X,O(ν))
vanish for p > 0 for all ν ∈ Q(Σ) satisfying α (̌ν) ≤ 0 for α ∈ Σ+. We say
that λ ∈ h∗ is antidominant if α (̌λ) is not a positive integer for α ∈ Σ+.
If λ is antidominant and regular, the functor Γ : Mqc(Dλ) −→ M(Uθ) is an
equivalence of categories (cf. [14], 3.7). Hence, it induces an equivalence of
Mqc(Dλ,K)w with M(Uθ,K)w. By the analogue of 2.2, we know that the
forgetful functor M(Uθ,K)w −→ M(Uθ) has a right adjoint Indw and the
adjointness morphism V −→ Indw(V ) is a monomorphism. Therefore, for
any regular antidominant λ, the forgetful functorMqc(Dλ,K)w −→Mqc(Dλ)
has a right adjoint Indw : Mqc(Dλ) −→ Mqc(Dλ,K)w and the adjointness
morphism V −→ Indw(V) is a monomorphism. By applying the twist functor
we deduce that this statement holds for arbitrary λ in h∗.

The functor Indw can be described in geometric terms. Let p : K×X −→
X be the projection to the second variable. Let µ : K×X −→ X be the action
morphism, i.e., µ(k, x) = k · x for k ∈ K and x ∈ X. For a morphism f of
algebraic varieties, we denote by f∗ and f∗ the inverse image and the direct
image functors between the corresponding categories of O-modules.

4In [14] we assumed that a Harish-Chandra sheaf is a coherent Dλ-module. No such restric-
tion is convenient in our present setting.
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4.2. Lemma. For any V in Mqc(Dλ), we have Indw(V) = µ∗(p
∗(V)) as

OX-modules.

Since µ is an affine morphism,

Hp(X, Indw(V)) = Hp(X,µ∗(p
∗(V))) = Hp(K ×X, p∗(V))

= R(K)⊗Hp(X,V) = Indw(Hp(X,V)),

for V inMqc(Dλ) and p ∈ Z+. In particular, if I is an injective quasicoherent
Dλ-module, I is Γ-acyclic and Hp(X, Indw(I)) = 0 for p > 0, i.e., Indw(I) is
also Γ-acyclic.

4.3. Lemma.

(i) The category Mqc(Dλ,K)w has enough injectives.

(ii) Injective weak Harish-Chandra sheaves are acyclic for the functor of

global sections Γ(X,−).

Proof. (i) Let V be a weak Harish-Chandra sheaf. Since the categoryMqc(Dλ)
has enough injectives, there exist an injective quasicoherent Dλ-module I and
a monomorphism V −→ I. Since Indw is exact, Indw(V) −→ Indw(I) is a
monomorphism of weak Harish-Chandra sheaves. Therefore, V −→ Indw(I) is
a monomorphism of weak Harish-Chandra sheaves. On the other hand, since
Indw is the right adjoint of an exact functor, it preserves injectives. This
implies that Indw(I) is an injective weak Harish-Chandra sheaf.

(ii) Let J be an injective weak Harish-Chandra sheaf. Then, by the above
argument, J is a submodule of Indw(I) for some injective quasicoherent Dλ-
module I. Therefore, Indw(I) = J ⊕W for some weak Harish-Chandra sheaf
W. But this implies that Hp(X,J ) is a direct summand of Hp(X, Indw(I))
for p ∈ Z+. Hence, Hp(X,J ) = 0 for p > 0. �

Let D∗(Dλ,K)w = D∗(Mqc(Dλ,K)w) be the derived category of the
abelian category of weak Harish-Chandra sheaves. Since Mqc(Dλ,K)w has
enough injectives, the right derived functor RΓ : D+(Dλ,K)w −→ D+(Uθ,K)w

of Γ exists. Moreover, by 4.3(ii), the following diagram is commutative:

D+(Dλ,K)w
RΓ
−−−−→ D+(Uθ,K)w





y





y

D+(Dλ) −−−−→
RΓ

D+(Uθ)

,

where the vertical arrows are the forgetful functors, and the lower horizontal
arrow is the standard cohomology functor. This explains the ambiguity in
our notation. Moreover, since the right cohomological dimension is finite, the
standard truncation argument extends this statement to derived categories of
unbounded complexes.

Now, let V be a weak Harish-Chandra module in M(Uθ,K)w. Let
Pw(V ) = Uθ ⊗C V be the module on which K acts by the tensor product
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of the action φ on Uθ with the natural action on V , and Uθ by the multipli-
cation in the first factor. Then Pw(V ) is a weak Harish-Chandra module in
M(Uθ,K)w since

k·(ST⊗v) = φ(k)(ST )⊗ν(k)v = φ(k)(S)φ(k)(T )⊗ν(k)v = φ(k)(S)(k·(T⊗v))

for S, T ∈ Uθ, k ∈ K and v ∈ V . Moreover, the natural map p : Pw(V ) −→ V
given by p(T ⊗ v) = π(T )v, T ∈ Uθ, v ∈ V , satisfies

p(ST ⊗ v) = π(ST )v = π(S)π(T )v = π(S)p(T ⊗ v)

and

p(k·(T⊗v)) = p(φ(k)T⊗ν(k)v) = π(φ(k)T )ν(k)v = ν(k)π(T )v = ν(k)p(T⊗v)

for all S, T ∈ Uθ, k ∈ K and v ∈ V ; i.e., p is an epimorphism of weak Harish-
Chandra modules. Clearly, Pw(V ) is a free Uθ-module and therefore ∆λ-
acyclic. This implies that ∆λ :M(Uθ,K)w −→M(Dλ,K)w has a left derived
functor L∆λ : D−(Uθ,K)w −→ D−(Dλ,K)w and in addition the following
diagram commutes:

D−(Uθ,K)w
L∆λ−−−−→ D−(Dλ,K)w





y





y

D−(Uθ) −−−−→
L∆λ

D−(Dλ)

,

where the vertical arrows are forgetful functors and the lower horizontal arrow
is the usual localization functor. In addition, we have

HomD−(Dλ,K)w
(L∆λ(U ·),V ·) = HomD−(Uθ,K)w

(U ·, RΓ(X,V ·)).

From the above discussion, it also follows that RΓ◦L∆λ
∼= 1 on D−(Uθ,K)w,

since this is obviously true on modules Pw(V ).
In addition, if θ is regular, the left cohomological dimension of ∆λ is finite

and L∆λ extends to D(Uθ,K)w. Moreover, we have the following result, which
is a variant of 4.1.

4.4. Theorem. Let θ be regular. Then RΓ : D(Dλ,K)w −→ D(Uθ,K)w is an

equivalence of categories. Its quasiinverse is L∆λ : D(Uθ,K)w −→ D(Dλ,K)w.

Remark. The preceding results show that weak Harish-Chandra modules
behave nicely with respect to the cohomology and localization functors, in
sharp contrast to the case of Harish-Chandra modules. To see this, the reader
should consider the case of Mqc(Dλ,K), with K = Int(g), which is clearly a
semisimple abelian category.
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In complete analogy with the constructions in §2, we can define equi-
variant complexes of Harish-Chandra sheaves, and corresponding categories
C∗(Dλ,K) and K∗(Dλ,K). By localizing K∗(Dλ,K) with respect to quasi-
isomorphisms we get the equivariant derived category D∗(Dλ,K) of Harish-
Chandra sheaves.

The natural functors Γ from K(Dλ,K) into K(Uθ,K) and ∆λ from
K−(Uθ,K) into K−(Dλ,K) have right, resp. left, derived functors. More
precisely, we have the following result.

4.5. Theorem. The functors Γ and ∆λ define the corresponding derived

functors

RΓ : D(Dλ,K) −→ D(Uθ,K)

and

L∆λ : D−(Uθ,K) −→ D−(Dλ,K)

such that the following diagrams commute

D(Dλ,K)
RΓ
−−−−→ D(Uθ,K)





y





y

D(Dλ,K)w −−−−→
RΓ

D(Uθ,K)w

;

D−(Uθ,K)
L∆λ−−−−→ D−(Dλ,K)





y





y

D−(Uθ,K)w −−−−→
L∆λ

D−(Dλ,K)w

;

where the vertical arrows represent forgetful functors.

Moreover, L∆λ is the left adjoint of RΓ, i.e.,

HomD−(Dλ,K)(L∆λ(U ·),V ·) = HomD−(Uθ,K)(U
·, RΓ(X,V ·))

for U · in D−(Uθ,K) and V · in D−(Dλ,K).

If θ is regular, ∆λ has finite left cohomological dimension and L∆λ extends
to D(Uθ,K). This leads to the following equivariant version of 4.1.

4.6. Theorem. Let θ be regular. Then RΓ : D(Dλ,K) −→ D(Uθ,K) is an

equivalence of categories. Its quasi-inverse is L∆λ : D(Uθ,K) −→ D(Dλ,K).

For any ν ∈ Q(Σ), the twist functor V 7−→ V(ν) induces equivalences
of the corresponding derived categories, i.e., the equivalences D(Dλ,K)w −→
D(Dλ+ν ,K)w and D(Dλ,K) −→ D(Dλ+ν ,K).

Let H be a closed subgroup of K. Then we have the “forgetful” functor
For : D(Dλ,K) −→ D(Dλ,H). Clearly, it commutes with twists, i.e., the
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following diagram is commutative:

D(Dλ,K)
For
−−−−→ D(Dλ,H)

−(ν)





y





y

−(ν)

D(Dλ+ν ,K) −−−−→
For

D(Dλ+ν ,H)

for any ν ∈ Q(Σ). Moreover, by 4.5 and 4.6, we have a commutative diagram

D(Dλ,K)
For
−−−−→ D(Dλ,H)

RΓ





y





y
RΓ

D(Uθ,K) −−−−→
For

D(Uθ,H)

,

where the vertical arrows are equivalences for λ regular. This, combined with
2.7 and 2.13, implies the following result.

4.7. Theorem.

(i) The forgetful functor For : D(Dλ,K) −→ D(Dλ,H) has a right adjoint

Γgeo
K,H : D(Dλ,H) −→ D(Dλ,K) of finite amplitude.

(ii) The functor Γgeo
K,H commutes with twists, i.e., the following diagram is

commutative:

D(Dλ,H)
Γgeo

K,H

−−−−→ D(Dλ,K)

−(ν)





y





y

−(ν)

D(Dλ+ν ,H) −−−−→
Γgeo

K,H

D(Dλ+ν ,K)

for any ν ∈ Q(Σ).
(iii) The following diagram is commutative:

D(Dλ,H)
Γgeo

K,H

−−−−→ D(Dλ,K)

RΓ





y





y
RΓ

D(Uθ,H) −−−−→
RΓequi

K,H

D(Uθ,K)

.

We call the functor Γgeo
K,H the geometric Zuckerman functor. By 4.7 (iii),

we can view it as the localization of the equivariant Zuckerman functor RΓequi
K,H .

This functor can be described in D-module theoretic terms using techniques
analogous to [4] (the details will appear in [15]). It can be viewed as a gener-
alization of Bernstein’s functor of “integration along K-orbits”.
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5. Cohomology of standard Harish-Chandra sheaves

First we recall the construction of the standard Harish-Chandra sheaves
(cf. [14], §6). Let λ ∈ h∗. Let Q be a K-orbit in X and τ an irreducible
K-homogeneous connection on Q compatible with λ + ρ.5 Then the direct
image of τ with respect to the inclusion Q −→ X is the standard Harish-
Chandra sheaf I(Q, τ). Since τ is holonomic, I(Q, τ) is also a holonomic
Dλ-module and therefore of finite length. This implies that its cohomologies
Hp(X,I(Q, τ)), p ∈ Z+, are Harish-Chandra modules of finite length [13]. In
this section, we calculate these cohomology modules in terms of “classical”
Zuckerman functors.

Fix x ∈ Q. Denote by bx the Borel subalgebra of g corresponding to x,
and by Sx the stabilizer of x in K. Then the geometric fiber Tx(τ) of τ at x is
an irreducible finite-dimensional representation ω of Sx. We can view it as an
Sx-equivariant connection over the Sx-orbit {x}. Therefore, we can consider
the standard Harish-Chandra sheaf I(ω) = I({x}, ω). It is an Sx-equivariant
Dλ-module. The following lemma is critical.

5.1. Lemma.

Γgeo
K,Sx

(D(I(ω))) = D(I(Q, τ))[− dimQ].

The proof of this lemma follows from the geometric description of the
functor Γgeo

K,Sx
which we mentioned at the end of §4. This construction makes

sense on any smooth algebraic variety with a K-action. By specialization, the
linear form λ+ρ determines a linear form on bx. By restriction, it determines a
linear form µ on the Lie algebra sx of Sx. In turn, µ determines a homogeneous
twisted sheaf of differential operators DQ,µ on Q. Therefore, we can consider
the equivariant derived categories Db(DQ,µ, Sx) and Db(DQ,µ,K) and the
functor Γgeo

K,Sx
: Db(DQ,µ, Sx) −→ Db(DQ,µ,K). Also, the following diagram

commutes

Db(DQ,µ, Sx)
iQ,+

−−−−→ Db(Dλ, Sx)

Γgeo
K,Sx





y





y

Γgeo
K,Sx

Db(DQ,µ,K)
iQ,+

−−−−→ Db(Dλ,K)

.

Let jx : {x} −→ Q be the natural immersion. Then we have the D-module
direct image module J (ω) = jx,+(ω). To establish 5.1, by the above diagram,
it is enough to show that

Γgeo
K,Sx

(D(J (ω))) = D(τ)[− dimQ].

Clearly, DQ,0 is the sheaf of differential operators DQ on Q. If ω is trivial,
τ = OQ, and we put J = J (ω) = jx,+(C). Moreover, the general formula
follows by tensoring with τ , from the special case

Γgeo
K,Sx

(D(J )) = D(OQ)[− dimQ].

5Here ρ is the half-sum of positive roots in Σ+.
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We define an action of K ×K on K by

(k, l) · h = khl−1, for k, h, l ∈ K.

Consider the orbit map ox : K −→ Q given by ox(k) = k · x for k ∈ K. Let
DK be the sheaf of differential operators on K. Then the inverse image o∗x
is a functor from Db(DQ,K) into Db(DK ,K × Sx). It is an equivalence of
categories (compare [4]). Also, o∗x induces an equivalence of Db(DQ, Sx) with
Db(DK , Sx × Sx). Therefore we have the following commutative diagram:

Db(DQ, Sx)
o∗

x−−−−→ Db(DK , Sx × Sx)

Γgeo
K,Sx





y





y

Γgeo
K×Sx,Sx×Sx

Db(DQ,K)
o∗

x−−−−→ Db(DK ,K × Sx)

.

The map k 7→ k−1 of K induces the equivalences Db(DK , Sx × Sx) −→
Db(DK , Sx × Sx) and Db(DK ,K × Sx) −→ Db(DK , Sx ×K). Let π : K −→ pt
be the projection of K onto a point pt. Then, as before, the inverse image
π∗ : Db(Dpt, Sx) −→ Db(DK , Sx × K) is an equivalence of categories. Let
q : Q −→ pt. This leads to the following commutative diagram:

Db(DQ, Sx)
o∗

x−−−−→ Db(DK , Sx × Sx)

q∗

x





x




For

Db(Dpt, Sx)
π∗

−−−−→ Db(DK , Sx ×K)

where the horizontal arrows are equivalences of categories. This diagram
implies that q∗ has a right adjoint Φ and that the following diagram commutes:

Db(DQ, Sx)
o∗

x−−−−→ Db(DK , Sx × Sx)

Φ





y





y

Γgeo
Sx×K,Sx×Sx

Db(Dpt, Sx)
π∗

−−−−→ Db(DK , Sx ×K)

.

Since q is a smooth morphism, the shifted D-module direct image functor
q+[− dimQ] is the right adjoint of the inverse image q∗. Therefore, we have
the following commutative diagram:

Db(DQ, Sx)
For
−−−−→ Db(DQ)

Φ





y





y

q+[− dim Q]

Db(Dpt, Sx)
For
−−−−→ Db(Dpt)

.
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This allows us to calculate Γgeo
K,Sx

(D(J )). Following the above equivalences
and forgetting the equivariant structure, we see that it corresponds to

q+(D(J ))[− dimQ] = D((q+ ◦ jx,+)(C))[− dimQ] = D(C)[− dimQ]

in Db(Dpt). By following the equivalences in the reverse order, we see that
this object corresponds to D(OQ)[− dimQ]. This completes the sketch of the
proof of 5.1.6

The formula from 5.1 immediately leads to the following result:

RΓ(D(I(Q, τ))) = RΓ(Γgeo
K,Sx

(D(I(ω))))[dimQ] = Γequi
K,Sx

(RΓ(D(I(ω))))[dimQ].

On the other hand, if δ is a finite-dimensional algebraic representation of Sx

compatible with λ+ ρ, we can view it as a (bx, Sx)-module where bx acts by
λ + ρ. Let ΩX be the invertible OX -module of top degree differential forms
on X. Then its geometric fiber Tx(ΩX) is one-dimensional and the Borel
subgroup Bx of Int(g) acts on it by a character. The differential of this action
is equal to the specialization of 2ρ. Therefore, δ ⊗ Tx(Ω−1

X ) can be viewed as
a (bx, Sx)-module where bx acts by the specialization of λ− ρ. Let

M(δ) = U(g)⊗U(bx) (δ ⊗ Tx(Ω−1
X )),

where g acts by left multiplication on the first factor and Sx by the tensor
product of the action φ on U(g) with the natural representation on δ⊗Tx(Ω−1

X ).
Then M(δ) is a Harish-Chandra module for the pair (g, Sx). As a U(g)-
module, M(δ) is a direct sum of dim δ copies of the Verma module M(λ) =
U(g)⊗U(bx) Cλ−ρ.

The following result is well known (see, for example, [13]).

5.2. Lemma. We have

Hp(X,I(ω)) =

{

M(ω) for p = 0;

0 for p > 0.

Therefore, the above relation implies that

RΓ(D(I(Q, τ))) = Γequi
K,Sx

(D(Γ(I(ω))))[dimQ] = Γequi
K,Sx

(D(M(ω)))[dimQ].

Taking the cohomology of this complex and using the generalization of 2.10
from 2.13, we get

Hp(X,I(Q, τ)) = Hp+dim Q(Γequi
K,Sx

(D(M(ω))) = Rp+dim QΓK,Sx
(M(ω))).

This proves the following result which computes the cohomology of standard
Harish-Chandra sheaves.

6The starting point of our investigation was Bernstein’s argument to prove a special case

of the duality theorem of [11]. Bernstein explained that argument in a seminar at the Institute

for Advanced Study in the fall of 1985. It can be used to prove 5.1. If λ is antidominant and
regular, the functor Γ and the localization functor ∆λ are exact and the formula in 5.1 follows

from the results explained in ([6], II.4). The general case of 5.1 follows immediately, since Γgeo
K,Sx

commutes with the twists by 4.7.
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5.3. Theorem. Let λ ∈ h∗, Q a K-orbit in X and τ an irreducible K-

homogeneous connection compatible with λ + ρ. Let x ∈ Q and let Sx be the

stabilizer of x in K. Let ω be the representation of Sx in the geometric fiber

Tx(τ). Then we have

Hp(X,I(Q, τ)) = Rp+dimQΓK,Sx
(M(ω))

for any p ∈ Z.

Assume now that, in addition, K is reductive. Denote by T a Levi factor
of Sx and by Ux the unipotent radical of Sx. Then we have

dim(K/T )−dimQ = dimK−dimT−(dimK−dimSx) = dimSx−dimT = dimUx.

By 1.13, we have

RpΓK,Sx
(M(ω)) = RpΓK,T (M(ω)), p ∈ Z.

Denote by V 7−→ V˜ the contragredient functor on the categories M(g, T )
and M(g,K). Then, by the duality theorem for derived Zuckerman modules
(see, for example, [9], [17]), we have

Hp(X,I(Q, τ))̃ = Rp+dim QΓK,T (M(ω))̃

= Rdim(K/T )−dim Q−pΓK,T (M(ω)̃ ) = RdimUx−pΓK,T (M(ω)̃ ), p ∈ Z.

This is exactly the statement of the duality theorem of Hecht, Miličić, Schmid
and Wolf [11].
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