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Introduction

Let g be a complex semisimple Lie algebra and σ an involution of g. Denote by k the
fixed point set of this involution. Let K be a connected algebraic group and ϕ a morphism
of K into the group G = Int(g) of inner automorphisms of g such that its differential is
injective and identifies the Lie algebra of K with k. Let X be the flag variety of g, i.e. the
variety of all Borel subalgebras in g. Then K acts algebraically on X , and it has finitely
many orbits which are locally closed smooth subvarieties. The typical situation is the
following: g is the complexification of the Lie algebra of a connected real semisimple Lie
group G0 with finite center, K is the complexification of a maximal compact subgroup of
G0, and σ the corresponding Cartan involution.

Let h be the (abstract) Cartan algebra of g, Σ the root system in h∗, and Σ+ the set
of positive roots determined by the condition that the homogeneous line bundles O(−µ)
on X corresponding to dominant weights µ are positive. For each λ ∈ h∗, A. Beilinson
and J. Bernstein defined a G-homogeneous twisted sheaf of differential operators Dλ on X
(compare [1], [5]). For a detailed discussion of their construction see §2 in Schmid’s lecture
in this volume [11].

Let Mcoh(Dλ, K) be the category of coherent Dλ-modules on X with algebraic K-action
([5], Appendix). The objects of this category are called Harish-Chandra sheaves. Every
Harish-Chandra sheaf has finite length, and there is a simple geometric description of
irreducible Harish-Chandra sheaves which we shall describe now. Let Q be a K-orbit in X
and i : Q −→ X the natural inclusion. Then Dλ induces a K-homogeneous twisted sheaf of
differential operators Di

λ on Q. Fix x ∈ Q, let bx be the Borel subalgebra corresponding
to this point, and define nx = [bx, bx]. Let c be a σ-stable Cartan subalgebra in bx. Then
the composition of the canonical maps c −→ bx/nx −→ h is an isomorphism. It induces
an isomorphism, called a specialization, of the Cartan triple (h∗, Σ, Σ+) onto the triple
(c∗, R, R+); here R is the root system of the pair (g, c) and R+ the set of positive roots
determined by bx. Let ρ be the half-sum of positive roots in Σ+. If the restriction of
the specialization of λ + ρ to t = k ∩ c is the differential of a character of the identity
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component of the stabilizer Sx of x in K, there exist K-homogeneous Di
λ-connections on

Q—we say that they are compatible with λ + ρ. Let τ be an irreducible K-homogeneous
connection on Q compatible with λ + ρ. Then its direct image R0i+(τ) is the standard

Harish-Chandra sheaf I(Q, τ). It is holonomic and therefore of finite length. Moreover,
it has a unique irreducible (Dλ, K)-submodule L(Q, τ). The irreducible objects L(Q, τ)
exhaust the isomorphism classes of all irreducible objects in the category Mcoh(Dλ, K).
Therefore, the composition series of standard Harish-Chandra sheaves I(Q, τ) consist of
modules isomorphic to some L(Q′, τ ′) for orbits Q′ in the closure of Q and irreducible
K-homogeneous connections τ ′ on Q′ compatible with λ + ρ.

For integral λ ∈ h∗, the structure of the composition series of these modules is deter-
mined by Vogan’s version of the Kazhdan-Lusztig conjectures [13]. As in the Verma module
case, one should expect that the necessary and sufficient condition for the irreducibility of
standard Harish-Chandra sheaves must be a far less deep result than the Kazhdan-Lusztig
conjectures. If K is the fixed point set of an involution acting on a covering group of G,
such a result is equivalent to the irreducibility theorem of [12]. Although the final result
in this case (as in the case of Verma modules) suggests that the irreducibility criterion is
completely controlled by SL2-phenomena, this is not so evident from the existing proofs.
The purpose of this paper is to describe the irreducibility result for the general case, and
to sketch a proof which is conceptually as simple as in the case of Verma modules. This
result is a part of a joint work with Henryk Hecht, Wilfried Schmid and Joseph A. Wolf.
The complete details will appear in [6].

1. The basic example

In this section we discuss the simplest case of g = sl(2, C). In this case the group
Int(g) of inner automorphisms of g can be identified with PSL(2, C), and we can identify
the flag variety X of g with the one-dimensional projective space P1. If we denote by
[x0, x1] the projective coordinates of x ∈ P1, the corresponding Borel subalgebra bx is the
Lie subalgebra of sl(2, C) which leaves the line x invariant. Let σ be the conjugation by
(

−1 0

0 1

)

in g. Then k is the subalgebra of diagonal matrices in g.

Let T the one-dimensional torus which stabilizes both 0 = [1, 0] and ∞ = [0, 1]. Its Lie
algebra is k. Hence, K can be an arbitrary n-fold covering of T with covering map ϕ. The
K-orbits in P1 are {0}, {∞}, and C∗.

First we want to construct a suitable trivializations of Dλ on the open cover of P1

consisting of P1 − {0} and P1 − {∞}. We denote by α ∈ h∗ the positive root of g and put
ρ = 1

2
α and t = α (̌λ), where αˇ is the dual root of α.

Let {E, F, H} denote the standard basis of sl(2, C):

E =

(

0 1
0 0

)

F =

(

0 0
1 0

)

H =

(

1 0
0 −1

)

.

They satisfy the commutation relations

[H, E] = 2E [H, F ] = −2F [E, F ] = H.
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Also, H spans the Lie algebra k. Moreover, we remark that if we specialize at 0, H
corresponds to the dual root α ,̌ but if we specialize at ∞, H corresponds to the negative
of α .̌

First we discuss P1−{∞}. On this set we define the usual coordinate z by z([1, x1]) = x1.
In this way one identifies P1 − {∞} with the complex plane C. After a short calculation
we get

E = −z2∂ − (t + 1)z, F = ∂, H = 2z∂ + (t + 1)

in this coordinate system. Analogously, on P1−{0} with the natural coordinate ζ([x0, 1]) =
x0, we have

E = ∂, F = −ζ2∂ − (t + 1)ζ, H = −2ζ∂ − (t + 1).

On C∗ these two coordinate systems are clearly related by ζ = 1
z
. This implies that

∂ζ = −z2∂z, i. e., on C∗ the second trivialization gives

E = −z2∂, F = ∂ −
1 + t

z
H = 2z∂ − (t + 1).

Therefore, the first and the second trivialization on C∗ are related by the automorphism
of DC∗ induced by

∂ −→ ∂ −
1 + t

z
= z1+t ∂ z−(1+t).

Now we want to analyze the standard Harish-Chandra sheaves attached to the open K-
orbit C

∗. If we identify K with another copy of C
∗, the stabilizer in K of any point in the

orbit C∗ is the group M of nth roots of 1. Let η0 be the trivial representation of M , η1 the
identity representation of M , and ηk = (η1)

k, 2 ≤ k ≤ n−1, the remaining irreducible rep-
resentations of the cyclic group M . Denote by τk the irreducible K-equivariant connection
on C∗ corresponding to the representation ηk of M , and by I(C∗, τk) the corresponding
standard Harish-Chandra sheaf in Mcoh(Dλ, K). To analyze these Dλ-modules it is con-
venient to introduce a trivialization of Dλ on C∗ = P1 − {0,∞} such that H corresponds
to the differential operator 2z∂ on the orbit C∗ and T ∼= C∗ acts on it by multiplication.
We obtain this trivialization by restricting the original z-trivialization to C∗ and twisting
it by the automorphism

∂ −→ ∂ −
1 + t

2z
= z

1+t
2 ∂ z−

1+t
2 .

This gives a trivialization of Dλ|C
∗ which satisfies

E = −z2∂ −
1 + t

2
z, F = ∂ −

1 + t

2z
, H = 2z∂.

The global sections of τk on C∗ form the linear space spanned by functions zp+ k
n , p ∈ Z. To

analyze irreducibility of the standard Dλ-module I(C∗, τk) we have to study its behavior
at 0 and ∞. By the preceding discussion, if we use the z-trivialization of Dλ on C∗,
I(C∗, τk) looks like the DC-module which is the direct image of the DC∗ -module generated
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by z
k
n
− 1+t

2 . This module is clearly reducible if and only if it contains functions regular
at the origin, i. e. if and only if k

n
− 1+t

2 is an integer. Analogously, I(C∗, τk)|P1 − {0} is

reducible if and only if k
n

+ 1+t
2 is an integer. Therefore, I(C∗, τk) is irreducible if and only

if neither k
n
− 1+t

2 nor k
n

+ 1+t
2 is an integer.

We can summarize this as follows.

1.1. Lemma. Let K be the n-fold covering of T , k ∈ {0, 1, . . . , n− 1}, and λ ∈ h∗. Then

the following conditions are equivalent:

(i) α (̌λ) /∈
{

2k
n

,−2k
n

}

+ 2Z + 1;
(ii) the standard module I(C∗, τk) is irreducible.

2. The irreducibility theorem

First we shall formulate the irreducibility result precisely. To do this we must analyze
in detail the parametrization of K-homogeneous connections compatible with λ + ρ ∈ h∗

on a K-orbit Q.
Fix x ∈ Q and denote by Bx the Borel subgroup of G with Lie algebra bx. Then

Sx = ϕ−1(ϕ(K) ∩ Bx) is the stabilizer of x in K. The Borel subalgebra bx contains a
σ-stable Cartan subalgebra c and all such Cartan subalgebras in bx are Sx-conjugate [7].
Therefore, Q determines a unique K-conjugacy class of σ-stable Cartan subalgebras of g.

The involution σ defines an involution on the root system R in c∗, and its pull-back by
the specialization map is an involution σQ on the root system Σ which depends only on
Q. Therefore we can divide the roots in Σ in the following groups: ΣQ,I = {α ∈ Σ | σQα =
α} − Q-imaginary roots

ΣQ,R = {α ∈ Σ | σQα = −α} − Q-real roots,
ΣQ,C = Σ − (ΣQ,I ∪ ΣQ,R) − Q-complex roots.
The Lie algebra sx = k ∩ bx of Sx is the semidirect product of t = k ∩ c with the

nilpotent radical ux = k∩ nx of sx. Let Ux be the unipotent subgroup of K corresponding
to ux; it is the unipotent radical of Sx. Let C be the torus in G corresponding to c.
Put T = ϕ−1(ϕ(K) ∩ C). Then Sx is the semidirect product of T with Ux. A K-
homogeneous connection τ on Q compatible with λ + ρ determines a finite-dimensional
algebraic representation ω of Sx on the geometric fibre Tx(τ) of τ at x. This representation
is trivial on Ux, hence it can be viewed as a representation of the group T . The differential of
the representation ω, considered as a representation of t, is a direct sum of a finite number of
copies of the one dimensional representation defined by the restriction of the specialization
of λ + ρ to t. What remains to be described is the action of the other components of Sx.
The information relevant for determination of irreducibility of standard Harish-Chandra
sheaves is determined by the action of the elements which will be described now.

Let α be a Q-real root. Denote by sα the three-dimensional simple algebra generated
by the root subspaces corresponding to α and −α. Let Sα be the connected subgroup of
G with Lie algebra sα; it is isomorphic either to SL(2, C) or to PSL(2, C). Denote by Hα

the element of sα ∩ c such that α(Hα) = 2. Then mα = exp(πiHα) ∈ G satisfies m2
α = 1.

Moreover, σ(mα) = exp(−πiHα) = m−1
α = mα. Clearly, mα = 1 if Sα

∼= PSL(2, C), and
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mα 6= 1 if Sα
∼= SL(2, C)—in the latter case mα corresponds to the negative of the identity

matrix in SL(2, C). Let kα = sα ∩ k; it is the Lie algebra of a one dimensional torus Kα in
K. Its image ϕ(Kα) in G is a torus in Sα. Therefore, mα ∈ ϕ(Kα). The composition of
ϕ : Kα −→ Sα and the covering projection Sα −→ Int(sα) is an n-fold covering map between
two one dimensional tori. If we identify Kα with C∗, the kernel of this map is isomorphic

to {e
2πip

n | 0 ≤ p ≤ n − 1}. Let nα correspond to e
2πi
n under this isomorphism (there are

two possible choices for nα and they are inverses of each other). Then ϕ maps nα to mα,
hence nα lies in T .

Let
D−(Q) = {β ∈ Σ+ ∩ ΣQ,C | − σQβ ∈ Σ+}.

Then D−(Q) is the union of −σQ-orbits consisting pairs {β,−σQβ}. Let A be a set of
representatives of −σQ-orbits in D−(Q). Then, for arbitrary Q-real root α, the number

δQ(mα) =
∏

β∈A

eβ(mα)

is independent of the choice of A and equal to ±1.
Following B. Speh and D. Vogan [12]1, we say that τ satisfies the SL2-parity condition

with respect to the Q-real root α if the spectrum of the linear transformation ω(nα) does
not contain −e±iπαˇ(λ)δQ(ϕ(nα)). Since nα is determined up to inversion, this condition
does not depend on the choice of nα. Clearly, this condition specializes to the condition of
1.1.(i) in our basic example.

Let Σα be the smallest σQ-invariant closed root subsystem of Σ containing α. Then
Σα ∩ Σ+ is a set of positive roots in Σα which contains α and −σQα. Put

C−(Q) = {α ∈ D−(Q) |α is minimal in {α,−σQα} with respect to the ordering of Σα}.

Then C−(Q) contains at least one representative of each −σQ-orbit in D−(Q). Finally, let

Σλ = {α ∈ Σ | α (̌λ) ∈ Z}

be the root subsystem of Σ consisting of all roots integral with respect to λ. We can now
state the main result of this paper.

2.1. Theorem. Let Q be a K-orbit in X, λ an element of h∗, and τ an irreducible K-

homogeneous connection on Q compatible with λ + ρ. Then the following conditions are

equivalent:

(i) C−(Q) ∩ Σλ = ∅, and τ satisfies the SL2-parity condition with respect to every

Q-real root in Σ; and

(ii) the standard Dλ-module I(Q, τ) is irreducible.

Let G̃ be a covering of G and σ the involution of G̃ determined by the involution σ of
g. Assume that K is the fixed point set of σ in G̃. Then we say that the pair (g, K) is
linear. In this case we have a slightly simpler criterion, which is equivalent to [12].

1In fact, they consider the reducibility condition, while ours is the irreducibility condition.
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2.2. Corollary. Assume that (g, K) is a linear pair. Let Q be a K-orbit in X, λ an

element of h∗, and τ an irreducible K-homogeneous connection on Q compatible with λ+ρ.
Then the following conditions are equivalent:

(i) D−(Q) ∩ Σλ = ∅, and τ satisfies the SL2-parity condition with respect to every

Q-real root in Σ; and

(ii) the standard Dλ-module I(Q, τ) is irreducible.

In the next example we show that, for a pair (g, K) which is not linear, the first condition
of 2.2 can fail for an irreducible standard module.

2.3. Example. Let G0 be the universal cover of SL(3, R), g its complexified Lie algebra,
K the complexification of a maximal compact subgroup of G0, and σ the corresponding
Cartan involution. Then σ acts on the Lie algebra g = sl(3, C) of all 3×3 complex matrices
of trace zero by σ(A) = −At, where At is the transpose of the matrix A.

There are two K-conjugacy classes of σ-stable Cartan subalgebras in g: (1) the “split”
class consisting of Cartan subalgebras on which σ acts as −1, which is represented by the
subalgebra of all diagonal matrices in g, and (2) the “fundamental” class consisting of
Cartan subalgebras on which σ acts as a reflection, represented by the Cartan subalgebra











a b 0
−b a 0
0 0 −2a





∣

∣

∣

∣

a, b ∈ C







.

The flag variety X of g is three dimensional, and the only K-orbit attached to the
“split” class of σ-stable Cartan subalgebras is the open orbit Qo.

For any fundamental σ-stable Cartan subalgebra c, the root system of (g, c) consists of
two imaginary roots and four complex roots. Let WK be the subgroup of the Weyl group
of (g, c) consisting of elements induced by the elements of K. Then the order of WK is
equal to 2, and the only nontrivial element of WK acts as −σ on c. It follows that there are
three K-orbits attached to the “fundamental” class of σ-stable Cartan subalgebras. The
closed orbit C, which is one dimensional, has the property that two simple roots in Σ+ are
permuted by σC . Therefore, both of them are C-complex and their sum is C-imaginary.
The remaining two orbits are two dimensional. They correspond to the cases where one
simple root is Q-imaginary.

Let x be a point in one of the K-orbits attached to the “fundamental” conjugacy class
of σ-stable Cartan subalgebras. Then the stabilizer Sx of that point in K is connected.
Therefore, every irreducible algebraic representation of Sx is one dimensional and com-
pletely determined by its differential.

Let Q be one of the two dimensional orbits. Let α be the Q-complex simple root and β
the Q-imaginary simple root. Then γ = α + β is the other Q-complex positive root, and
σQ(α) = −γ. Therefore, D−(Q) = {α, γ}, but C−(Q) = α.

By the preceding discussion, there is at most one irreducible K-homogeneous connection
on Q compatible with λ + ρ ∈ h∗. It exists if and only if β (̌λ) ∈ 1

2
Z. We denote the

corresponding standard module by I(Q, λ). Evidently, the quantity γ (̌λ) = α (̌λ)+β (̌λ),
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can be an integer without α (̌λ) being an integer, i.e., I(Q, λ) can be irreducible for λ
integral with respect to γ.

3. Intertwining functors

Let θ be a Weyl group orbit in h∗. We consider the derived category Db(Uθ) of bounded
complexes of Uθ-modules. For each λ ∈ h∗ we also consider the derived category Db(Dλ) of
bounded complexes of (quasi-coherent) Dλ-modules. The derived functor RΓ of the functor
of global sections Γ maps Db(Dλ) into Db(Uθ) since its right cohomological dimension is
≤ dim X . If λ is regular, this functor is an equivalence of categories [2]. On the other
hand, the localization functor L∆λ, defined by

L∆λ(V ·) = Dλ

L
⊗Uθ

V ·, V · ∈ Db(Uθ),

maps Db(Uθ) into the derived category D−(Dλ) of complexes bounded from below for
arbitrary λ. If λ is regular, the left cohomological dimension of ∆λ is finite, and L∆λ

defines a quasi-inverse of RΓ. This implies, in particular, that for any two λ, µ ∈ θ, the
categories Db(Dλ) and Db(Dµ) are equivalent. This equivalence is given by the functor
L∆µ◦RΓ from Db(Dλ) into Db(Dµ). We now describe another functor, defined in geometric
terms, which is (under certain conditions) isomorphic to L∆µ◦RΓ. This is the intertwining
functor of Beilinson and Bernstein ([2], [3]; for compete details see [9]).

Define the action of G = Int(g) on X × X by

g · (x, x′) = (g · x, g · x′)

for g ∈ G and (x, x′) ∈ X×X . The G-orbits in X×X can be parametrized in the following
way. First we introduce a relation between Borel subalgebras in g. Let b and b′ be two
Borel subalgebras in g. Let c be a Cartan subalgebra of g contained in b ∩ b′. Denote
by R the root system of (g, c) in c∗ and by R+ the set of positive roots determined by
b. This determines a specialization of the Cartan triple (h∗, Σ, Σ+) into (c∗, R, R+). On
the other hand, b′ determines another set of positive roots in R, which corresponds via
this specialization to w(Σ+) for some uniquely determined w ∈ W . The element w ∈ W
doesn’t depend on the choice of c, and we say that b′ is in relative position w with respect
to b.

Let

Zw = {(x, x′) ∈ X × X | bx′ is in the relative position w with respect to bx}

for w ∈ W . Then the map w −→ Zw is a bijection of W onto the set of G-orbits in X ×X ,
hence the sets Zw, w ∈ W, are smooth subvarieties of X × X .

Denote by p1 and p2 the projections of Zw onto the first and second factor in X × X ,
respectively. Let ΩZw|X be the invertible OZw

-module of top degree relative differential
forms for the projection p1 : Zw −→ X . Let Tw be its inverse. The twisted sheaves
of differential operators Dwλ and Dλ, “pulled back” to Zw by the projections p1 and p2
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respectively, determine twisted sheaves (Dwλ)p1 and Dp2

λ on Zw ([5], A.1). It is easy to
check that they differ by a Tw twist, i.e.,

(Dwλ)p1 = (Dp2

λ )Tw .

Since the morphism p2 : Zw −→ X is a surjective submersion, the inverse image p+
2 is an

exact functor from the category M(Dλ) of Dλ-modules into M((Dλ)p2). Twisting by Tw

defines an exact functor V −→ Tw ⊗OZw
p+
2 (V) from M(Dλ) into M((Dwλ)p1). Therefore,

we have a functor V · −→ Tw ⊗OZw
p+
2 (V ·) from Db(Dλ) into Db((Dwλ)p1). By composing

it with the direct image functor Rp1+ : Db((Dwλ)p1) −→ Db(Dwλ), we get the functor
from Db(Dλ) into Db(Dwλ) given by the formula

LIw(V ·) = Rp1+(Tw ⊗OZw
p+
2 (V ·))

for any V · ∈ Db(Dλ). This is the left derived functor of the functor

Iw(V) = R0p1+(Tw ⊗OZw
p+
2 (V))

from M(Dλ) into M(Dwλ). It is called the intertwining functor (attached to w ∈ W ).
Moreover, we have the following basic fact.

3.1. Proposition. Let w ∈ W and λ ∈ h∗. Then LIw is an equivalence of the category

Db(Dλ) with Db(Dwλ).

Intertwining functors satisfy a natural “product formula.” It allows the reduction of the
analysis of intertwining functors to the ones attached to simple reflections.

3.2. Proposition. Let w, w′ ∈ W be such that ℓ(w′w) = ℓ(w′) + ℓ(w). Then, for any

λ ∈ h∗, the functors LIw′ ◦ LIw and LIw′w from Db(Dλ) into Db(Dw′wλ) are isomorphic;

in particular the functors Iw ◦ Iw′ and Iw′w from M(Dλ) into M(Dw′wλ) are isomorphic.

Let α ∈ Σ. We say that λ ∈ h∗ is α-antidominant if α (̌λ) is not a strictly positive
integer. For any S ⊂ Σ+, we say that λ ∈ h∗ is S-antidominant if it is α-antidominant for
all α ∈ S. Put

Σ+
w = {α ∈ Σ+ |wα ∈ −Σ+} = Σ+ ∩ (−w−1(Σ+))

for any w ∈ W . The name of the functor LIw comes from the following basic result of
Beilinson and Bernstein to which we alluded before.

3.3. Theorem. Let w ∈ W and λ ∈ h∗ be Σ+
w-antidominant and regular. Then LIw is an

equivalence of the category Db(Dλ) with Db(Dwλ), isomorphic to L∆wλ ◦ RΓ.

We also have the following estimate for the left cohomological dimension of the inter-
twining functors.

3.4. Proposition. Let w ∈ W and λ ∈ h∗. Then the left cohomological dimension of Iw

is less than or equal to Card(Σ+
w ∩ Σλ).

In particular, we have the following consequence which is critical for our argument.

3.5. Corollary. Let w ∈ W and λ ∈ h∗ be such that Σ+
w ∩ Σλ = ∅. Then

Iw : M(Dλ) −→ M(Dwλ)

is an equivalence of categories and Iw−1 is its quasi-inverse.
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4. A sketch of the proof of the irreducibility theorem

The idea of the proof of the irreducibility theorem is simple. We shall show that, if
a standard Harish-Chandra sheaf is reducible, then there exists an intertwining functor
which is an equivalence of categories and which maps the original sheaf into a standard
Harish-Chandra sheaf for which the reducibility is obvious.

The standard Harish-Chandra sheaves attached to irreducible K-homogeneous connec-
tions on closed K-orbits are obviously irreducible. The analogous remark is all we need
in the Verma module case—in this case the orbits in question are just Bruhat cells C(w),
w ∈ W , in X . Since the stabilizers of the unipotent radical N of a Borel subgroup of G
are always connected, then for each Bruhat cell C(w) and λ ∈ h∗ there exists a unique
standard Dλ-module I(w, λ) supported on the closure of C(w). By a direct calculation [9],

Iw−1(I(1, w−1λ)) = I(w, λ).

If Iw satisfies the conditions of 3.5, it is an equivalence of categories and I(w, λ) is irre-
ducible. A slightly more careful argument also implies the necessity of this condition.

In the case of Harish-Chandra modules we cannot reduce the argument to the case of
a closed K-orbit. However, we can do the next best thing: we can reduce the argument
to the orbits of minimal dimension attached to a particular K-conjugacy class of σ-stable
Cartan subalgebras. The orbit Q has the minimal dimension among all K-orbits attached
to a particular conjugacy class of σ-stable Cartan subalgebras if and only if the set D−(Q)
is empty.

Assume that D−(Q) is not empty. Then it contains a simple root α, and this root must
be in C−(Q). Let Xα be the flag variety of all parabolic subalgebras of type α in g. Denote
by pα the natural projection of X onto Xα. Then p−1

α (pα(Q)) is a K-invariant subset of
X which is the union of two K-orbits: the orbit Q, and another orbit Q′ which satisfies
dim Q′ = dim Q − 1. The orbit Q′ is attached to the same conjugacy class of σ-stable
Cartan subalgebras as Q, but

D−(Q′) = sα(D−(Q) − {α,−σQα}),

i.e., CardD−(Q′) = CardD−(Q) − 2.
Let τ be an irreducible K-homogeneous connection on Q compatible with λ + ρ. Then

there exists an irreducible K-homogeneous connection τ ′ on Q′, compatible with sαλ + ρ,
such that the following result holds.2

4.1. Lemma.

Isα
(I(Q′, τ ′)) = I(Q, τ).

In addition, τ satisfies the SL2-parity condition with respect to a Q-real root β if and only

if τ ′ satisfies the SL2-parity condition with respect to the Q′-real root sαβ.

As was the case for the previous formula in the Verma module situation, this result is a
straightforward consequence of the geometry of K-orbits and the base change [4]. If α (̌λ)

2Compare with §6. of Schmid’s lecture in this volume [11].
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is not an integer, Isα
is an equivalence of categories by 3.5, and I(Q, τ) is irreducible if and

only if I(Q′, τ ′) is irreducible. On the other hand, if α (̌λ) is an integer, I(Q, τ) contains
an obvious submodule of local sections “which extend over Q′”—hence I(Q, τ) is reducible,
and we are done. This inductive argument allows us to eliminate D−(Q) completely and
reduce the discussion to the case of standard Harish-Chandra sheaves attached to orbits
of minimal dimension for a given conjugacy class of σ-stable Cartan subalgebras. This
procedure is not unique; in some situations we can choose several different simple complex
roots to do the reduction of dimension. Also, in each step we “lose” a pair of complex roots
from D−(Q), and the integrality of λ with respect to one of them doesn’t necessarily imply
the integrality with respect to the other (compare 2.3). Fortunately, the smaller set C−(Q)
has the property that it contains all “relevant” roots, and if it contains a pair {α,−σQα},
the integrality with respect to one of them implies integrality with respect to the other if
the SL2-parity condition holds for all Q-real roots. On the contrary, in the linear case, the
integrality of λ with respect to any Q-complex root α implies the integrality with respect
to σQα. This is the reason why we could use the full set D−(Q) in the corollary to the
main theorem.

This reduces the proof to the case of orbits of minimal dimension attached to a particular
conjugacy class of σ-stable Cartan subalgebras. Let Q be such K-orbit. Since D−(Q) is
empty in this situation, the set of all positive Q-complex roots is σQ-invariant. Therefore,
the union of positive roots and Q-real roots is a σQ-stable parabolic set of roots, and it
determines a generalized flag variety XΘ for some subset Θ of the set of simple roots in Σ.
Let pΘ be the corresponding natural projection from X onto XΘ. The projection pΘ(Q)
of the orbit Q to XΘ is a closed K-orbit in XΘ. Therefore, the inverse image p−1

Θ (pΘ(Q))

is a smooth closed subvariety in X invariant under the action of K. Let F = p−1
Θ (pΘ(x))

be a fibre of the projection pΘ passing through the point x ∈ Q. Let p be the parabolic
subalgebra determined by pΘ(x) and gΘ the Levi factor of p which contains the σ-stable
Cartan subalgebra c. Clearly gΘ is σ-stable. Let KΘ be the centralizer of the center of
gΘ in K. Then KΘ acts on gΘ by automorphisms and its Lie algebra is identified with
kΘ = k∩ gΘ. The map b 7−→ b∩ gΘ defines an isomorphism of F with the flag variety XΘ

of gΘ. The map Q′ 7−→ Q′∩F defines a bijection between the K-orbits in p−1
Θ (pΘ(Q)) and

KΘ-orbits in XΘ. A more careful analysis shows that an appropriate derived functor of the
“restriction” to F defines an equivalence of the full subcategory of Mcoh(Dλ, K) consisting
of modules supported in p−1

Θ (pΘ(Q)) with the corresponding category of D-modules on XΘ

and this equivalence maps standard Harish-Chandra sheaves into standard Harish-Chandra
sheaves.

Since Q ∩ F is dense in F , this reduces the proof to the case of standard modules
attached to the open K-orbit Q in the flag variety X . Also, Q is attached to a conjugacy
class of Cartan subalgebras on which σ acts as −1, i.e., all roots in Σ are Q-real. Let
τ be a K-homogeneous connection on Q. The stabilizer Sx of a point x ∈ Q is finite.
The intersection bx ∩ σ(bx) is equal to a σ-stable Cartan subalgebra c on which σ acts as
−1. Let α be a simple root. Then there exists the unique Borel subalgebra by, y ∈ X ,
containing c and in relative position sα with respect to bx. The point y is contained in
Q and its stabilizer Sy is equal to Sx. Therefore, the representation ω of Sx in Tx(τ)
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determines another K-homogeneous connection τα on Q such that the representation of
Sy = Sx in Ty(τα) is equal to ω. The next lemma follows again from the analysis of the
SL2-situation and the base change.

4.2. Lemma. Assume that τ satisfies the SL2-parity condition with respect to α. Then

Isα
(I(Q, τ)) = I(Q, τα).

If we assume in addition that p = −α (̌λ) is an integer,

Isα
(I(Q, τ)) = I(Q, τ)(pα) = I(Q, τ) ⊗OX

O(pα).

Moreover, if τ satisfies the SL2-parity condition with respect to a root β, τα satisfies the

SL2-parity condition with respect to sαβ.

Therefore, if α (̌λ) is not an integer, Isα
is an equivalence of categories by 3.5, and

I(Q, τ) is irreducible if and only if I(Q, τα) is irreducible. On the other hand, if α (̌λ) is
an integer, I(Q, τα) = I(Q, τ)(pα) and the same assertion is obvious. Therefore, to check
irreducibility, we can freely “move around” λ by the action of the Weyl group.

Assume that the SL2-parity condition fails for some root β. Then, by applying the inter-
twining functors, we can assume that it fails for a simple root. In this case the reducibility
is obvious: the standard Harish-Chandra sheaf has a submodule of local sections which
extend over a K-orbit of codimension one in X . This proves the necessity of the condition.
The sufficiency is equally simple. If the parity condition holds for all roots and I(Q, τ) is
reducible, then I(Q, τ) has a nontrivial quotient supported on a closed subvariety of X of
codimension ≥ 1. By applying the intertwining functors we can decrease the codimension
of the support of this quotient until it reaches 1 [2]. Let Q′ be a K-orbit of codimension
one in X contained in the support of this quotient. In this case there exists a simple root
α such that p−1

α (pα(Q′)) contains the open orbit Q. For an arbitrary point y ∈ Q′, its fibre
F = p−1

α (pα(y)) is isomorphic to P
1—the flag variety of sl(2, C)—and Q∩F corresponds to

C∗. On the other hand, Q′∩F corresponds to either {0} or {0,∞}. Since the restriction to
F of a standard Harish-Chandra sheaf attached to Q is a standard Harish-Chandra sheaf
on P1 of the type we discussed in 1, it is irreducible by 1.1. But this contradicts the fact
that it should have a quotient supported in {0,∞}. This completes the proof of the main
theorem.

Finally, we would like to make a remark about the relationship of our result with
the main result of Speh and Vogan [12]. Their result gives a necessary and sufficient
condition for irreducibility of the principal series representations for regular infinitesimal
characters and leaves the singular case open. The reason for this is that the Beilinson-
Bernstein equivalence of categories fails for singular infinitesimal characters—there exist
Dλ-modules with no cohomology at all! This allows global sections of reducible standard
Harish-Chandra sheaves to be irreducible in some cases. In the case of irreducible unitary
principal series representations, I. Mirković proved that they are always global sections of
some irreducible standard Harish-Chandra sheaf [10]; this explains relative simplicity of
the tempered spectrum of semisimple Lie groups.
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A completely analogous argument for irreducibility of standard modules works for the
category of generalized Verma modules [9] and the category of Whittaker modules [8].
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