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CHAPTER 1

Sheaves of differential operators

1. Twisted sheaves of differential operators

Let X be a smooth algebraic variety over an algebraically closed field £k of
characteristic zero, Ox the structure sheaf of X, 7x the tangent sheaf of X and
Dx the sheaf of differential operators on X. We consider the category of pairs (A, ),
where A is a sheaf of associative k-algebras with identity on X and i: Ox — A
a morphism of k-algebras with identity. The sheaf Dx with the natural inclusion
ix : Ox — Dx is an object of this category. We say that a pair (D, 1) is a twisted
sheaf of differential operators on X if it is locally isomorphic to the pair (Dx,ix),
i.e. if X admits a cover by open sets U such that (D|U,i|U) = (Dy,iv).

Now we want to discuss the natural parametrization of twisted sheaves of dif-
ferential operators on X. First we need some preparation.

1.1. LEMMA. Let ¢ be an endomorphism of (Dx,ix). Then there exists a closed
1-form w on X such that

P(§) =& —w(§)
for any local vector field £ € Tx , and ¢ is completely determined by w. In particular,
¢ is an automorphism of (Dx,ix).

PrROOF. Let f € Ox and € € Tx. Then
[9(€), f] = [6(&), ()] = o([&, f]) = o(£(f)) = £(S)-

Evaluating this on the function 1 we get

PE)(f) = &) + fo(O)().

Therefore, we can put w(§) = —¢(£)(1). Obviously, w is a 1-form on X. Also, we
have

w([§,n]) = =& n))(1) = = (2(E)d(n) — d(n)d(£)(1)

for £,m € Tx. Therefore,

dw (& An) = E(w(n)) —n(w(§)) —w([&n]) =0
for £,n € Tx, i.e. dw = 0 and w is closed. It is evident that ¢ is completely
determined by w. Also, ¢ preserves the filtration of Dx and the induced endomor-
phism Gr ¢ of GrDx is the identity morphism. This clearly implies that ¢ is an
automorphism. (Il

By 1.1, every automorphism ¢ of (Dx,ix) determines a closed 1-form w on X.
Evidently, this map is an monomorphism of the multiplicative group Aut(Dx,ix)
into the additive group Z'(X) of closed 1-forms on X.

1



2 1. SHEAVES OF DIFFERENTIAL OPERATORS

1.2. LEMMA. The natural morphism of Aut(Dx,ix) into Z1(X) is an isomor-
phism.

PROOF. It remains to show this morphism is surjective. Let w be a closed
1-form on X. Then we can define a map ¢ of Tx into Dx by ¢(§) = & — w(§), for
¢ € Tx. Evidently, ¢ satisfies conditions (ii) and (iii) of [9]. Also, since w is closed,
for £, € Tx, we have

o([&,n]) = [&m] —w(€,n]) = [€,1] — E(w(n)) +n(w(E))
=[§ —w(§),n —wmn)] = [0(&), d(n)];

i.e. the condition (i) is also satisfied. Therefore, ¢ extends to an endomorphism of
(Dx,ix). By 1.1, ¢ is actually an automorphism. |

Let (D,1) be a twisted sheaf of differential operators on X. Then there exists
an open cover U = (U;;1 < j < n) such that (D, )|U; is isomorphic to (Dy;,iv,)
for 1 < j < n. For each j fix an isomorphism ¢; : (D,)|U; — (Dy,,iv;). Then
there exist an automorphism ¢;; of (DUijk,inmUk) such that the diagram

(D,9)|U; N Uk

(DUjﬂUk)inﬁUk) (DUjﬁUk7inﬂUk)

Pk

commutes, i.e. 1; = ¢ 0 Y. By 1.2, there exists a closed 1-form wj, on U; N Uy
which determines ¢;. If U; N U, NU; # O we have on it

Y = Pjk © Yk = Pjk © Pr1 0 Yu,
hence, ¢;; = ;i 0 Y, on U; N U, NU;. This in turn implies that

¢1(&) = § —wji(§) = (Pjk © Pr1)(§) = Pjr(§ — wri(§)) = & — wjn(§) — wri(§)

for § (S TUjﬂUkﬁUu i.e.
Wil = Wik + Wkl
on Uj NUL.NU,.

Let Z% be the sheaf of closed 1-forms on X, and C" (U, Z%) the Cech complex
of Z% corresponding to the cover Y. Then w = (w;r;1 < j < k < n) is an element
of CY(U, Z%) and dw = 0, i.e. w € Z'(U, Z%). Assume now that we take another
set of local isomorphisms ¢} : (D,4)|U; — (Dy;,iv,), 1 < j < n. This would lead
to another set (¢};;1 < j < k < n) and another v’ € Z'(U, Z%). Applying 1.2
again, we can get automorphisms o; of (Dy,, iy, ), 1 < j < n, such that ¢} = o;01);
for 1 < j < n and closed 1-forms p;, 1 < j < n, associated to them. Evidently,
p=(pj;1 <j<n)isan element of C°(U, Z%). Now, we have

00 G 0k = 0j 01 = i = By 0 Y = @y 0 ok 0 Yy
on U; N Uy, hence 0 0 ¢, = ¢}k o oy. This leads to

Py + Wik = Wik + i
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on U; NUy. It follows that w’ —w = dp. Therefore, the twisted sheaf of differential
operators (D, i) determines an element of H!(U, Z%).

Therefore we have a well-defined map ¢ : (D,i) — ¢(D,i) € H'(X, Z%) from
the isomorphism classes of twisted sheaves of differential operators into the first
Cech group of X with coefficients in Z%.

1.3. THEOREM. The map t defines a bijection between the isomorphism classes
of twisted sheaves of differential operators on X and the elements of H (X, Z%).

PRrOOF. First, we shall check that this map is injective. Let D and D’ be two
twisted sheaves of differential operators such that ¢(D) = ¢(D’). Then both of them
determine an open cover U = (Uj;1 < j < n) and w,w’ € Z'(U, Z%) such that
they define the same element of H'(X, Z%); and families of local isomorphisms
Yj : DIU; — Dy;, 1 <j <n, and ¢} : D'|U; — Dy, 1 < j < n, as explained in
the previous discussion. By taking possibly a refinement of U, we can assume that
w —w' = dp for some p = (p;;1 < j < n) € COU, Z%). Let o; : Dy, — Dy, be
the automorphism determined by p;, 1 < j < n. Then ¢ =0;0¢}, 1 <j <n,is
a family of local isomorphisms ¢7 : D'|Uj — Dy, with the property that

00 Qi oy, =050 =P =l oyl = ¢ ook oy
and therefore o 0 ¢ = ¢’/ ooy, L. ¢y = 0508 0 o, ' on U;j NUy. This implies
that w = wjy + pj — pr on U; N Uy, Le. w” = w' 4+ dp = w. This finally implies
that ¢;x = @7, on U; N Ug. Define local isomorphisms ¢; : D|U; — D'|U; by
0; = 1/1;-’_1 o1 for 1 < j < n. Then, on U; N Uy, we have

-1 _ -1
0; =) oty = (Gjrovy) odir otk =1y ot = b,
and 6 extends to a global isomorphism of D onto D'.

The proof of the surjectivity is the standard “recollement” argument using
1.2. O

Now we shall describe a construction of some twisted sheaves of differential
operators on X. Let £ be an invertible Ox-module on X and D, the sheaf of all
differential endomorphisms of £. Because L is locally isomorphic to Ox, D, is a
twisted sheaf of differential operators on X. Let O% be the subsheaf of invertible
elements in Ox. Then, as it is well known, the Picard group Pic(X) is equal to
H'(X,0%). There exists a natural homomorphism dlog : O% — Z% of sheaves
of abelian groups given by the logarithmic derivative, i.e. dlog f = f~'df, for
any f € O%. It induces morphisms HP(dlog) : HP(X,0%) — HP(X,Z%) of
cohomology groups. Let i(£) be the element of H!(X,O%) corresponding to L.
Then we have the following result.

1.4. PROPOSITION. For any invertible Ox-module L on X,
(D) = H'(dlog)(i(L)).
ProOF. Let U = (U;;1 < i < n) be an open cover of X such that L£|U; is
isomorphic to Ox|U; for all 4, 1 < ¢ < n. Denote by «; : L|U; — Ox|U;,
1 <¢ < n, the corresponding O x-module isomorphisms, and by s;; the sections of

O% on U; N Uy, defined by s;, = a;(a;'(1)) for all 1 < j < k < n. Then, for a
section s of L|U; N Uy,

a;(s) = aj(ay (ar(s)) = sjrax(s),
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ie. s = (sjr;1 <j <k <n)isa l-cocycle which represents i(£). Also, o; defines
an isomorphism v; of D, |U; onto Dx|U; by ¥;(u) = a; ou o a;l forall1 <i<n.
This implies that

() (f) = (e owo a; ) (f) = aj(ula; ™ (f)))
= sjpok(u(ay (55, 1)) = sinton(u) (s, ),
for any f € Ox|U; N Uy. Therefore, 9;(u) = sjkwk(u)sj_kl. It follows that
$jk(D) = s;rDs3,},
for any D € Dx|U; NUy. Let ¢ € Tx|U; N Uy. Then,
Dk (C) = 851 C 5 = C — 555 Csin),

ie. wjr = s;kl dsji. Therefore, the 1-cocycle w which represents t(D.) is given by
(s;k1 dsjr;1 <i<j<n). O

Now we want to study the functoriality questions.

Let X and Y be two smooth algebraic varieties, ¢ : X — Y a morphism
of algebraic varieties and D a twisted sheaf of differential operators on Y. Then
Dx_y = ¢*(D) is an Ox-module for the left multiplication and a right ¢ ~1(D)-
module for the right multiplication. We denote by D¥ the sheaf of all differential
endomorphisms of the right ¢ ~!(D)-module Dx_,y. Evidently, D¥ is a sheaf of
associative algebras on Y. There is also a natural morphism of sheaves of alge-
bras i, : Ox — D¥. Hence, from [9] we know that the pair (D¥,14,) is locally
isomorphic to (Dx,ix), i.e. D? is a twisted sheaf of differential operators on X.

By 1.3, D¥ determines an element t(D¥) of H'(X,Z%). Now we want to
calculate t(D?).

First we need a lifting result. Let (C,4) and (D,j) be two twisted sheaves of
differential operators on Y, and ¢ : (C,i) — (D, j) an isomorphism. Therefore,
1 is an Oy-module isomorphism for the structures given by both left and right
multiplication. Hence, ¢ induces an Ox-module isomorphism ¢*(¢) : Cx_y —
Dx_y of Ox-modules. Also, if u € Cx_,y, v € p~1(C), we have

¢* (W) (uv) = 9" () (W)™ () (v).
It follows that, for any 2z € C¥, u € Dx_.y, v € o~ (D), we have

(@ ()zp* (™) (ww) = ¢ () (" (W) (W™ (¥ 7H)(v)))
= " () ((z¢" @ (W)™ ()W) = (¥ ()" (1)) (W),
i.e. p*(1)zp*(1h~1) € D¥. Hence, if we put
" (V) (2) = p* (1) 20" (1),

" (1p) : C¥ — D¥ is an isomorphism of sheaves of k-algebras on X. Evidently,
jo = " () 0i,. Therefore, o7 (1) is an isomorphism of twisted sheaves of differ-
ential operators. We call it the [lifting of ¥. Also, for any z € C¥, u € Cx_,y, we
have
(o (0)(2)" () () = " () (210).

Now, we consider the special case of an automorphism a of Dy. By 1.2, it is
determined by a closed 1-form w on Y. By [9], there is a natural isomorphism
d of the pair (Dx,ix) with (DY, iy,,). We want to calculate the automorphism



1. TWISTED SHEAVES OF DIFFERENTIAL OPERATORS 5

induced by the lifting ¢# () of a on Dx; more precisely, the closed 1-form on X
it determines by 1.2.

Let € X and U a small open neighborhood of ¢(z) € Y such that we can
find f; € Oy(U), 1 <i<dimY, such that df;, 1 <i <dimY, form a basis of the
free Oy-module T *y |U. Let 0;, be the dual basis in Ty |U. Then, as we have seen
in [9], for a local vector field £ around x, we have

Y(e*(a)(€)(1) = Ble* () () (1 ® 1)) = Ble* (@) (£(1 ® 1))
Bl (@)D _&(fiop) @9 ':) = BO_&(fiop) @ ¢ (ad))
== &fiop)w(d) = —w(D_&(fiop)di) = —(¢*w)(2),

here we denoted by ¢*w the 1-form on X induced by w. Therefore ¢*w is the closed
1-form associated to ¢ ().

Now we can apply this fact to the calculation of ¢t(D?). Let U = (U;;1 < i <
n) be an open cover of X and v; : (D,i)|[U; — (Dy,iy)|U; the corresponding
isomorphisms. As before, for 1 < j < k < n, denote by ¢, the automorphisms of
(Dy iy )|U; NUy such that ¢; = ¢jro0th;. Let V = (V;;1 < i < n) be the open cover
of X given by V; = ¢~ 1(U;), 1 < i < n. Then, the lifting ¢ (1;) is an isomorphism
of (D¥,i,)|U; onto (Dx,ix)|U;, and the liftings ¢# (¢;)) are automorphisms of
(Dy, iy)|U; N Uy such that

07 (1) = 0*(B1) 0 " (1r),

for 1 < j < k < n. From the previous discussion it follows that, if w = (w;r;1 < j <
k < n) is a 1-cocycle of closed 1-forms on Y corresponding to D, then (p*wj;1 <
j < k <mn)is a l-cocycle of closed 1-forms on X corresponding to D¥. The map
w — p*w of closed 1-forms on Y into closed 1-forms on X induces a morphism
0 Y(Z}) — Z% of the sheaves of vector spaces. This morphism, using [6, 3.2.2],
induces linear maps Z?(p) : HP(Y, 2{) — HP(X, Z%) for each p € Z,. Therefore,
our previous discussion actually proves the following result.

1.5. PROPOSITION. Let ¢ : X — Y be a morphism of smooth algebraic vari-
eties, and D a twisted sheaf of differential operators on'Y . Then

t(D?) = Z'(p)(H(D))-

Moreover, the construction behaves well with respect to the composition of
morphisms.

1.6. PROPOSITION. Let o : X — Y and ¢ : Y — Z be morphisms of smooth
algebraic varieties and D a twisted sheaf of differential operators on Z. Then DV°¥
is naturally isomorphic to (D¥)¥.

Proor. Evidently,

(Wop)* (D) =¢*" (¥ (D) = ¢"(Dy—z) = Ox ®p-1(0y) ¥ (Dy—2)
= Ox®p-1(0y)¢  (D¥)@y-1(ps)0 " (Dyoz) = (DY) x5y @p-1(pvy” (Dy—z)
as an Ox-module and right (1 o ¢)~!(D)-module. Also, the action of (D¥)¥ on
the first factor in the last expression evidently commutes with the right action of

(¢ 0 ) 1(D). Therefore, there is a natural morphism of (D¥)¥ into D¥°?. By 1.1,
this morphism is an isomorphism of twisted sheaves of differential operators. O
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In the following we shall identify (D¥)%® with D¥°¢ using this isomorphism.

Another construction we want to discuss is the twist of a twisted sheaf of dif-
ferential operators D on a smooth algebraic variety X by an invertible O x-module
L. If we consider D as an Ox-module for the left multiplication, we can form
the Ox-module £ ®p, D. The sheaf L ®o, D is a right D-module for the right
multiplication on the second factor. Therefore, we can consider the sheaf D% of
local differential endomorphisms of the right D-module £ ®p, D. It is obviously
a sheaf of k-algebras on X. Also, because £ ®p, D is an Ox-module, there is a
natural homomorphism iy : Ox — D~ . We claim that (’DL ,ir) is a twisted sheaf
of differential operators on X. Let U = (U;;1 < i < n) be an open cover of X
such that £|U; is isomorphic to Ox|U; and D|U; is isomorphic to Dx|U;. There-
fore, as an Ox|U;-module, (£ ®o, D)|U; is isomorphic to Dx|U;. Also, under
this isomorphism, the right D|U;-action on (£ ®o, D)|U; corresponds to the right
Dx|Ui-action on Dx|U;. This induces an isomorphism of the sheaves of differential
endomorphisms, and therefore identifies D*|U; with the sheaf of differential endo-
morphisms of Dx|U; considered as a right Dx|U;-module. Evidently, this sheaf
of algebras is naturally isomorphic to Dx|U;. Therefore, D* is a twisted sheaf of
differential operators on X. It is called the twist of D by L.

We start the study of twists with the following result.

1.7. LEMMA. Let L be an invertible Ox -module on a smooth algebraic variety
X. Then the twist (Dx)* of the sheaf of differential operators Dx is naturally
isomorphic to Dp.

PROOF. Let Zx be the left ideal in Dx generated by Tx. Then, we have an
exact sequence of Ox-modules

0—Zx —Dx — Ox — 0,
and, by tensoring with L,
00— L®oyIx — Loy Dx — L — 0.

From the construction of (Dx)¥ is clear that this is an exact sequence of (Dx)*-
modules. Therefore there is a natural morphism of (Dx)* into Dz. By 1.1, it is an
isomorphism of twisted sheaves of differential operators. (I

In the following we shall identify (Dx)* with D, using this isomorphism.

1.8. PROPOSITION. Let D be a twisted sheaf of differential operators on a smooth
algebraic variety X and L an invertible Ox -module. Then

t(D*) = t(D) + H'(d1og)(i(L)).

PrOOF. Let U = (U;;1 < i < n) be an open cover of X, and «; : LIU; —
Ox|U; and ¢; : (D,4)|U; — (Dx,ix)|U;, 1 < i < n, local isomorphisms. As in the
proofs of 1.3 and 1.4, we denote by ¢, the automorphisms of (Dx,ix)|U;NUy such
that v¥; = ¢;i 0 ¥y and sj;, = aj(alzl(l)) €Oy forl1<j<k<n Forl<i<n,
o =0a; ®Y; : (L R®py D)|U; — Dx|U; is an isomorphism of Ox-modules, and

oi(s ® uv) = a;(s)i(uv) = a;(s)i(w) i (v) = oi(s @ u)i(v),

for s € L|U;, u,v € D|U;. Therefore, if we identify the differential endomorphisms
of Dx, considered as a right Dx-module for the right multiplication, with Dx via
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the map T — T'(1), we have a natural isomorphism 7; : D*|U; — Dx|U; given
by
7i(u) = (i ouo oy (1) = gi(ula; (1) ® 1)).
Also, for 1 < j <k <mn,
(s ®v) = ()Y (v) = sjr(s)Pk (Vi (v)) = sjkdjr(or(s ®v)),

for any s € L|U; N Uy and v € D|U; N Uy, what implies that

7j(u) = oj(u(a; (1) @ 1)) = sjpdjk(on(ulsy, o ' (1) © 1))

= sipin(on(u(ag (1) @ s340))) = sjudin(on(u(ag (1) @ 1)s3,)))
= sirdir(on(ulog (1) @ 1)s = sjudsn(tr(w)ss,
for u € D*|U; N Uy. If we put
pik(v) = 8605k(v)s5,

for v € Dx|U; N Uy, we get an automorphism pji of Dx|U; N Uy such that 7; =

pjk © Tk As before, denote by w = (wjx;1 < j < k < n) the element of C' (U, Z5)
corresponding to (¢x;1 < j <k <n). Let £ € Tx|U; NUy. Then

pik(€) = siudin(€)ssy = sjk(€ — wik(€))sj, =& — 3 ds;n(€) — win(§),
hence, the element of C'(U, Z%) corresponding to (p;r;1 < j < k < n) is equal to
(wjk+5;k1dsjk;1§j<k§n). O

1.9. PROPOSITION. Let D be a twisted sheaf of differential operators on X and

L and L' two invertible Ox -modules. Then the twisted sheaf of differential operators

(DEYE" is naturally isomorphic to DX ®ox £,

ProOOF. Evidently,
L ®Royx Lo, D= (ﬁl Rox DL> Qpe ([: Koy D),

as an Ox-module and right D-module. Therefore, the right action of (D£)£" on
the first factor in the second expression commutes with the right D-action. This
gives a natural morphism of (Dﬁ)ﬁl into DL ®ox L, By 1.1, this morphism is an
isomorphism of twisted sheaves of differential operators. ([

In the following we shall identify (Dﬁ)‘:l with DX ®ox £ using this isomorphism.

1.10. PROPOSITION. Let ¢ : X — Y be a morphism of smooth algebraic
varieties, D a twisted sheaf of differential operators on'Y and L an invertible Oy -
module. Then the twisted sheaf of differential operators (D)? is naturally isomor-
phic to (D¥)¥¢ (£,

PrOOF. Evidently,
Dx_y = ¢"(D) = " (L' ®o, L B0, D) = ¢* (L) ®oy ¢*(L ®0o, D)
= 0" (L)' ®oy (D) x5y ®p-1(pe) ¢~ (L ®oy D)
= (¢"(£) ®oyx (DX)?) @peye (D) xoy @p-1(pey ¢ (L @0y D),

as a Ox-module and right ¢~!(D)-module. It is clear that the left action of
((D%)#)?"(£) on the first factor commutes with the right action of ¢~ (D). There-
fore there is a natural morphism of ((D%)%)% (£) into D¥. By 1.1, this is an
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isomorphism of twisted sheaves of differential operators. By twisting this natural
isomorphism by ¢*(£) and using 1.9, we get that (D)% is naturally isomorphic to
(Dsa)sa*(ll). 0

If A is a sheaf of k-algebras on X, we denote by A° the opposite sheaf of
k-algebras on X.

1.11. PROPOSITION. Let (D, 1) be a twisted sheaf of differential operators on a

smooth algebraic variety X. Then (D°,1) is a twisted sheaf of differential operators
on X.

Let n = dim X and wx be the sheaf of differential forms of degree n on X.
Then there is a natural action of the sheaf of Lie algebras Tx on the sheaf wx; a
vector field £ acts by the corresponding Lie derivative L¢. In fact, if U is an open
set in X, w € wx(U), and &, 1,72, . ..,n, local vector fields on U, we have

n

(Lew)(&r Ana AL Any) = E(w(m /\ng/\.../\nn))—Zw(m/\.../\[5,771-]/\.../\7771).
i=1

Let £ and & be local vector fields on U. Then

(L, LeJw)(m Ao Amn) = E(Lgw)(m A - Ann)) = & ((Lew)(m A~ A1)

n

- Z(Lg/w)(m AANED]A L AT +Z(L§w)(n1 A NE A A

= [& @A Am))+ D wlm A AL A An)

i=1

=Y wlm A A E A Am) = [6ET Wl AL A))
i=1

n

1=1

showing that this is an action of a sheaf of Lie algebras.
Also, for a regular function f on U an a vector field £ we have

Le(fw)m A ... Any) =£(fW(m/\-~.Ann))—ZfW(m/\---A[&m]A---/\nn)

= (§(f)w + fLe(W)(m Ao Amp).

This immediately implies that [L¢, f] = &(f), i.e. L¢ is a first order differential
operator on wx.

Taking a small U, we can assume that Ty is a free Oy-module, i.e. we can find
local vector fields 11,72, ...,m, on U which form a Op-basis of Tyy. Then we can
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represent £ as = Y., g;7; for some g; € Op. This implies that

n

(Lpew)(m Ao Ann) = fE(wm A ... An)) — Zw(m A NS A A )

=f£(w(n1/\.--Ann))—wa(mA--~/\[§»m]/\~--Ann)

Y wlm A AN (FEA. . AN) = FLe(@) (A An)+ Y 0i(F)giw(mA. .. A1)
i=1 i=1
= (fLe(w) +E(f)w)(m A ... Ann)Le(fw)(m Amg Ao Amy),

i.e. Lye = L¢ f. This implies that the map A : { = —L¢ is an Ox-module morphism
from Tx into D, , considered as an Ox-module for the right multiplication. It has
the property that

A€, m]) = M), A(©)]

for &,n € Tx. Therefore, it extends, by [9], to a morphism of the sheaf of k-algebras
Dx into Dy, which is the identity on Ox. By 1.1, this implies that it is actually
an isomorphism.

Hence, we have the following result.

1.12. LEMMA. Let X be a smooth algebraic variety of dimension n. Let wx be
the invertible Ox-module of differential n-forms on X. Then the pair (D%,ix) is
naturally isomorphic to (Duy s twy )-

This result immediately implies 1.11. Therefore, we can calculate the isomor-
phism class of D°.

1.13. PROPOSITION. Let X be a smooth algebraic variety and D a twisted sheaf
of differential operators on X. Then

HD°) = —4(D) + H'(dlog)(i(wx))-

PrOOF. Let U = (U;;1 < i < n) be an open cover of X, and v, : (D,q)|U; —
(Du,,iu,) corresponding isomorphisms. As before, for 1 < 5 < k < n, denote by
¢jr the automorphisms of (Dy,nv, ,iv,nv,) such that ¢; = ¢jx o r. Let wjz be
the closed 1-form determined by ¢;i by 1.2, i.e. such that ¢;,(£) = £ — w;x () for
any local vector field £ on U; N Uy. Then 9;, 1 <4 < n, are also isomorphisms of
(D°,1)|U; onto (D%, ix)|U;. The composition with the map A which we introduced
in the proof of 1.11 gives us isomorphisms 7; : (D°,1)|U; — (D, twy )|Uis 1 <
i < n. Also, the automorphisms ¢;;, define, by ojr = Ao ¢ 0 A~!, automorphisms
of (Duy,twy )|U; N Uy such that 7; = ojp 07, 1 < j < k < n. Evidently, o, is
determined by

aik(ME)) = M9k (§)) = A& — wjr(§)) = A(E) — wjr(§)

for any local vector field £ on U; N Uy. We can assume that, the open sets U; are
so small that there exist Op,-module isomorphisms «; : wy, — Oy,, 1 < i < n.
Then they define isomorphisms 3; : (Duy,siwy,) — (Du,siv,), 1 < i < n, by
Bi(n) = a;onoa;! for any n € Dy, - Also, as in the proof of 1.4, we put
Sjk = aj(ak_,l(l)) forall 1 < j < k g/n. The composition v; = §; o 7; is an
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isomorphism of (D°,4)|U; onto (Dy,,iy,) for 1 < i < n. The automorphisms
Ok :ﬂjoajkoﬂk_l, 1 < j <k < n, satisty
vj = BjoTj=pjo0k0Tk=_Jko.

Let £ be a local vector field on U; N Uj. Then, for f € Ox,

BiNO)(f) = ai(ME)a; ' (f)) = ai(AE) (fai (1))
= —ai(Le(fai ' (1)) = =E(f) + Bi(AE) (L),
hence, we have
B H(E) = =AE) + Bi(A©) (1)
This leads to

3k (€) = B0k (B 1 (€)) = =B;(0r(N€))) + Br(A(€))(1)
= =Bi(M¢5x(£))) + Br(A(€))(1) = =B5(A(E)) + wjr(§) + Br(A(§))(1)
=&+ wi(€) — Bi(AE) (1) + Br(AE)) (1)

As in the proof of 1.4, we see that 8;(A\(€)) = sjk,Bk()\(g))s;kl, what implies that

BiMEN M) = s0Br(AE)) (570 ) = —sx€(s7, ) + Be(A(€) (D),
and finally

9k (§) = &+ wjn(§) — B3 (A(€))(1) + Br(AE))(1)
= &+ win(€) — 555 dsjr(€) = € — (—wjn + s dsju) ().
[l

2. Homogeneous twisted sheaves of differential operators

Let G be a connected algebraic group over an algebraically closed field k of
characteristic zero and X its homogeneous space. By differentiation of the action
of G on the structure sheaf Ox of X we get an algebra homomorphism 7 : U(g) —
I['(X,Dx). Clearly, this map is G-equivariant.

Let D be a twisted sheaf of differential operators on X with an algebraic action
~ of G and a morphism of algebras « : U(g) — I'(X, D) such that

(i) the multiplication in D is G-equivariant;
(i) the differential of the G-action on D agrees with the action T' — [«(§), T
for ¢ egand T € D.

(iii) the map « : U(g) — I'(X, D) is a morphism of G-modules.

Then the triple (D,~, «) is called a homogeneous twisted sheaf of differential op-
erators on X. In this section we shall classify all homogeneous twisted sheaves of
differential operators on X.

Clearly, Dx with the natural action of G and the homomorphism 7 defines a
homogeneous twisted sheaf of differential operators on X.

On the sheaf U° = Ox @, U(g) of vector spaces on X we can define a structure
of the tensor product of U(g)-modules by putting

Efen)=1Efeon+ fen,



2. HOMOGENEOUS TWISTED SHEAVES OF DIFFERENTIAL OPERATORS 11

for £ € g, n € U(g) and f € Ox. On the other hand, U° = Ox ®; U(g) has a
structure of an Ox-module, by multiplication on the first factor. Moreover,

€, 9l(fon) =E&gf @n) —gf(fen) =1 (9)fon=I[r(),9f®@n

for £ € g, n € U(g) and f,g € Ox. This implies that U(g) acts by differential
operators on U°, and the corresponding homomorphism ¥ of U(g) into the ring of
differential operators Diff (/°) on U° is compatible with the filtrations by degree.
We can extend ¥ to a Ox-module morphism of Ox ®j, U(g) into Diff (4°) which
attaches to f®¢, f € Ox and € € U(g), the differential operator fU(£) € Diff (U°).
For f € Ox and £ € U(g) we have

Y(feH)lel)=[frElel)=Ffag,
what implies that U : Ox ® U(g) — Diff(4°) is injective. We claim that its
image is a sheaf of subrings of Diff (i/°). Clearly, it is an Ox-module for the left
multiplication and a right W(U(g))-module for the right multiplication. Therefore,
it remains to show that for any f € Ox, £ € g, the differential operator U () f is
in the image of ¥. On the other hand,

(&) =[(E), [l + f¥(E) =7(&)f + f¥(E)

and the last expression is evidently in U(Ox ®j U(g)). This implies that &/° has a
natural structure of a sheaf of rings such that ¥ : &° — Diff(4°) is a homomor-
phism. Moreover, the multiplication is given by
(f@&gen) =frgen+ fgadn
for any f,g € Ox, £ € g and nn € U(g). From this it follows that 7 extends to a
homomorphism of the sheaf of rings U° into Dx. Let g° = Ox ®y g, considered as
O x-submodule of &/°. Then
[fe&gen=frgen—gr)f @&+ fg® (& )]

for any f,g € Ox and £,n € g; what implies that g° is a sheaf of Lie algebras with
this operation. By this calculation, we see that 7 defines a homomorphism of g°
into the sheaf of local vector fields Tx on X, which we denote by 7 too.

2.1. LEMMA. The morphism 7 : g° — Tx is an epimorphism.

PrOOF. Both Ox-modules g° and Tx are locally free, hence the statement
follows from the fact that the linear map 7T (7) the morphism 7 induces on geometric
fibres of g° and Tx at any x € X is surjective. (I

We can define an increasing filtration on U4° by putting
F,U°=0x @i FpU(g) for any p € Z,

where FU/(g) is the standard filtration of the enveloping algebra U(g). Clearly, this
filtration is compatible with the algebra structure on U4° and with the homomor-
phism 7 : U° — Dx. Also,

Fo°=0x , F1lU° =0x & ¢°,

and F1 U° generates U° as a sheaf of algebras.
Denote by b° the kernel of 7 : g° — Tx. Then b° is a sheaf of ideals in g°.
Moreover, if > f; ® & € b° and g € Ox, we have

[Zfi@)fhg@l} => fir(€)g@1=0;
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and this implies that Jy = b°U° is a sheaf of two-sided ideals in U/°.

2.2. PROPOSITION. (i) The morphism 7 :U° — Dx is an epimorphism.
(ii) The kernel of T : U° — Dx is the sheaf of ideals Jy.

PROOF. (i) Follows from 1.1 and the fact that Dx is generated by Ox and Tx.
(ii) Clearly, Jo = b°U° is contained in the kernel of 7. Also, for any = € X,
the geometric fibre T, (Jp) = b U (g) is the kernel of the linear map T, (7) from the
geometric fibre T, (U°) = U(g) of U° into the geometric fibre of Dx at x. O

Now we want to prove an analogous result for homogeneous twisted sheaves of
differential operators on X.

Let (D,~,a) be a homogeneous twisted sheaf of differential operators on X.
Then, by (ii), for any £ € g and f € Oy,

[a(§), f1 = [7(&), f1 = T(&)f.

In particular, we see that [[«(€), f],g] = 0 for arbitrary f,g € Ox, hence «a(§) is
of degree < 1 for any £ € g. We define a map UY° — D by f @ T +— fa(T) for
f € Ox and T € U(g), and by abuse of notation, denote it by «a again. Then

a((f@gen) =a(fr(@)ge@n+ fg@&n) = fr(€)(9) aln) + fga(én)
= fla(), gla(n) + fga(&a(n) = fa(§)ga(n) = a(f ® §al(g ®@n),

for any f,g € Ox and &,n € g. Therefore, a extends to a morphism of sheaves
of rings which is compatible with the natural filtrations. Since GrD = S(Tx) =
GrDx and it is generated by Gr; D as an Ox-algebra, we immediately conclude
that Gra = Gr7 and Gra : Grid® — Gr D is an epimorphism of sheaves of rings.
This implies that «(b°) C Ox, i.e. a defines a G-equivariant morphisms o of the
G-homogeneous O x-module b° into Ox.

Fix a base point o € X. Its stabilizer By acts in on the dual space b§ of bg.
Denote by I(b§) the subspace of Bp-invariants in b§. Then we have the natural
linear isomorphism between I(bg) and the space of all G-equivariant morphisms o
of the G-homogeneous O x-module b° into Ox. Therefore, (D,, «) determines an
element of I(bf).

To each A € I(b}) we can associate a G-equivariant morphism o of the G-
homogeneous Ox-module b° into Ox. Let vy : b° — U° given by pi(s) =
s —ox(s), s € b°. Then im @) generates a sheaf of two-sided ideals Jy in U°. We
put

Dx=U/Tx.

This is a sheaf of algebras on X.

2.3. PROPOSITION. The sheaf of algebras Dx » is a twisted sheaf of differential
operators on X.

We say that Dx y is the homogeneous twisted sheaf of differential operators on
X associated to .

As a consequence of the preceding discussion and 2.2, we have the following
result.

2.4. THEOREM. The map A — Dx x is an isomorphism of I(b§) onto the set
of isomorphism classes of homogeneous twisted sheaves of differential operators on

X.
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PROOF. Let (D,~,a) be a homogeneous twisted sheaf of differential operators
on X. Then, by the preceding discussion it determines a unique A € I(bf). More-
over, Jy is in the kernel of the homomorphism « : 4° — D. This implies that
o induces a homomorphism 8 : Dx y — D of sheaves of rings which is com-
patible with the filtrations of Dx x and D, and with the natural maps of U(g)
into I'(X, Dx ) and I'(X, D) respectively. Also, Gr 3 is an isomorphism of graded
sheaves of rings. This implies that 3 is an isomorphism too. (I

To prove 2.3, by 2.2 and the G-homogeneity, it is enough to find a neighborhood
U of the base point 2y and a local automorphism ¥y of U°|U such that U,|Oy =1

and W (Jo|U) = Ti|U.
Let U be an open set in X. Now we want to describe some automorphisms p
of U°|U with the following properties:

(i) p(f) = [ for any f € Oy,
(ii) Grp is the identity.

Clearly, p is completely determined by its values on 1 ® £, £ € g. Moreover, (ii)
implies that p(1®¢&) =1® & —w(§) ® 1 where w(§) € O(U). By (i) we also have

p(fe&=Ffof-ful@)el

for any f € Oy and £ € g. To be an automorphism, p has to satisfy also

p(l@&1en)=[p(lef),p(len] =11 n -7 whn) @1+ 1(nw(§) @1,
w([&n]) = T(Ew(n) — T(Nw(E) (1)

for any &, € g. Therefore, w is a linear map from g into O(U) which is annihilated
by the differential of the Lie algebra cohomology of g with coefficients in O(U).
Moreover, we can extend w to an Op-module morphism of g°|U into Oy given by

w(f ®&) = fw() for f € Oy and £ € g.
The relation (1) implies that

w(lf @& g@n]) = faw([& ) + fr(€)(gwn) — gr(n)(fw(E)
= f1(&)(gw(n)) — gr(n)(fw(§)) = T(f @& (w(g®@n)) — (g @ n)(w(f ®E));

i.e. for any two sections s, s’ € g°|U we have

w([s, s']) = 7(s)(w(s") = 7(s")(w(s)). (2)

Also, we remark that w is local, i.e. if s € g° is such that s(z) = 0 for some z € U
it follows that w(s)(x) = 0. Moreover, by (2), for s € b° and s’ € g°|U, we have

w([s', s]) = 7(s") (w(s)),

what implies that the map w from b°|U into Oy is g°|U-module morphism.
We shall need the following result.

2.5. LEMMA. Let ¢ : b°|U — Oy be a local g°|U-module morphism and x € U.
If {(s)(x) = 0 for any s € b°, there exists a neighborhood V. C U of x such that
¢V =0.
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Proor. Let £ € g. Then,
(T(©C()) (@) = (L@ ¢, 5])(x) = 0.

It follows that all derivatives of ((s) at x vanish, hence the germ of {(s) at x is
zero. By the coherence of b°® we see that { vanishes in a neighborhood of z. O

On the other hand, if we have a linear map w : g — O(U) satisfying the
relation (1), it defines an automorphism p,, of U°|U, which satisfies (i) and (ii), by

pu(f®E =fRE— fu(@)®1

for any f € Oy and € € g.

Clearly, all such w form a vector space.

Now we want to construct some maps w satisfying the above properties.

(I) Let x be a character of By. Let s be a section of the homogeneous invertible
Ox-module O(x) over U. For £ € g we put

&5 = w(€)s.
Then

w([&; s = [§,mls = &(ns) —n(&s) = E(w(n)s) —n(w(£)s)
= 7(&)(w(n)s — T(N(w(§))s + w(n)gs — w(@)ns = (7(&)(w(n)) — 7(n)(w(§)))s,

i.e. w satisfies our conditions.
(IT) Let
0—k—V-—>k—0

be an exact sequence of algebraic representations of By, where By acts trivially on
k. Let

0—0x —V—0x —0

be the corresponding exact sequence of G-homogeneous locally free O x-modules.
Let s’ be the section of V which is the image of the section 1 of Oy, and s” a local
section of V such that its germ at zg maps into the germ of 1. Then there is a
neighborhood U of xg such that s’ and s” form a basis of V|U as an Opy-module,
and

£s" =w(€)s’ and &5 =0

for any £ € g. Then
w([&n))s" = [§,m]s" = E(w(n)s’) — n(w(&)s') = (T(E)(w(n) — T(n)(w(§)))s".

Hence, w again has the required property.

Now, we want to prove 2.3. First, any Bp-invariant linear form A on by vanishes
on [bg, bg]. Let Cy be the identity component of the commutator subgroup of By.
Then Cj is a closed normal subgroup of By. The quotient group Dy = By/Cy is
an algebraic group with commutative identity component, and Lie algebra 9y =
bo/[bo, bo]. Let Dy = LoUp be a Levi decomposition of Dy. Then Uy is an abelian
unipotent subgroup, and the identity component of L is the torus consisting of all
semisimple elements in the identity component of Dy. Therefore, we have a direct
sum decomposition 0y = [pPugy, and both summands are Dy-invariant. This implies
that the Dy-invariant linear form p on 0¢, defined by A, can be written as a sum of
two Dyp-invariant linear forms 1 and po which vanish on [y, resp. ug. By composing
these linear forms with the projection of by onto 99 we get the decomposition of A
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into the sum of A\; and Ay. We can define a representation of Uy on k2 such that
u € Uy acts via the matrix
[1 p1 (log U)] )

0 1

evidently it extends to a representation of Dy in which Lq acts trivially. Moreover,
we can interpret it as a representation of By. Applying the construction from (II)
we construct in a neighborhood U of zj a linear map w; from g into O(U) which
satisfies (1) and such that wy|by = A1.

On the other hand, any linear form on [y is a linear combination of differentials
of characters of the identity component of Ly. By averaging, using the component
group of Lg, we conclude that every Lg-invariant linear form on [y is a linear com-
bination of Lg-invariant characters, i. e. of differentials of one-dimensional repre-
sentations of Lg. Applying the construction from (I) we get in a neighborhood U of
Zo a linear map wy from g into O(U) which satisfies (1) and such that wa|bg = Ag.
Therefore, we get in a neighborhood U of z, a linear map w from g into O(U)
which satisfies (1) and such that w|by = A. The corresponding g°|U-morphism
w : b°|U — Oy agrees, by 2.5, with o on some smaller neighborhood V' of .
This in turn implies that p,, is an automorphism of ¢°|V such that p,|Oy = 1 and
Pl JolV) = V.






CHAPTER 2

Cohomology of D)-modules

1. Homogeneous twisted sheaves of differential operators on flag
varieties

In this section we want to specialize our construction of homogeneous twisted
sheaves of differential operators from Ch. 1 to the case of a connected semisimple
algebraic group G acting on its flag variety X.

Let g be a complex semisimple Lie algebra, and G the group of inner automor-
phisms of the Lie algebra g. Then the flag variety X of g can be identified with the
variety of Borel subalgebras of g. The group G acts naturally on the trivial vector
bundle X x g — X, and the tautological vector bundle B of Borel subalgebras is a
homogeneous vector subbundle of it. We denote, for each x € X, the corresponding
Borel subalgebra of g by b,, and by n, the nilpotent radical of b,. Hence, we have
the homogeneous vector subbundle A of B of nilpotent radicals. Moreover, let B,
be the Borel subgroup of G corresponding to b,. Then B, is the stabilizer of x in
G.

Let H = B/N. Then H is a homogeneous vector bundle over X with the fiber
hr = b, /n, over x € X. The group B, acts trivially on b, /n,, hence H is a trivial
vector bundle over X with global sections h naturally isomorphic to b, /n, for any
x € X. We call the abelian Lie algebra h the Cartan algebra for g.

Let Ox be the structure sheaf of the algebraic variety X. As in Ch. 1, §2, let
g° = Ox ®c g be the sheaf of local sections of the trivial bundle X x g. Denote by b°
and n° the corresponding subsheaves of local sections of B and N, respectively. If
we denote by 7 the natural homomorphism of the Lie algebra g into the Lie algebra
of vector fields on X, we define a structure of a sheaf of complex Lie algebras on
g° by putting

[fefgon =fr€gon—grn)f@E+ fg® £ n]

for f,g € Ox and &,n € g. If we extend 7 to the natural homomorphism of g° into
the sheaf of Lie algebras of local vector fields on X, ker 7 is exactly b°. In addition,
we have the following result.

1.1. LEMMA. (i) The sheaf b° is a sheaf of ideals in g°. The commutator
on b° is Ox-linear.
(ii) The sheaf n° is a sheaf of ideals in g°.

PROOF. The first assertion in (i) follows from the fact that b° = ker 7. More-
over, if " fi ®&; € b°, g € Ox and n € g we have

> fi®&i, g@n] =3 fig®[& ]+ fit(&)g@n—>3" g7(n) [i®& = 9[> fi®&, 1@n);

this proves immediately the second assertion. Also, by this formula, to prove (ii)
we need only to check that for any > f; ® & € n°® and n € g, the commutator

17
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D fi®&,1®mn] is in n°. By the homogeneity, g(>_ fi ®¢&;) € n° for any g € G. By
differentiation, this implies that

YT fi®&i+ > fi®n, &l en

for any n € g; and, by definition of the bracket, this expression is equal to [1 ®

The quotient sheaf h°> = b°/n° is the sheaf of local sections of H, and is therefore
equal to the sheaf of abelian Lie algebras Ox ®c¢ b.

Similarly, we defined in Ch. 1, §2, a multiplication in the sheaf ° = Ox @cU(g)
by

(fedgen) =frl)gen+ fgén

where f,g € Ox and £ € g, n € U(g). In this way U° becomes a sheaf of complex
associative algebras on X. Evidently, g° is a subsheaf of &/°, and the natural
commutator in &/° induces the bracket operation on g°. It follows from 1.1 that the
sheaf of right ideals n°U° generated by n® in U° is a sheaf of two-sided ideals in U°.
Therefore, the quotient Dy = U°/n°U° is a sheaf of complex associative algebras
on X.

The natural morphism of g° into Dy induces a morphism of the sheaf of Lie
subalgebras h° into Dy, hence there is a natural homomorphism ¢ of the enveloping
algebra U(h) of h into the global sections of Dy. The action of the group G on the
structure sheaf Ox and U(g) induces a natural G-action on ¢° and Dy. On the
other hand, the triviality of H implies that the induced G-action on b is trivial. It
follows that ¢ maps U(h) into the G-invariants of I'(X, Dy).

1.2. LEMMA. (i) The natural morphism ¢ of U(h) into the subalgebra of
all G-invariants in T'(X, Dy) is injective.
(ii) The image of ¢ is in the center of Dy.

PrOOF. (i) Let x € X. Then the geometric fibre T,(Dy) of the Ox-module
Dy at z is equal to U(g)/n.U(g). The composition of ¢ with the evaluation of a
section at x corresponds to the natural map

Uh) — U(by)/nU(by) — U(g)/nalU(g),

which is injective by the Poincaré-Birkhoff-Witt theorem. Therefore, ¢ is injective.

(ii) Differentiating the G-action we see that elements of ¢(U(h)) commute with
the image of g in Dy. Since Dy is generated by Ox and the image of g, the assertion
follows. O

Let z € X and b, the Borel subalgebra corresponding to x. Let n be the
nilpotent radical of a Borel subalgebra opposite to b,, and N the corresponding
connected subgroup of G. Then, by Bruhat decomposition [2, 14.11], the orbit map
N — X defined by 7 — iz is an isomorphism of the variety N onto an open
neighborhood U of € X. Let s : U — N be the inverse map. Clearly, the
inclusion of U(n) into U(g) induces a injective morphism of the sheaf of algebras
Oy ®c U(n) into U°|U. Tt follows that we have a natural morphism of the sheaf
of algebras Oy ®c U(n) into Dy. Moreover, if we consider the tensor product
(Ou @c U(n)) @c U(h) as a sheaf of algebras, by the previous discussion we have a
natural morphism of sheaves of algebras ¢ from (Oy ®@c U (1)) ®c U(h) into Dy |U.
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1.3. LEMMA. The morphism
¥ (Oy @cUm)) @cU(h) — Dy|U
is an isomorphism of sheaves of algebras.

PROOF. As in the proof 1.2.(i), we conclude that the composition of ¢ with the
evaluation map at u € U corresponds to the evaluation map of (Oy ®@clU () ®@cU(h)
at v composed with the natural linear map of U(n) ®@c U(h) into U(g)/n,U(g). By
the Poincaré-Birkhoff-Witt theorem, the last map is an injection. This implies the
injectivity of . It remains to show its surjectivity. Clearly, Dy|U is generated,
as a sheaf of algebras, by Oy and the image of g in Dy|U. On the other hand,
as a vector space, g = n @ b, for any v € U, hence we have a well-defined linear
isomorphism ((u) of g into itself, which is the identity on n and Ads(u) on by.
Therefore, any £ € g determines a section (¢ : u — ((u)§ of g° on U. It follows
that Dy |U is generated by Oy and the images of the sections v — ((w){ in Dy |U
for £ € g. But, if £ € n, we have ((u)§ = & for any u € U, hence this section is in
the image of v, and if £ € b,, the corresponding section is in the image of 1 either.
It follows that ) is also surjective. O

In particular, if we view Dy as an U(h)-module, we have the following conse-
quence.

1.4. COROLLARY. The U(h)-module Dy is locally free.
Also, we can improve 1.2.(i).

1.5. LEMMA. The natural morphism ¢ of U(h) into the subalgebra of all G-
invariants in I'(X, Dy) is an isomorphism.

Proor. By 1.2.(i) we know that ¢ is injective. If s is a G-invariant global
section of Dy, its value at z must be B -invariant. This implies that, if we fix
a Cartan subalgebra ¢ in b,, s(z) must be of weight zero with respect to ¢ in
U(g)/n:U(g). Therefore it is in the image of U(h), i.e. there is a section ¢ in ¢p(U(h))
such that ¢ — s is a G-invariant section which vanishes at . By G-invariance, this
implies that ¢ — s vanishes at any point of X. By 1.3, Dy is locally free as an
Ox-module for the left multiplication, hence this implies that t — s = 0, and

s=tepU(b)). 0

On the other hand, we have the natural homomorphism of 2(g) into Dy, which
induces a natural homomorphism of the center Z(g) of U(g) into I'(X, Dy). Its
image is contained in the subalgebra of G-invariants of I'(X, Dy), hence, by 1.5,
it is in ¢(U(h)). Finally, we have the canonical Harish-Chandra homomorphism
v : Z(g) — U(h) [5, Ch. VII, §6, no. 4], defined in the following way. First, for
any ¢ € X, the center Z(g) is contained in the sum of the subalgebra U(b,) and
the right ideal n,U(g) of U(g). Therefore, we have the natural projection of Z(g)
into

U(by)/(nU(g) NU(by)) = U(bs)/n U (br) = U(b.).

Its composition with the natural isomorphism of U(h,) with U(h) is independent
of z and, by definition, equal to ~.



20 2. COHOMOLOGY OF D,-MODULES

1.6. PROPOSITION. The diagram

Z(g) ——U(h)

I'(X, Dy)
of natural algebra homomorphisms is commutative.

PRroOOF. By 1.3, Dy is locally free as the O x-module for the left multiplication.
Therefore it is enough to show that the compositions of ¢ o« and the canonical

homomorphism of Z(g) into Dy with the evaluation map are equal for any =z € X.
But this follows immediately from T, (Dy) = U(g) /n.U(g). O

Let x € X. Fix a Cartan subalgebra ¢ in b,. Let R be the root system of g in
¢* and
9o = {€ € 0|0, &] = a(n)¢ for nec}

the root subspace of g determined by the root a € R. We define the ordering on R
by choosing the set BT of positive roots by

R+:{QER|gaCﬂm}.

Then the canonical isomorphism ¢ — b, — b induces an isomorphism of the
triple (¢*, R, R") with the triple (h*, %, XT), where ¥ is a root system in h* and
YT a set of positive roots in ¥. Clearly, ¥ and X7 are independent of the choice
of x € X. We call the triple (h*,X,2T) the Cartan triple of g; and the inverse
isomorphism of the Cartan triple (h*,3,37) onto (¢*, R, RT) a specialization at x.

Let W be the Weyl group of 3. Denote by p the half-sum of all positive roots
in ¥. The enveloping algebra U(h) of b is naturally isomorphic to the algebra of
polynomials on h*, and therefore any A € h* determines a homomorphism of ()
into C. Let I be the kernel of the homomorphism ¢y : U(h) — C determined by
A+p. Then y~1(I,) is a maximal ideal in Z(g), and, by a result of Harish-Chandra
[5, Ch. VIII, §8, Cor. 1 of Th. 2], for A\, € b*,

v~ H(I,) =y~ 1(1,) if and only if wA = u for some w € W.

For any A € h*, by 1.3, the sheaf I, Dy is a sheaf of two-sided ideals in Dy; therefore
Dy = Dy /I Dy is a sheaf of complex associative algebras on X. In the case when
A = —p, we have I_, = hiU(h), hence D_, = U°/b°U°, i.e. it is the sheaf of local
differential operators on X. In general Dy, A € h*, are homogeneous twisted sheaves
of differential operators on X. This follows from ... or directly from 1.3. In the
parametrization of twisted sheaves of differential operators which we used in ... we
have
D, = DX}AJFP’ A E b*

Let 0 be a Weyl group orbit in h* and A € §. Denote by Jg = vy~ 1(I)) the
maximal ideal in Z(g) determined by 6. We denote by x» the homomorphism of
Z(g) into C with ker x» = Jp. As we remarked before, x, depends only on the Weyl
group orbit 6 of A\. The elements of Jy map into the zero section of D,. Therefore,
we have a canonical morphism of Uy = U(g)/JpU(g) into I'(X,Dy). We shall see
in §6 that this morphism is actually an isomorphism.
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The objects of the category M(Uy) of Up-modules can also be viewed as U(g)-
modules with infinitesimal character y.

The category M(D,) of all Dy-modules has enough injective objects [8, 111.2.2].
Moreover, injective Dy-modules are flasque [8, 111.2.4]. This implies that the coho-
mology modules H'(X,V) of a Dy-module V have natural structures of I'(X, D, )-
modules. In particular, by the previous remark, they can be viewed as Up-modules.
It follows that we have a family of functors

HY(X,—): M(Dy) — M(Up) for 0 < i < dim X.

In next few sections we shall study their basic properties.

2. Translation principle for Dy-modules

In this section we collect certain technical results we need to study the coho-
mology of Dy-modules.

Let Q(X) be the root lattice in h*. For any A € bh*, we denote by W) the
subgroup of the Weyl group W given by

Wy ={weW|wr— e QX))

Let 37 be the root system in h dual to 3; and for any a € 3, we denote by a” € X7
the dual root of «. Then, by [5, Ch. VI, §2, Ex. 2], we know that W) is the Weyl
group of the root system

Srh={aeX|a(NeZ}.

We define the order on ¥y by putting Z:\*' = Y+t NX,. This defines a set of simple
roots I of Xy, and the corresponding set of simple reflections Sy. Let £y be the
length function on (W, Sy). We say that A € bh* is regular if a”(\) is different from
zero for any a € ¥ and that A is antidominant if a”(\) is not a strictly positive
integer for any o € 7. We put

n(A) = min{ly(w) | w € Wy, wA is antidominant }.

In particular, n(A) = 0 is equivalent to A being antidominant. Let P(X) be the
weight lattice in h*. Clearly, u € P(X) determines naturally a homogeneous
invertible Ox-module O(p) on X. If V is a Dy-module on X, then its twist
V() =V Qo, O(p) by the invertible Ox-module O(u) is a Dy4,-module on
X (...). This construction defines a covariant functor from the category M(D,)
into the category M(Dx4,,). We call this functor the geometric translation functor.
It is evidently an equivalence of categories, and it induces also an equivalence of
My (Dy), resp. Meon(Da), with Mge(Dagp), resp. Meon(Dagp)-

Geometric translation is closely related to another construction. Let F' be a
finite-dimensional g-module. Then the sheaf 7 = Ox ®c F' has a natural structure
of a/°-module. We shall define its filtration which is related to the weight structure
of the module F.

Fix a base point o € X. The b,,-module F' has a filtration

0=FyCF, C---CF,,
where m = dim F', such that
dlm(Fl/Fl_l) =1 and nwoFi CF,_1forl<i<m.

Therefore, by, /n;, acts naturally on F;/F;_; and this action induces, by special-
ization, an action of the Cartan algebra h on F;/F;_1 given by a weight v; € P(X).



22 2. COHOMOLOGY OF D,-MODULES

Clearly, v; < v; implies that ¢ > j. The sheaf F is the sheaf of local sections of
the trivial homogeneous vector bundle X x F' — X. The filtration of F' induces a
filtration of this vector bundle by the homogeneous vector subbundles with fibres
F;, 1 < i < m, at the base point zy. Let F;, 1 < i < m, be the sheaves of local
sections of these subbundles. They are locally free coherent Ox-modules and also
U°-modules. On the other hand, F;/F;—1 = O(v;) as a U°-module, i.e. F;/F;_1 is
naturally a D,,_,-module. Let V be a quasi-coherent Dy-module on X. Then the
Ox-module V ®p, F has a natural structure of a &/°-module given by
Eves)=vRs+vR<Es

for £ € g, and local sections v and s of V and F, respectively. We can define its
U°-module filtration by the submodules V ®o, Fi, 1 < i < m. By the previous
discussion, the corresponding graded module is the direct sum of V(v;), 1 < i < m.
Therefore, for any £ € Z(g), the product [ [, -, <,,, (6 =X+, (§)) annihilates V& o F.
By the elementary linear algebra, V ®o, F decomposes into the direct sum of its
generalized Z(g)-eigensheaves.

Let V be a U°-module and A € h*. Denote by V, the generalized Z(g)-
eigensheaf of V corresponding to x.

2.1. LEMMA. Let A € b*, p € P(X) and w € W be such that w\ and —wp are
antidominant. Let F' be the irreducible finite-dimensional g-module with the highest
weight wp. Then, ¥V — (V(—p) ®ox F)n @5 a covariant functor from M(Dy)
into itself, naturally equivalent to the identity functor.

PrOOF. The filtration of V(—u) ®o, F has V(—p + v) as its composition
factors, where v ranges over the set of all weights of F. Therefore, Z(g) acts on
them with the infinitesimal character x—,+.,. Assume that

SA=A—p+v
for some s € W. Then, if we put s’ = wsw~! and ) = w), we have
SN =N =wv —wyp,

and since wp and wv are weights of F, s’ — X € Q(X). Therefore, s' € Wy.
Now, since wy is the highest weight of F', wv — wp is a sum of negative roots. On
the other hand, since A’ is antidominant, s\’ — X’ is a sum of roots from X7 C X+,
Therefore, s\ = X and p = v, and the generalized eigensheaf of V(—pu) ®o, F
corresponding to x, is isomorphic to V. |

2.2. LEMMA. Let A € b*, p € P(X) and w € W be such that wA and —wp
are antidominant. Assume that the stabilizers of A and A — p in W are equal.
Let F be the irreducible finite-dimensional g-module with the lowest weight —w.
Then, V — V(1) ®ox F)r—u] is a covariant functor from M(Dx_,) into itself,
naturally equivalent to the identity functor.

PROOF. The filtration of V(i) ®o, F has V(i + v) as its composition factors,
where v varies over the set of all weights of F. Therefore Z(g) acts on them with
the infinitesimal character x 4,. Assume that

A—pu=sA+v)
for some s € W. Then, if we put s’ = wsw™! and X = w, we have

N —s'N = s'wr +wp,
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and, since —wyu is the lowest weight of F', s'wv + wpy is a sum of positive roots.
Therefore, s € W/, and since wA is antidominant, it follows that sA = A. By our
assumption, s stabilizes A— p, what implies that v = —pu. Therefore, the generalized
eigensheaf of V(u) ®o, F corresponding to xx—, is V. O

Let A € h* be such that n(\) = k, k > 0. Then there exists w € W), such that
l\(w) = k and w is antidominant. Let

W= 858,58, - -- 58,
be a reduced expression of w in (W, Sy). Let @ = w™!f3, and w’ = sg,w. Then
we have w' = sg, ...sp, and £x(w') =k — 1. It follows that

WS A = 85, WSa A = 58, SwaWA = WA
is antidominant, which implies that
n(saA) < Or(w') =k — 1.
Now, the antidominance of wA implies that Si(wA) € —Z4; also, fi(wA) = 0

would imply that w'A = sg,w\ = w is antidominant, contradicting the choice of
w. Therefore,
p=—Pi(wA) eN.

Let C) be the Weyl chamber corresponding to Ej, then the equation 51(7) =0
determines a wall of C\. Evidently, the X-regular points of C) are partitioned in
finitely many Weyl chambers for ¥, and at least one of them shares this wall with
C\. Let C be one of such Weyl chambers.

Let ¢ € P(X) N C, such that Bi(c) = p. Then wA — sg,0 is in the wall
determined by 1. Also, because of

Xy =Xuwxr = Buwr—ss,0
and
g (2X — {B1}) =5 — {Bi},
we see that, for 8 € E;\r — {B1}, we have
Br(wA —sp,0) = B (wA) = (s5,0) (0) € =2y,
and wA — sg, o is antidominant. Hence, because of
w' (A — sqw o) = sgw(\ — sqw o) = s, (WA — 55,0) = WA — sp, 0,
it follows that
n(\ —sqw o) < Uy(w') =k — 1.

Now, let V be a Dy-module. Then its translation V(pa) is a Dy4pe-module.

Also, we have
A+pa=A—pi(wN)a=X—a (N)a = s

Analogously, the translation V(—sqw™'0) is a Dy_,_,-1,-module.

Let F be the irreducible finite-dimensional g-module with extremal weight o.
Let

G=V(=saw ') ®oy F)n-

Then the filtration of V(—s,w~t0) ®o, F induces the filtration

Gi=GNV(=sqw™ o) @0, Fi), 1 <i<m,



24 2. COHOMOLOGY OF D,-MODULES

of G. This filtration has the property that G; = G;_1, except in the case when A\ and
X — sqwlo + v; lie in the same Weyl group orbit #. If this condition is satisfied,
we have

Gi/Gi1 = V(—saqw™ o +15).
Therefore, to get a better insight into the structure of G we have to find all weights
v of F such that

X —sqw o4+ v =s\

for some s € W. This implies that

SA—A=v—s,w o € Q(N),
hence s € W. Therefore s’ = wsw™! satisfies

WA — wA = w(sA — ) = w(v — spw™ o) = wr — 54,0,

and since wA is antidominant,

s'(wA) —wA = Z mgf, mg € Ly.
BEIl
It follows that
58,0 — WV = — Z mgp.
BEeIlx

By the choice of C, the set of all positive roots £1(C) in X (with respect to the
order defined by C) contains ¥y . Hence, if we denote by II(C) the set of simple
roots in ¥ determined by C, wv — sg, 0 is a sum of roots from II(C'). Since the root
B1 s in II(C), sp,wv — 0 = sg, (wv — sg,) is the difference of a sum of roots from
II(C) and 751, r € Z4. On the other hand, sg, wr is a weight and ¢ the highest
weight of F' for the order defined by C, hence o — sg, wv is a sum of roots from
II(C). This finally implies that o — sg, wv = ¢f51 for some g € Z,.. Therefore,

SwA —wA =wv — sg,0 = —sg, (0 — sp,wv) = qb;
and, if we introduce the standard W-invariant bilinear form on h*, we get
A = [Is"wAll* = [lwA + gBul|* = [IX]|* + 2q(wA|Br) + 62| 81|

what implies that either ¢ = 0 or ¢ = —f7(wA) = p.

In the first case, ¥ = sow ™ 'o is an extremal weight of F. It follows that
Gi/Gi—1 = V when v; = v, and this happens for only one 7, 1 < i < m. In the
second case,

wy = 55,0+ pph = 55, (0 — ) = 0,

15 is an extremal weight of F' again. Now

hence v = w~
—sqw lo+v=—s,uw o+ w o =a (wle)a = Bi(0)a = pa,

what implies that G;/G;_1 = V(pa) when v; = v, and this happens for only one
7, 1 < j < m. Therefore, the /°-module G has a composition series of length two,
and the corresponding subquotients are V and V(p«). Finally,

a=wlB =85, ...58,81 = —sp, ... 85,01 € =X C 2T,
by [5, Ch. VI, Cor. 2 of Prop. 17], what leads to
vi=w lo<w lo—pa=wlo-Bi(0)a=wlo—a(wlo)a = s,w o = v,
and, by a previous remark, ¢ < j. This gives us the exact sequence

0—V—G— V(pa) — 0.
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of U°-modules. Clearly, the whole construction is functorial, therefore we have the
following result.

2.3. LEMMA. There exists a covariant functor from M(D)) into the category
of short exact sequences of U°-modules which maps any V € M(D,) into

00—V —§G— V(pa) — 0.

3. A vanishing theorem for cohomology of D)-modules

In this section we shall discuss some vanishing results for cohomology of quasi-
coherent Dy-modules .

3.1. THEOREM. Let V be a quasi-coherent Dy-module on the flag variety X.
Then the cohomology groups H*(X,V) vanish for i > n(\).

This, in particular, includes the vanishing of all H*(X,V), i > 0, for antidomi-
nant A € h*, i.e. we have the following consequence.

3.2. COROLLARY. Let A € b* be antidominant. Then the functor ' is an exact
functor from My.(Dy) into M(Up).

First we shall prove 2, and later use the induction in () to complete the proof
of 1.

Let G be any Ox-module, and pu € P(X) a dominant weight. Denote by
F' the finite-dimensional irreducible g-module with highest weight p. In 2. we
defined a filtration of the Ox-module F = Ox Q¢ F by locally free O x-submodules
(Fi;0 <i < dim F) such that F; = O(p). Therefore, we have a monomorphism ig
of G =G(—p) ®ox O(p) = G(—p) ®ox F1 into G(—p) ®ox F.

Let A € b* be antidominant, V a quasi-coherent Dy-module, and ¢ : G — V
a morphism of Ox-modules. Then it induces the morphism p(—pu) : G(—p) —
V(—u), and also o(—p) ® 1 : G(—p) ®ox F — V(—p) @0, F. Also, we have
natural imbeddings ig : G — G(—p) ®o, F and iy : V — V(—p) ®o, F such
that the following diagram commutes:

G i %
ig iy >]V
G(—p) ®ox F ——=V(—p) ®ox F
P(—p)®1

Therefore on the level of cohomology, we have
H'(p(—p) ®1) 0 H'(ig) = H'(iv) o H' (p)
for 0 <i < dim X. Also,
H'(X,G(~p) ®@ox F) = H'(X,G(~p)) @c F,

since F is a free Ox-module. Assume, in addition, that G is a coherent O x-module.
The invertible O x-module O(—2p) is ample, hence, we can find a dominant weight
such that HY(X,G(—u)) =0 for 1 <i < dim X. It follows that for such u € P(X),
we have H(iy) o Hi(p) = 0 for 1 < i < dimX. By 2.1, V(—pu) ®o, F is a
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direct sum of V and its Z(g)-invariant complement, i.e. iy, has a left inverse jy :
V(—p) @0, F — V. Hence, we conclude that H'(¢) = H'(jy)oH'(iy)oH(p) = 0
for 1 <i<dimX.

Any quasi-coherent O x-module is a direct limit of its coherent submodules [7,
1.6.9.9], and the cohomology commutes with direct limits [8, I11.2.9], what implies
that H(j) =0, 1 <i < dim X, for the identity morphism 5 : V — V. This finally
implies that H*(X,V) =0 for 1 <4 < dim X, and finishes the proof of 2.

To prove 1. we use 2.3. Assume that A € h* and n(A) = k. Then, we have the
exact sequence

0—V—G— V(pa) —0,

where
g = (V(—saw_lo) Koy ]:)[)\].

As we have shown there, n(A +pa) < k and n(\A — s,w~t0) < k. Therefore, by the
induction assumption, we have

HY(X,G) = H' (X, V(saw™'0) @0y Fp = (H' (X, V(saw™'0)) @c F)y =0

and
HY(X,V(pa)) =0

for i > k — 1. The long exact sequence of cohomology, applied to the above short
exact sequence, implies that H*(X,V) =0 for i > k.

4. A nonvanishing theorem for cohomology of D)-modules

Let A € h* and @ = W-A. The category of quasi-coherent Dy-modules M. (Dy)
is a thick subcategory in M(D,), therefore we can consider the full subcategory
Dy (M(Dy)) of the derived category D(M(D,)) of Dy-modules which consists of
complexes with quasi-coherent cohomology. Let D(Uy) be the derived category of
Ug-modules. The category M(D,) has sufficiently many injective objects, and they
are flasque sheaves. Moreover, the right cohomological dimension of the functor
I" of global sections is less than or equal to dim X. Therefore, one can define the
derived functor RT' from D(M(D,)) into D(Up).

Our main goal in this section is

4.1. THEOREM. Let X € b* be regular. Let C', D" € Dy(M(Dy)) and f: C —
D' a morphism. Then the following conditions are equivalent:
(i) f is a quasi-isomorphism,

(ii) RT(f) is a quasi-isomorphism.

Clearly, (i) implies (ii). The other implication follows from the following special
case of 1.

4.2. LEMMA. Let A € h* be reqular and C* € Dyo(M(D))) be such that RT'(C') =
0. Then C = 0.
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First, let’s show that 2. implies 1. Let C; be the mapping cone of f. Then we
have the standard triangle

Cy
(1]
C D
f
and, by applying RT', to this triangle, we get the distinguished triangle
RI(C})
(1]
RI'(C RI(D
€)— (D)

If RT(f) is a quasi-isomorphism, from the long exact sequence of cohomology we
conclude that H'(RT(Cy)) = 0 for i € Z, i. e. RT'(C;) = 0. By 2, we conclude that
C; =0, and f is a quasi-isomorphism.

It remains to prove 2. The proof is by induction in n(\).

Assume that n(A) = 0. Then, by 3.2, ' is exact on My.(D,). Also we can
assume that C* consists of I'-acyclic Dy-modules. In this case RI'(C') = I'(C").
Assume that H*(C') is a quasi-coherent Dy-module different from zero. Because
O(—2p) is ample, we conclude that there is a dominant weight u € P(X) such that
H(C)(—u) has nontrivial global sections. By 2.2, if we denote by F' the irreducible
finite-dimensional g-module with lowest weight —p and F = Ox ®¢ F', we see that

DX, H(C) ¢ F = T(X, H(C') @0y F) # 0.
Hence, T'(X, H(C')) # 0. On the other hand, if we consider the short exact se-
quences , , 4
0 — kerd" — C"* — imd" — 0,
and _ _ _
0 — imd~' — kerd’ — H'(C') — 0,
by the long exact sequence of cohomology we conclude that
H"(X,imd") = H""*(X,kerd") for n > 1,
and _ _
H™"(X,imd"') = H"(X,kerd") for n > 2.
Hence, it follows that
H"(X,imd") = H"™(X,imd"~!) for n > 1,

and by finiteness of right cohomological dimension of I', H"(X,imd*) = 0 for n > 0
and arbitrary i € Z. This in turn yields H"(X,kerd’) = 0 for n > 0 and arbitrary
1 € Z. Finally we get

(X, H'(C)) = H(I'(C)) for i € Z,
what contradicts H(T'(C")) = 0. This implies that H*(C') = 0 for all i € Z.
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Assume now that n(A\) = £ > 0. We can assume again that C' consists of
I-acyclic Dy-modules. Then, 0 = RI'(C') = I'(C’). Now, we shall use the notation
from discussion preceding 2.3. Put u = A — s,w~'o. What we have shown there
is that wA and wy are antidominant. Also, w\ — wu = sg,0 € P(X). Let 7 be a
regular dominant weight such that 7 = 7+w(u—A) is dominant. Denote by F_, the
finite-dimensional representation with lowest weight —7. Let F_, = Ox ®¢ F_.
Then, by 2.2, we have

C‘(_wilT) = (C ®(9x F—T)[w)\f‘r]a
and
HY (X, (—w™ ') = H(X,C? @0y For)wr—m] = (H(X,C7) @c F_r)jyr—r] = 0

for i > 0, i.e. the complex C'(—w~!7) consists of T'-acyclic Dy_,,-1,-modules. This
implies that
RU(C (—w 7)) =T(C (—w 7))
=T'(C" ®ox F-r)wr-r = (T'(C) ®&c F-7)wr-r = 0.

On the other hand, if we take F to be the finite-dimensional representation with
highest weight n and 77 = Ox ®c F", by 2.1. it follows that

(C(—w™'7) ®ox F)jpy = C(—w™ (1 —n)) = C (1= A).

Applying the same argument as before we see that C'(u — \) consists of I'-acyclic
D,,-modules and get that

D(C (—=sqw™ ') =T(C'(n—A)) =0.
Now, let
g = (C'(—saw_la) ®ox F)[A-

Clearly, G consists of T-acyclic U°-modules and T'(G') = 0. Applying 2.3, we
conclude that C (pa) consists of I-acyclic D, y-modules and I'(C (pa)) = 0. This
implies that RI'(C (pa)) = 0. By our construction n(s,A) < k, hence we can apply
the induction assumption. It follows that C'(pa) = 0, and finally that C* = 0. This
completes the proof of 2.

4.3. COROLLARY. Let A € b* be regular and V € My.(Dy) such that all its
cohomology modules H (X, V), i € Z, vanish. Then V = 0.

4.4. COROLLARY. Let A € bh* be antidominant and regular. Then any V €
Mc(Dy) is generated by its global sections.

PROOF. Denote by W the Dy-submodule of V generated by all global sections.
Then, by 3.2, we have an exact sequence

0—TX, W) —I'X,V) —-I(X,V/W) —0,

of Up-modules, and therefore T'(X,V/W) = 0. Hence, by 3, V/W = 0, and V is
generated by its global sections. ([l
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5. Borel-Weil-Bott theorem

Let n = dimX. Let A € P(X) and O(\) the corresponding invertible Ox-
module. Then O()) is a Dy_,-module, coherent as an Ox-module. By the general
results from algebraic geometry (see, for example, [8, Ch. III]), we know that

(i) H'(X,O(\)) are finite-dimensional g-modules,

(ii) if we denote by O(A)” the dual of the invertible sheaf O(A) and by wx
the sheaf of local n-forms on X, then the Serre duality implies that the
dual of the vector space Hi(X,O(\)) is isomorphic to the vector space
H"_Z(X, O(/\)V Rox wx).

Of course, O(A) ®o, wx = O(—=A+2p). Let wp be the longest element in W.
Denote by w one of the longest elements in W such that w(\ — p) is antidominant.
Then ¢(w) > n(A — p) and the strict inequality holds if and only if A — p is not
regular. On the other hand, wow(—\ 4 p) is antidominant too, hence

(=X =+ p) < Llwow) = L(w  wy ') = L(w  we) = L(wp) — £(w) = n — L(w),
by ([5], Ch. VI, Cor. 3 of Prop. 17). It follows that

R\ = p) < L(w) <n—n(—A+ p). (1)
Suppose that H* (X, O(A\)) # 0. Then, 3.1. applied to O(\) implies that i < n(A—p);
on the other hand, if we also use (ii), n — i < n(—A 4+ p). Therefore,
n—n(=A+p) <i<n(A-p). (2)
We see from (1) and (2) that ¢ = ¢(w) = n(A — p). By the previous remark, this
implies that A — p is regular.

It remains to study H“™)(X,O())) in the case of regular A — p. Then p =
w(A — p) is a regular antidominant weight. In the following we use the notation
and results from 2.3. If we put V = O()), then V(—s,w™1o) = O — sqw™'0)
and XA — s,w™'o — p is not regular. Therefore, all cohomology groups of it vanish.
This implies that all cohomology groups of G vanish either. Therefore, the exact
sequence

0— 0N\ —G—0OM\+pa)—0
implies that H* (X, O(X + pa)) = H'™(X,O()\)) as a g-module for i € Z,. Now
p=—a"(A~ p), so
At pa=saA—p)+p=wtsgw\—p)+p=wtsgu+p=w""p+p.
It follows, by the induction in length of w, that
H')(X,0(\)) = T(X, O + p)).
By 2.2, if F,1, is the irreducible g-module with lowest weight 1 + p and we put
Futp = Ox ®c Fj4p, we have

O+ p) = (Fusp) -
Hence,
F(Xa O(,LL + ,0)) = F(Xa (‘Fu+P)[u]) = F(X7 Ox ®c F,u+p)[u]
= (F(Xv OX) ®c F;Hrp)[u] = Fqup'
This ends the proof of the Borel-Weil-Bott theorem.
5.1. THEOREM. Let A € P(X). Then
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(i) if A — p is not regular, H'(X,O(\)) =0 fori € Z,,

(ii) of A — p is regular and pp € P(X) an antidominant weight such that \ —
p = wu for some w € W, then H(X,O(\)) = 0 for i # {(w) and
HY W) (X, 0(N)) is the irreducible finite-dimensional g-module with lowest
weight 1+ p.

Denote, as in 1, by N the vector bundle of nilpotent radicals over the flag
variety X and by n° the locally free O x-module of local sections of N/. Let

W(j) = fwe W | fw) = j}, 0 < j < dim X.
5.2. LEMMA. Let 0 < j < dim X. Then
HY (X, Nn°) =0 ifi#j
and H’ (X, NIn°) is the trivial g-module of dimension Card W (j).

ProOOF. Choose a base point o € X. Evidently, A/n° is the Ox-module of
local sections of the G-homogeneous vector bundle A7 which is determined by the
natural representation of the Borel subgroup By, on F; = Afn,,. The B, -action
on F} defines a natural Jordan-Holder filtration by B,,-invariant subspaces Fj,
0 < k < dim Fj, such that dim Fj;, = k, n,  Fjr C Fjr—1 and the Cartan algebra b
acts on Fji/F;,—1 by a weight vj; which is a sum of j different roots from I+ for
0 < k < dim F}. This filtration induces a filtration of the vector bundle NN by
G-homogeneous subbundles. We denote by Fj;, 0 < k < dim F, the corresponding
coherent Ox-modules of local sections. It is evident that Fji/Fjr—1 = O(v,) for
0 <k < dim Fj. To calculate the cohomology of AIn® we have to understand better
the structure of the family {v;; | 0 < k < dim F}, 0 < j < dim X} which is equal
to the family of sums of roots from all subsets of X*. For each ® C ¥+ we denote
by v(®) the sum of all roots from ®. Let

S={v@) —p|®cCcxt}

Then, because v(P) — p is the difference of the half-sum of roots from ® and half-
sum of roots from X+ — @, it is evident that S is invariant under the action of the
Weyl group W. Let S_ be the set of antidominant weights in S. Then, clearly
S =W.S5_. Let u be a regular element of S_. Denote by w, the fundamental
weight corresponding to simple root o € II. Then p is a linear combination of
wq, a € II, with strictly negative integral coefficients. Therefore, u + p is still
antidominant. On the other hand it also must be a sum of positive roots. This
implies that it is equal to 0, hence p = —p. It follows that the only regular elements
of S are —wp, w € W. In these cases

p—wp = v(S* 0 (~w(SH))).
Also, we remark that ¢(w) = Card(XT N (—w(X1))). From the Borel-Weil-Bott
theorem we know that
HY(X,0(v;)) =0 forall 0<i<dimX
if v;;, — p is singular. On the other hand, if v;; — p is regular, by previous discussion
vjr = p — wp for some w € W(j). Hence, in this case, we have

Hi(X,(’)(ij)) =0fori+#j

and
Hj(X,O(ij)) = HJ(X,O(p - U)p)) = F(Xv OX) =C.



6. COHOMOLOGY OF Dy 31

Using this information and the long exact sequence of cohomology, the induction
in k, 0 < k < dim Fj, applied to the short exact sequence
0— ]:jk—l — fjk — O(I/jk) — 0

implies easily our assertion. [l

6. Cohomology of Dy
In this section we want to prove

6.1. THEOREM. (i) The natural map of Uy into Dy induces an isomor-
phism of Uy onto T'(X, Dy).
(i) HY(X,Dy) =0 fori> 0.
Let C be the graded module U° ®p, An°, i.e. C' =U° ®p, A~'n° for all i € Z.
First we remark that C has a structure of a left g-module, by left multiplication
on the first factor. The exterior algebra An° has a natural structure of a left g-

module. Also, U° is a right g-module for right multiplication, so we can define
another structure of a left g-module on C* by

KE)(u®v)=-u@v+u®f-v,

for £ € g, u € U° and v € An°. To see that this definition makes sense, we remark
that if we consider the biadditive map (€), £ € g, from U° x An® into U° ®p, An°
given by

p(E)(w,v) = —uf@utu®l-v
for uw € U° and v € An°, we have

(&) (uf,v) — @) (u, fv) = —(uf)§ Qv+ uf @ v+ul @ fv—uE- (fv)
=uw(f)@vtuf@Ev-—u(flv-—u® f{-v=0
for any f € Ox, u € U° and v € An®; hence it factors through U° ®p, An°® and
induces k(§). By the construction it is evident that the two left g-module actions
on C° commute. Therefore, we can consider C' as a left g x g-module via
(& mw = &w + K(nw

for £,m € g and w € C'. Also, the group G acts on C* with the tensor product of
the adjoint action on U(g) with the adjoint action on Ag. The differential of this
action is equal to the restriction of the g x g-action to the diagonal. Therefore. we
can view C" as a (g X g, G)-module. Consider map

k
d(u®v1/\v2/\-~-/\vk):Z(—l)i+1uvi®v1/\vg/\-~-/\f)¢/\~-~/\vk

i=1
+ Y (CD)Mu@ v Ave A AB A A A A,
1<i<j<k
for u € U° and vy,vs,...,v, € n°. It is well-defined, because sections of Ox and

n° commute in ¢/°, and it maps C? into C**!. Also, by definition it commutes with
the g-action given by left multiplication and the G-action. Since the difference of
the differential of the G-action and the left multiplication action gives the action
given by &, d is a morphism of (g x g, G)-modules. By calculation one also checks
that d?> =0, i. e. C" is a complex of (g x g, G)-modules.
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6.2. LEMMA. The complex C is acyclic.

PROOF. First we introduce a filtration of the complex C'. The sheaf of algebras
U° has a natural filtration (F,U°;p € Z). We put F,C" =0 for p < 0 and

0
F,C = Y Fpy U ®oy A if p € Zy.
q=—p
The differential d maps F), C" into itself for any p € Z; hence, C is a filtered complex.
The corresponding graded bicomplex has the form

G =FyU° ®ox N~ °)/Fpo1(U° @ox A°) = SPT(g°) ®o, A%,
with the differential § = Grd of bidegree (0,1) given by the formula
k

S(u®@vy Avg A=+ Avg) :Z(—l)”luvi@m ANvg A+ AU A=+ Avg,
i=1
for u € SP~F(g°) and vy, va, ..., v} € n°.

Let U be a sufficiently small affine open set, such that g°|U and n°|U are free
Op-modules. Then, using the standard results on Koszul complexes [3, Ch. X, §9,
no. 3], it follows that GrC'|U is acyclic. Therefore, GrC’ is acyclic.

It follows that for any p € Z we have an exact sequence of complexes

0 —F,1C —F,C—G’C —0
with Gr”C* acyclic. This implies that H*(F,_;C) = H*(F,C’) for k € —N and
p € Z. Now, F,C =0 for p < 0 implies that
H"(F,C)=0forall k€ —Nandpc Z,

i.e. all F,,C" are acyclic.

Let £ € U° ®p, APn°, k > 0, be such that d¢ = 0. Since the filtration of C' is
exhaustive, there exists p € Z, such that £ € F,,C". Therefore, by the acyclicity of
F,C, there exists n € Fy_ 1,1 U° ®o A*+1n° such that ¢ = dn. (]

Putting everything together we get the following result.

6.3. PROPOSITION. The complex C° = U° @p, An° is a left resolution of the
(g x g, G)-module Dy.

Clearly,
HZ(Xa Uu° Rox /\jno) = H’L(Xau(g) ¢ /\jno) = u(g) Ac Hi(Xv /\jno) for Za] € Z—i—a

as a (g X g, G)-module. By 5.2, the action of g x g on U(g) is the natural action
given by left and right multiplication, i.e.

(51552)77 = 5177 - 7]527 for 61762 cg,ne u(g)7

the group G acts on U(g) by the adjoint action, and the actions on the second
factors are trivial. Moreover, H*(X,U° ®o, A/n°) vanishes for i # j and is a direct
sum of Card W (j) copies of U(g) for ¢ = j. This implies that the spectral sequence
([6, 2.4, Remark 3] which calculates the cohomology of Dy using this resolution,
converges in its E2-term, and we conclude that

(i) HY(X,Dy) =0 for i > 0,
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(ii) T'(X,Dy), considered as a (g x g, G)-module, has a finite increasing filtra-
tion

0=Fy[(X,Dy) CFT(X,Dy) C --- C F,T(X,Dy) = T(X, D)

such that Fy, I'(X, Dy )/ Fix—1 T'(X, Dy) is a direct sum of Card W (k) copies

of U(g) equipped with the (g x g, G)-module structure described above.
By the construction, the filtration FI'(X, Dy) is a G-module filtration for the nat-
ural G-module structure on Dy and it induces a filtration on the subalgebra of G-
invariants of I'(X, Dy). By 1.5, this subalgebra is isomorphic to U(h) via the map
¢. Since the group G is semisimple and its action on I'(X, Dy) is algebraic, the G-
module I'(X, Dy) is semisimple. This implies that the G-invariants of GrI'(X, Dy)
are equal to Gr ¢(U(h)). By taking the G-invariants in the statement (ii) above, we
see immediately that:

(iii) Fr o(U(H))/ Fr—1 ¢(U(H)) is a direct sum of Card W (k) copies of Z(g).
We can view U(h) as a Z(g)-module via the Harish-Chandra homomorphism.
This immediately implies the following result.

6.4. LEMMA. The universal enveloping algebra U(h) is a free Z(g)-module of
rank Card W.

On the other hand, we can form U(g) ®z(q)U(h), which has a natural structure
of an associative algebra. It has a natural G-action given by the adjoint action
on the first factor and the trivial action on the second factor. Clearly, U(h) is the
subalgebra of G-invariants of this algebra. By 1.6, there exists a natural algebra
homomorphism

U:U(g) ®z(g) Uy — I'(X, Dy)
given by the tensor product of the natural homomorphism of (g) into I'(X, Dy)
and ¢.

We transfer, via the isomorphism ¢, the filtration of ¢(U(h)) to U(h) and define
a filtration on U(g) ®z(e) U(h) by

Fp(U(g) @z Uh)) = U(g) @z(g) FpU(D)).

The map W is evidently compatible with the filtrations. Consider the correspond-
ing graded morphism GrV¥ from U(g) @z Gr U(h) into GrT'(X,Dy). By the
previous discussion we know that GrI'(X,Dy), considered as a (g x g, G)-module,
is the direct sum of Card W copies of U(g). Hence, there exist G-invariant el-
ements eq,es,...,eq, ¢ = Card W, such that GrI'(X,Dy) = ®1<p<qU(g)er and
Gr ¢(U(h)) = B1<k<qZ(g)er. Hence, Gr ¥ is evidently an isomorphism. This im-
plies in turn that W is also an isomorphism. Therefore, we proved the following
result.

6.5. THEOREM. (i) T(X,Dy) =U(g) @z U(D).
(ii) H(X,Dy) =0 fori>0.

Now, let V' a h-module. Then, by 1.6, we have the natural map from U(g) ®z(y)
V into F(X, Dy Qu(n) V). Let

i PP Pt Pl LY V0

be a left free U(h)-module resolution of V. Then, by tensoring with Dy over U(h)
we get

~~~—)'Dh@)u(h)FﬁD—)'”—)'Db@)u(h)FO—)'Dh@u(h)V—)O.
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By 1.4, Dy is locally U (h)-free, hence this is an exact sequence. Therefore, by 5.(ii),
it is a left resolution of Dy @) V' by I'(X, —)-acyclic sheaves. This implies first
that all higher cohomologies of Dy @) V' vanish. Also, it gives, using 5.(i), the
exact sequence

o U9) @z FTP o 2 U(G) ©z(g) FY — T(X, Dy Quiyy V) — 0,
which combined with 4, implies that U (g)®zg)V = I'(X, Dy @y (1) V') and Torf(g) U(g), V) =
0 for p € N. Therefore, we have the following result.
6.6. COROLLARY. Let V' be an arbitrary U(h)-module. Then
(i) T(X, Dy @) V) = U(9) @z(q) V'
(ii) H(X,Dy Ruy V) =0 fori > 0.

In particular, if A € b* and C,4, the one-dimensional h-module on which b
acts via A + p, we finally get 1.



CHAPTER 3

Localization of Uy-modules

1. Localization of Uy-modules

Let A € h* and 6 the corresponding Weyl group orbit. Then we can define a
right exact covariant functor Ay from M(Uy) into My.(Dy) by

A)\(V) =D\®u, V
for any V € M(Uy). Tt is called the localization functor. Since
I'(X, W) = Homp, (Dx, W)

for any W € M(D,), it follows that Ay is a left adjoint functor to the functor of
global sections T, i.e.

HOIHDA (A,\(V), W) = Homug (V7 F(X7 W))7

for any V.€ M(Uy) and W € M(D,). In particular, there exists a functorial
morphism ¢ from the identity functor into I"o Ay. For any V' € M(Uy), it is given
by the natural morphism ¢y : V — T'(X, Ax (V).

Assume first that A\ € h* is antidominant.

1.1. LEMMA. X € b* be antidominant. Then the natural map oy of V into
I'(X,Ax(V)) is an isomorphism of g-modules.

PROOF. If V' = Uy this follows from C.6.1. Also, by C.3.2, we know that I is
exact in this situation. This implies that I o Ay is a right exact functor. Let

Uy)) — U)D — V — 0
be an exact sequence of g-modules. Then we have the commutative diagram

U) s UpD 1% 0

| l !

D(X, Ax(Up))) ——— T(X, Ax(Up))) —— T(X,A\(V)) —— 0

with exact rows, and the first two vertical arrows are isomorphisms. This implies
that the third one is also an isomorphism. O

On the other hand, the adjointness gives also a functorial morphism % from
Ay oI into the identity functor. For any V € M(D,), it is given by the natural
morphism ¢y of Ay (T'(X,V)) = Da®u, I'(X, V) into V. Assume that V € M.(D,).
Let K be the kernel and C the cokernel of 1. Then we have the exact sequence of
quasi-coherent Dy-modules

0 — K — AT X, V) —V—C—0

35
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and by applying I" and using C.3.2. we get the exact sequence
0 —-I(X,K) - T(X,A\TX,V) —TI'(X,V) —-TI'(X,C) —0.

Hence, by 1. we see that I'(X, ) = 0 and I'(X,C) = 0. This implies the following
result.

Denote by QM (D) the quotient category of My.(Dy) with respect to the
subcategory of all quasi-coherent Dy-modules with no global sections [6, 1.11].
Let @ be the quotient functor from Mg.(Dy) into QMg.(Dy). Clearly, I' induces
an exact functor from QM.(D,) into M(Up) which we also denote, by abuse of
notation, by I.

1.2. THEOREM. Let A\ € h* be antidominant. Then the functor Q o Ay from
M(Up) into QM yc(Dy) is an equivalence of categories. Its inverse is T'.

If X is antidominant and regular, by C.4.4, all objects in M,.(Dy) are generated
by their global sections. Therefore, in this case, QM ye(Dx) = My (Dy).

1.3. COROLLARY. Let A € bh* be antidominant and reqular. Then the functor
Ay from M(Up) into My.(Dy) is an equivalence of categories. Its inverse is T

As the first application of this equivalence of categories we shall prove a result
on homological dimension of the ring Uy.

1.4. THEOREM. Let 6 be a Weyl group orbit in b* consisting of reqular elements.
Then the homological dimension hd(Uy) of Uy is < dim X + % Card X,.

PRrROOF. Let A € 6 be antidominant. By [1, VI.1.10(ii)], we know that the
homological dimension of Dx , is equal to dim X. Since D) is a twisted sheaf of
differential operators, we conclude that hd(D, ,) = dim X. Moreover, by [6, 4.2.2],
we have

Extly, (V,U), = Extly,  (Va, Us)
for any i € Z4, V € Mcon(Dy) and U € My(Dy). This implies that

Extl, (V,U) =0 for i > dim X,
On the other hand, we have the spectral sequence

HP(X, Eatd, (V.U)) = Exth (V,U)

[6, 4.2.1], and cohomology of any sheaf of abelian groups vanishes in all degrees
above dim X [8, TI1.2.7]. It follows that Ext}, (V,U) = 0 for i > 2dim X. Now,
by 3, M(Up) is equivalent to My.(Dy) and localization of any finitely generated
Ug-module is in Mon (D). This implies that Extzilg (V,U) =0 for i > 2dim X for
any V € Myq(Up) and U € M(Up). By [3, Ch. X, §8, no. 3, Cor. of Prop. 4], we
see that hd(Up) < 2dim X.

If V is any coherent Dy-module, g.rtip/\ (V,Dy), i € Z4, are coherent D_y-
modules [9]. Since A is regular antidominant, n(—)) = 1 Card¥) < dimX,
and by C.3.1. the cohomology of <5'xt§)k (V, D,) vanishes above %Card 3. There-
fore, as in the preceding argument, we conclude that Ex‘ciDA (V,Dy) = 0 for i >
dim X + % Card X). By the equivalence of categories this immediately implies that
Extf/,e (V,Ug) = 0 for any V € My,(Up) and i > dim X + £ Card .

Assume now that V and U are in Ms,(Up). Since Uy is left noetherian, we
have an exact sequence

0—U —U)y —U-—0
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with finitely generated Up-module U’. From the corresponding long exact sequence
of Exty,, (V, —) we see that the connecting morphism Ext{lg (V,U) — Extf;gl (V,u")
is an isomorphism for j > dim X + %Card Y- Since the homological dimension
of Uy is finite, by downward induction in j we see that Extile(V7 U) =0 for j >
dim X + %CardZA. By [3, Ch. X, §8, no. 3, Cor. of Prop. 4], it follows that
hd(Uy) < dim X + % CardX,. O

1.5. REMARK. We shall see later in 2.8 that, contrary to 4, if  contains singular
elements of h*, the homological dimension of Uy is infinite.

Also, for any W-orbit 0 of an regular integral weight A the preceding estimate
of homological dimension of Uy is sharp. To see this, assume that A € P(X) is
regular antidominant and let F' be the irreducible finite-dimensional g-module with
lowest weight A + p. Then, by the Borel-Weil-Bott theorem and 1.2, we know that
AN(F) = O(A+ p). Therefore, by ..., we have

5xt%A(O(A +0),D\) =0
for p # dim X and
ExtpP X (O(A + p), Dx) = O(=A + p)
as a left D_j-module. Therefore, applying again the Borel-Weil-Bott theorem, we
see that .
HP(X, ExtH X (O(A+p), Dy)) = 0
for p # dim X and
HdimX(Xa gxthl;nX(O()‘ + p)a ID)\)) 7é 0.
By the Grothendieck spectral sequence relating Extp, to Extp,, this implies that
Exty, (F,Up) = Ext, (O(A+p),Dy) =0
if p# 2dim X, and
Ext7 ™ X (F,Up) = Extp ™ X (O(A + p), Dy) # 0.

Hence, in this case hd(Uy) = 2dim X = Card X.

As a second application, we want to consider various derived categories of D)-
modules on X. As before, let D(M(D,)) be the derived category of Dy-modules,
Dy.(M(Dy)) its full subcategory consisting of complexes with quasi-coherent coho-
mology. Also, we can consider the derived category D(Dy) = D(M4.(Dy)) of quasi-
coherent Dy-modules. As we remarked before, for any u € P(X), the geometric
translation functor YV — V() is an equivalence of M(Dy) with M(Dy,,), which
also induces an equivalence of subcategories Mg.(Dy) and Mge(Dryp). More-
over, it induces equivalencies of the corresponding derived categories D(M(D))),
Dy (M(Dy)) and D(Dy) with D(M(Dxyp)), Dge(M(Drgp)) and D(Dyy ) respec-
tively. In addition, the canonical functor @, from D(D}) into Dg.(M (D)) satisfies
the natural commutativity property with respect to these translation functors.

1.6. THEOREM. The functor ® : D(Dy) — Dg(M(Dy)) is an equivalence of
categories.

PROOF. First, by the preceding discussion, by translation we can assume that A
is antidominant and regular. In this situation, the localization functor Ay is exact.
Therefore, it induces a functor Ay : V' — Dy ®y, V" from the derived category
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D(Uy) of Up-modules into the category D(Dy). On the other hand, by C.3.1. every
object in My(Ds) is T-acyclic, what in combination with 3. immediately implies
that the functor I : D(Dy) — D(Up) is an equivalence of categories and its inverse
is the localization functor Ay. Moreover, by the finiteness of right cohomological di-
mension of I on M(D,), we have the derived functor RI" : Dy.(M(D,)) — D(Up),
and clearly R['o @y =T'. Also, we can replace any C' € D,.(M (D)) with a quasi-
isomorphic complex A" consisting of I'-acyclic objects from M(D,). Therefore,
RT'(C) =T'(A). Let D = Dy @y, I'(A). We have the natural homomorphism
¢ : D — A. We claim that it is a quasi-isomorphism. Clearly, by definition
of ¢ and 1, RI'(¢) is a quasi-isomorphism. Hence, by C.4.1. we see that ¢ is a
quasi-isomorphism. It follows that @ o (Ay o RT') is isomorphic to the identity
functor on Dy.(M(Dy)). On the other hand, (Ay o RI") o @, is isomorphic to the
identity functor on D(D,). Therefore, ®, is an equivalence of categories. [

Analogous statements hold for derived categories of complexes bounded above
and below.

Let A € h* and 6 = W - A\. Denote by D~ (Uy) the derived category of Uy-
modules consisting of complexes bounded from above. We define the localization
functor LAy from D~ (Up) into D(Dy) by

L
LA)\(V) =D, & U, Vifor Ve D_(UQ).

If X is regular, 4. implies that the left cohomological dimension of the localization
functor Ay is < 2dim X. Therefore, one can extend LAy to a functor from D(Up)
into D(Dy,).

1.7. LEMMA. Let P € M(Up) be projective. Then, its localization Ax(P) is
[-acyclic, and the morphism pp : P — T'(X, A\(P)) is an isomorphism.

Proor. By C.6.1. we know that this statement is valid for free Uyp-modules,
and any projective Up-module is a direct summand of a free Up-module. O

Let V' € D~ (Uy), then there exists a complex P € D(Uy) of projective Uy-
modules, a quasi-isomorphism ay- : P* — V" and LAN(V') = Ax(P7). By 7. it
follows that there is a natural isomorphism from P~ into I'(A(P")) = RT'(Ax(P")).
This implies that the following result holds.

1.8. LEMMA. The functor RT' o LAy from D~ (Up) into itself is isomorphic to
the identity functor on D~ (Up).

Let D : M(Uy) — D~ (Up) be the functor which maps any V' € M(Uy) into
the complex D(V) € D~ (Up) which is zero in all degrees except 0, where it is
equal to V. If we denote, for any V € M(Uy), by LIAL(V) the j* cohomology
of the complex LA (D(V)), we get the functor V. — LIA (V) form M (Up) into
M e(Dy) which is just the (—7)* left derived functor of Ay. Therefore, 8. implies
the following result.

1.9. COROLLARY. Let V. € M(Uy). Then there exists a cohomological spectral
sequence with Ey-term

EDY? = HP(X,LIA\(V))
which converges to V.

1.10. COROLLARY. Let F € M(Uy) be a flat module. Then, its localization
AN(F) isT-acyclic, and the morphism op : F — T'(X, Ax(F)) is an isomorphism.
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PROOF. By definition, LYA(F) = 0 for ¢ # 0. Therefore the spectral sequence
from 9. degenerates and we see that H*(X,A5(F)) =0 for i > 0 and ¢p : F —>
I(X, Ax(F)) is an isomorphism. O

Assume now that A € h* is regular. Then the homological dimension of Uy
is finite, hence any V' € D(Uy) is quasi-isomorphic with a complex P € D(Up)
consisting of projective Up-modules [10]. Now, using 7. again, we can prove the
following version of 8.

1.11. LEMMA. Let A € b* be reqular. Then the functor RT' o LAy from D(Up)
into itself is isomorphic to the identity functor on D(Up).

This finally leads to the following analogue of 3.

1.12. THEOREM. Let A € b* be regular. Then the functor LAy from D(Uy) into
D(D,) is an equivalence of categories. Its inverse is RT.

PROOF. Let V' € D,o(M(Dy,)). Then, there exists a complex C* € D,.(M(Dy))
consisting of I'-acyclic Dy-modules, a quasi-isomorphism By : V' — C and
RT(V') = T(C'). Moreover, there exists a complex P° € D(Uy) consisting of
projective Up-modules and a quasi-isomorphism ary : P° — I['(C’) such that
LAX(T(C)) = Ax(P). Therefore, we get a natural morphism of LAy (RT'(V"))) =
Ax(P') into C'. This gives a functorial morphism of LAy o RIT" into the identity
functor on Dy.(M(D,)). By 6, the composition with ®, gives a morphism 1 of
functor LAy o RT into the identity functor on D(D,). It follows that, for any
complex V' € D(D,), there exists a morphism . of LAy(RT(V")) into V', and by
checking its definition and using 11, we see that RI'(¢y-) is an quasi-isomorphism.
Now, C.4.1. implies that v is an isomorphism of functors. O

This implies, in particular, that LA, is an equivalence of category D®(Uy) with
D®(D,) and RT is its inverse.

1.13. THEOREM. Let A € b* be regular. Then the left cohomological dimension
of Ay is < n(N).

PROOF. Let V' € D(D,) and k € Z. Then the truncated complex o< (V'):
e VP VR VR S kerdd — 0 —
maps naturally into V' and this morphism of complexes induces isomorphisms
HP (o<, (V') — HP(V') for p < k. Let V.€ M(Up) and V' = LAL(D(V)).
Assume that —k > n(A). Then we have a cohomological spectral sequence
HP(X, H(o<(V'))) = H""(RT(0<x(V)))
([6], I1.2.4). By C.3.1, we conclude that HP(RI'(0<;(V"))) = 0 for p € Z,. Hence,
by 12,
Hompp,)(c<x(V'), V") = Homp ) (RT (0<x(V")), RT(V'))
= HOInD(ue)(RF(JSk(V')), D(V)) =0.

Therefore, LPA\(V) = HP(V') =0 for p < —k. O

1.14. REMARK. On the contrary, we shall see in 2.7. that if )\ is singular the
left cohomological dimension of Ay is infinite.
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Let A be an abelian category and D®(A) its derived category of bounded com-
plexes. For s € Z, we have the truncation functors 7>, and 7<, from D°(A) into
itself [10]. If A" is a complex in D°(A), 7>5(A’) is a complex which is zero in degrees
less than s, 7>5(A)* = cokerd®~! and 7>5(A")9 = A? for ¢ > s, with the differen-
tials induced by the differentials of A". On the other hand, 7<,(A") is a complex
which is zero in degrees greater than s, 7<5(A")® = kerd® and 7<4(A")9 = A? for
q < s, with the differentials induced by the differentials of A". The natural mor-
phisms 7<;(A") — A" and A" — 7>,(A’") induce isomorphisms on cohomology in
degrees < s and > s respectively.

1.15. LEMMA. Let C* and D' be in D*(A). Assume that
(i) H1(C") =0 for ¢ >0,
(i) HY(D") =0 for ¢ < 0.
Then
H : Homps(4)(C", D) — Hom4(H"(C"), H*(D"))

is an isomorphism.

PrROOF. By hypothesis, 7<¢(C") — C" and D" — 7>¢(D’) are quasiisomor-
phisms, and by composing them with ¢ we can assume that C'? = 0 for ¢ > 0 and
D% = 0 for ¢ < 0. Therefore, each element of Hom4(H(C"), H(D")) defines a
morphism of the complex C" into the complex D" and our mapping is surjective.

To prove injectivity, consider a morphism ¢ € Homps( A)(C',D') such that
H%¢) = 0. By the definition of a morphism in derived categories, there exist a
complex B* € D’(A) and morphisms of complexes ¢ : B — C", f : B — D",
where ¢ is a quasiisomorphism, which represent ¢. By composing them with the
truncation morphism 7<¢(B') — B’, we see that we can assume in addition that
B’ satisfies B? = 0 for ¢ > 0. But this implies that f¢ = 0 for ¢ # 0, im f° C ker d°
and imd~! C ker f°. Hence H%(¢) = 0 implies f° = 0. O

The next result is a weak generalization of 1. to arbitrary regular A € h*.

1.16. LEMMA. Let A € b* be regular and 0 =W - X. Let V' be a Up-module and
p=min{q € Z | L71A\(V) # 0}. Assume that H1(X, L PA5(V)) =0 for ¢ < p.
Then there exists a nontrivial morphism of V' into HP(X, L=PAx(V)).

PRrOOF. Consider the truncation morphism
LAND(V)) — 7>-p(LAN(D(V))) = D(L™PAx(V))[p]-

By equivalence of derived categories, it leads to a nontrivial morphism ¢ of D(V)
into RT'(D(L~PAX(V)[p]) = RT(D(L~PAx(V))[p]. It induces zero morphisms be-
tween the cohomology modules of both complexes, except in degree zero where
we get a morphism of V' into HP(X, L PA,(V)). Since cohomology modules of
LA, (V) vanish below degree p, the complex RT'(D(L PA(V))[p] satisfies the
condition (ii). Hence, by 15, the morphism H(¢) of V into RT'(D(L=PA\(V)))[p]° =
HP(X, L PA,(V)) is nonzero. O

Now we want to study some finiteness results.

Let M ;4(Uy) be the full subcategory of M (Uy) consisting of finitely generated
Up-modules. Clearly, for any A € 0, the localization of V' € M4(Up) is a coherent
Dy-module. Conversely, we have the following result.
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1.17. LEMMA. Let A € b* be antidominant and regular. Then for any V €
Mon(Dy), the Up-module T'(X, V) is finitely generated.

PrROOF. Let V =T(X,V) for a coherent Dy-module V. Assume that (V,;n €
N) is an increasing sequence of finitely generated Uy-submodules of V. By localizing
it, we get an increasing sequence (V, = Ax(V,,); n € N) of coherent Dy-submodules
of V. Since D, is a noetherian sheaf of rings, it follows that the sequence (V,; n € N)
stabilizes. By applying I' and 3. we get the same conclusion for the original sequence
(Vn; n € N). This implies that V is finitely generated. O

This implies the following ramification of 3.

1.18. PROPOSITION. Let A € b* be antidominant and regular. Then the functor
Ay from Myq(Up) into Meon(Dy) is an equivalence of categories. Its inverse is T

Now we want to extend these results to regular A € 6. First, M, (Up) is a thick
subcategory of M(Up), therefore we can consider the full subcategory D? ,(Up) of
D®(Uy) consisting of all bounded complexes with finitely generated cohomology
modules.

1.19. LEMMA. The natural functor i from D®(M,(Up)) into Dl}g(Z/[g) is an
equivalence of categories.

PROOF. First we claim that i : D*(M,(Us)) — Di’tg (Up) is fully faithful. Let
A, B € D"(Myy(Up)) and ¢ € Hompey,) (A, B'). Then there exists a complex
C" € D%, (Up), a quasi-isomorphism s : C© — A" and a morphism of complexes
f: C° — B’ which define p. By ... we can find a complex D" € D*(M ,(Up))
and a quasi-isomorphism s’ : D° — C". It follows that D", so s’ and f o s’ define
also ¢, what implies that ¢ is a morphism in D*(M #9(Up)). This proves that 7 is
fully faithful. Also, by ... it is essentially surjective. O

This result in particular implies that for any V' € D?cg(?/{g) its localization
LAX(V') € D~(D,) is a complex with coherent cohomology. To discuss this more
precisely we first introduce several subcategories of D?(D,). Since the category
M.on(Dy) is a thick subcategory of M (D), we can define the category D? , (D)
which is the full subcategory of D¥(D,) consisting of all bounded complexes with
coherent cohomology and the derived category D(M. o, (Dy)) of coherent Dj-
modules. There is a natural functor ¥y from D®(Mon(Dy)) into Db, (D)), and it
satisfies the natural commutativity property with respect to the translation func-

tors.

1.20. LEMMA. The natural functor Uy from D®(M.on(Dy)) into D°

coh(D)\) &)
an equivalence of categories.

Proor. Using translation functors we can assume that A is antidominant and
regular. By 3. and 6, this result follows from 19. (I

Therefore, for regular A € h*, we can view the functor LAy as the functor from
Di’c s(Up) into D? , (Dy). Moreover, we have the following result.

coh

1.21. THEOREM. Let A € b* be regular. Then the functor LAy from D?Q(Ug)
into ch’oh(D)\) is an equivalence of categories. Its inverse is RI .
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To prove this statement we only need to show that RT'(V') € DS’c ,(Up) for any

Ve ch)oh(D)\)' This is a consequence of the following generalization of 17. First
we need a simple lemma.

1.22. LEMMA. LetV be a finitely generated g-module and F' a finite-dimensional
g-module. Then V Q¢ F is a finitely generated g-module.

PrROOF. Let U be a finite-dimensional subspace of V' which generates V as an
g-module. We claim that U ®c F' generates V ®¢ F as a g-module. Let W be
the g-submodule of V ®¢ F generated by U ®¢ F. Define V' to be the subset of
V' consisting of all v such that v ® f € W for all f € F. Clearly, V' is a linear
subspace of V. Moreover, for any £ € g and v € V’,

v f=Evaf)-—veifeW,

for all f € F, what implies that {v € V’, and V' is a g-submodule of V. On the
other hand, V' contains U, hence it is equals V. This in turn gives W = V@cF. O

1.23. LEMMA. Let A € h*. Then for any V € M on(Dy), Usg-modules H (X, V),
1 € Z4, are finitely generated.

PROOF. The proof is by induction in ¢, 0 < ¢ < dim X. We can find a dominant
weight p such that A — p is antidominant and regular. Then the translation V(—pu)
of V is a coherent Dy_,-module, and, by 17, I'(X,V(—p)) is a finitely generated
g-module. Let F' be the irreducible finite-dimensional g-module with the highest
weight p. Now

Hi(va(_/’L) ®ox F) = Hi(X’V(_M)) ®c F

for all 7, 0 < ¢ < dim X; therefore it vanishes for ¢ > 0. On the other hand, the
filtration of F studied in C.2. gives an injection of F; = O(u) into F. It follows
that, by tensoring with V, we get the exact sequence of /°-modules

00—V —V(—p oy F—K—0.

Applying T to this exact sequence we see that I'(X,)) is a g-submodule of the
tensor product I'( X, V(—pu))®c F, which is finitely generated by 20. This proves our
assertion for i = 0. Assume that the assertion holds for £k —1, £ > 1. Then the long
exact sequence of cohomology implies that H*(X,V) is a quotient of H*~1(X, K).
On the other hand, from the definition of the filtration of F, it follows that C has
a natural {°-module filtration such that the corresponding graded module Gr K
is equal to @ V(—pu + v), where the sum is taken over all weights v of F' different
from . By the induction assumption, H*~'(X, V(—pu+v)) are finitely generated g-
modules. An induction in the length of the filtration of K implies that H*~1(X, K)
is a finitely generated g-module. O

Finally, the equivalence of derived categories (12.) and the Borel-Weil-Bott
theorem (C.5.1.) have the following immediate consequence.

1.24. PROPOSITION. Let F' be the finite-dimensional irreducible g-module with
lowest weight X\. Then, for any p = w(X —p), w € W, we have LPA,(F) =0 for
p# —l(w) and L~ A (F) = O(u+ p).



2. LOCALIZATION AND n-HOMOLOGY 43

2. Localization and n-homology

Let M(U(g)) be the category of U(g)-modules. Fix a point z € X. For
Ve M(U(g)), put
Vvum = V/nzV =C Qu(ny) V,

where we view C as a module with the trivial action of n,. We say that V,,_ is
the module of n,-coinvariants in V. It has a natural structure of an h,-module.
Therefore, we can view it as an h-module. It follows that V. — V,_ is a right
exact covariant functor from the category M(U(g)) into the category M(U(h)) of
U(h)-modules. If we compose it with the forgetful functor from M(U(h)) into the
category of vector spaces, we get the functor Hy(n,, —) of zeroth n,-homology. By
the Poincaré-Birkhoff-Witt theorem, free U(g)-modules are also U (n,)-free, what
implies the equality for the left derived functors. Therefore, with some abuse of
language, we shall call the (—p)* left derived functor of V' — V;_ the p'M' n,-
homology functor and denote it by Hy,(ng, —) = Torg(“”)((c, —). There is a simple
relationship between these functors and the localization functors which we shall
explain in the following.
First we need a technical result.

2.1. LEMMA. Uy is free as U(ny)-module.

PROOF. Fix a specialization ¢ of fh and a nilpotent subalgebra n opposite to n,,.
Then we have g = n, @ c@n, and by the Poincaré-Birkhoff-Witt theorem it follows
that U(g) = U(n,) @c U(c) @c U(n) as a left U(n,)-module for left multiplication.
Let F,U(c), p € Z4, be the degree filtration of U(c). Then we define a filtration
F,U(g), p € Z4, of U(g) via

F,U(g) =U(ny) ®c FpU(c) c U(R).
This is clearly a U (n,)-module filtration. The corresponding graded module is
Gri(g) = U(ng) ®c S(c) @c UR).

This filtration induces a filtration on the submodule Jpld(g) and the quotient module
Uy. The Harish-Chandra homomorphism v : Z(g) — U(h) is compatible with the
degree filtrations and the homomorphism Gr+y is an isomorphism of Gr Z(g) onto
the subalgebra I(h) of all W-invariants in S(h) [5, Ch. VIII, §8, no. 5]. Denote by
I, (h) the homogeneous ideal spanned by the elements of strictly positive degree in
I(h). Then

Gr Jol(g) = U(ny) ®c¢ I4(c)S(c) @c U(n).
By [4, Ch. III, §2, no. 4, Prop. 2], it follows that

Grity = (Gri(g))/(Gr Jol(g))
= (U(nz) @c S(c) ®c U®))/(U(ne) @c I1(€)S(c) ©c U(n))
=U(ny) ®c S(0)/(14(6)S(c)) @cU(®),
i.e. it is a free U(n,)-module. Moreover, by [5, Ch. V, §5, no. 2, Th. 1], we know
that the dimension of the complex vector space S(h)/(I+(h)S(h)) is Card W. It
follows that Uy has a finite filtration by U(n,)-submodules such that Grify is a

free U(n,)-module. By induction in length, this implies that Uy is a free U(n,)-
module. ]
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Let ¢ : U(h) — U(h) be the automorphism given by (&) = £+ p(€) for € € .
Then, by [5, Ch. VIII, §8, no. 5, Th. 2], ¢(v(Z(g))) is the algebra of W-invariants in
U(h). In addition, by [5, Ch. V, §5, no. 2, Th. 1], the dimension of the vector space
UB)/p(v(Je))U(D) is equal to Card W. This implies that Vo = U(h)/~v(Jo)U(b) is
an U (h)-module of dimension Card W.

2.2. LEMMA. Let A € h* and § =W - \. Then:

(i) Vi is a U(H)-module of dimension Card W,
(ii) the characteristic polynomial of the action of £ € b on Vy is

PE) = ][ €= (r+p)©)
weW
(iii) Ho(ng,Up) is a direct sum of countably many copies of V.
ProoF. We already proved (i). Clearly, I, D ¢(v(Jo))U(h) is equivalent to
@ = w for some w € W. Hence the linear transformation of U (%) /o (v(Jp))U(h)

induced by multiplication by £ has eigenvalues (w)(€), w € W, and by symmetry
they all have the same multiplicity. This in turn implies that

p(P€)) = [T @€ = wr+p)(©) =TT €~ @N(©)
weWw weW

is the characteristic polynomial for the action of £ on U(h)/w(v(Jp))U(h). This
proves (ii).

(iii) As in the proof of 1, we fix a specialization ¢ of h and choose a nilpotent
subalgebra n opposite to n,. By Poincaré-Birkhoff-Witt theorem, it follows that as
a vector space U(g) = U(n,) @c U(c) ®c U(n). Moreover,

Ho(ne,Up) = U(g)/(JoU(g) + 1. U(g)).

Denote by 7, : Z(g) — U(c) the composition of the specialization map with the
Harish-Chandra homomorphism ~y. Then

JoU(g) +naU(g) = JoU()U(R) + ny U(g) = 72 (Jo) U(c) U(R) + 1. U(g),
which implies that under the above isomorphism,
J0 U(g) + Ny u(g) = ((C Qc ’Yw(JQ) L[(C) ®c Z/{(ﬁ)) D (nwu(nw) ¢ L{(C) ¢ U(ﬁ)>
This yields
Ho(ne,Up) = U(c) /(72 (Jo) U(c)) @c U®) = Vo ©c U(n)
and the action of b is given by multiplication in the first factor. [

2.3. COROLLARY. Let A€ bh*, 0 =W - X and V € M(Up). If we put
PE) = [[ €= (wr+p)©) for & e,
weWw
P(&) annihilates Hy(n,, V') for any £ € b and p € Z4.

PrOOF. By 1, we can calculate n,-homology of V using a left resolution of V'
by free Ugp-modules. The assertion follows from 2. O

In particular, if V€ M(Uyg), Hp(n,, V) is a direct sum of generalized U(h)-
eigenspaces corresponding to wA+ p, w € W. If U is a U(h)-module, we denote by
U(») the eigenspace corresponding to A € h*.
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2.4. COROLLARY. Let A € b* be reqular. Then, for V.€ M(Uy), the n,-
homology modules Hy(n,, V) are semisimple as U(h)-modules. More precisely,

Hp(nx’ V) = Z Hp(nxv V)(wA-FP)
weWw
foranyp e Zy.
This implies, in particular, that for regular A € h*, we can view the functor
Hp, (0, =) (wr+p) as the p'™ left derived functor of the right exact functor Ho(ng, —) (wa+p)
from M (Up) into M(U(B)).
In general situation, we can view Vp as a semilocal ring and Hy,(n,, V) as Vp-

modules. Also, for any A € 6, Cyy, is a Vg-module.
For any Ox-module F on X we denote by T, (F) its geometric fibre, i.e.

T.(F) = Fo/myF,.

Then T, is a right exact covariant functor from M(Ox) into complex vector spaces.
If F is a Dy-module, we can view T (F) as the inverse image of F for the inclusion
i of the one-point space {z} into X.

2.5. THEOREM. Let A € h*, 0 = W - X and x € X. Then the functors LT, o
L L
LAy and D(Cxyp) ® v, (D(C) ® 4(n,) —) from D~ (Ug) into the derived category of

complezes of complex vector spaces are isomorphic.

PRrOOF. By 1, we know that Uy is acyclic for the functor Hy(ng, —) = C®y(n,)
—. By 2, we also know that C ®yn,) Uy is acyclic for the functor Cyy, ®y, —. Let
F" be a complex isomorphic to V" consisting of free Uyp-modules. Then, since the
functors commute with infinite direct sums, we get

L L
D(Citp) @ (D(C) @uu(n,) V') = Cotp ©vy (C Ry, F7)-

On the other hand, the localization Ay (Uy) = D, is a locally free Ox-module, and
therefore acyclic for T,,. This implies that

LT (LAN(V)) = Tu(BA(F)).
Hence, to complete the proof it is enough to establish the following identity
T:(Ax(Up)) = Cxtp ®v, (C @uyn,) Us).

First, we have T,,(Ax(Up)) = T(Dx). Moreover, from the construction of Dy it
follows that

T:(Dy) = U(g)/nald(g),
what yields, by using the properties of the Harish-Chandra homomorphism,

T3(Dx) = To(Dy) @un) Catp = (U(g)/nald(9))/ (In+p(U(g) /12l (9)))
= Chsp ®v, (U(g)/nalh(9))/(v(Jo) (U(9) /nald(9)))
= Curyp ®v, U(9)/(JaUU(g) +n:U(g))) = Cryp v, Ho(nz,Up).
(I
2.6. COROLLARY. Let A € b* be reqgular and @ = W-\. Then for any V € M(Uy)

we have the spectral sequence

LPTI(LqA)\(V)) - H_(p+q) (nx, V)()\+p).
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PROOF. As we remarked before, in this case all Vy-modules are semisimple and
Cy ®y, — is an exact functor. Therefore, the spectral sequence corresponding to
the second functor in 5. collapses, and we get

H_p(D(C)\+p) Qlé) Vo (D((C) Q%Ll(nz) D(V))>
= H™"(Cx4, ®v, (D(C) @%Z/{(nm) D(V))) = H™"((D(C) <§I§)Lf(%) D(V))(x+p)

L
= H P(D(C)®yn,) D(V))rsp) = Hp(nz, V) (a1p)

for p € Z,. Therefore, the asserted spectral sequence is just the Grothendieck
spectral sequence attached to the composition of LT, and LA,. [

The behavior at singular A is more obscure as we see from the following result.

2.7. PROPOSITION. Let A € b* be singular. Then there exists V€ M(Up) such
that LAX(D(V)) is not a bounded complex.

In particular, the left cohomological dimension of Ay is infinite.

PrROOF. Since the functor T, has finite left cohomological dimension, it is
enough to find a Up-module V' such that LT, (LA (V)) is not a bounded complex
for some x € X. By 5, this is equivalent to the fact that

D(Crsp) & v (D(C) & 14,y D(V))

is not a bounded complex.

To finish the proof we use some elementary results about Verma modules which
are discussed later in V.1. Fix a Borel subalgebra by, put ng = [bg, bg] and consider
the Verma module

M (woA) = U(9) ®u(be) Cuwor—p-

Pick z so that n, is opposite to ng. Then, by Poincaré-Birkhoff-Witt theorem,
M (woA) is, as U(n,)-module, isomorphic to U(n,;) @c Cyor—p. This implies, since
n, is opposite to ng, that

Ho(ng, M(wol)) = Cagp,
and H,(ng, M(woA)) = 0 for p € N. Therefore,

D(C) & un,) DM (wod)) = D(Cas),
and
L L L
D(Ciip) ® vy (D(C) @,y D(M(woA))) = D(Cxtp) ® v, D(Ciryp).
Clearly, we have
HP(D(Cxp) v, D(Caty)) = Torl? (Caip Cary)s p € Ly

Let W(A) be the stabilizer of A in W. By 2, the maximal ideals in Vj are the
projections of the ideals I yx+,, w € W/W(A). Since Vp is an artinian ring, it is the
product of local rings Ry, w € W/W(A), obtained by localizing Vy at Iyxt, 4,
Ch. IV, §2, no. 5, Cor. 1 of Prop. 9)]. This implies that

Tor,”(Cxsp, Cagp) = Tor,*(C,C), p € Zy.
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Since R,,» are mutually isomorphic,

CardW =dimc Vo= Y dimg Ryx = Card(W/W (X)) dimg Ry,
weW/W(X)

ie. dimgc Ry = Card W(A) # 1. Therefore, Ry is not a regular local ring, its
homological dimension is infinite [7, 17.3.1], and TorgitA (C,C) #0 forp € Z4 |7,
17.2.11]. O

This immediately implies the following result.

2.8. PROPOSITION. Let 0 be a Weyl group orbit in h* consisting of singular
elements. Then the homological dimension of Uy is infinite.

From 1.22. we can deduce the following consequence. As before, we put W(p) =
{weW [ lw)=p}.

2.9. PROPOSITION. Let F' be a finite-dimensional irreducible g-module with low-
est weight . Then
Hp(an) = Z (Cw(/\—p)+p
weW (p)
foranypeZ,.

ProoOF. Clearly, A—p is regular, hence we can apply 6. From 1.22. we know that
the localizations of F' are locally free O x-modules. Therefore, all higher geometric
fibres vanish on them and the spectral sequence degenerates. The formula follows
immediately from 1.22. ([

3. Intertwining functors

Let 68 be a Weyl group orbit in h*. If 6 consists of regular elements, by 1.12,
the category D(Up) is equivalent to the category D(D,). This implies in particular,
that for any two A, u € 6, the categories D(D,) and D(D,,) are equivalent. This
equivalence is given by the functor LA, o RI' from D(D,) into D(D,). In this
section we want to construct, in geometric terms, a functor isomorphic to this
functor.

We start with some geometric preliminaries. Define the action of G on X x X
by

g (z,a') = (g 2,9 2)
for g € G and (x,2') € X x X. The G-orbits in X X X can be parametrized in the
following way.

First we need to introduce a relation between Borel subalgebras in g. Let b and
b’ be two Borel subalgebras in g, n and n’ their nilpotent radicals and N and N’
the corresponding subgroups of G. Let ¢ be a Cartan subalgebra of g contained in
bNb’. Denote by R the root system of (g, ¢) in ¢* and by RT the set of positive roots
determined by b. This determines a specialization of the Cartan triple (h*, 3, X)
into (¢*, R, RT). On the other hand, b’ determines another set of positive roots in
R, which corresponds via this specialization to w(X%) for some uniquely determined
w € W. Since ¢ is a Levi subalgebra of b N b’, all Cartan subalgebras in b N b’ are
conjugate by elements of N N N’. This implies that the element w € W doesn’t
depend on the choice of ¢, and we say that b’ is in relative position w with respect to
b. Let s: h* — ¢* be the specialization determined by b. Then the specialization
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s’ determined by b’ is equal to s’ = sow. This implies that b is in relative position
w™! with respect to b’.
Let

Zyw = {(z,2") € X x X | b, is in the relative position w with respect to b, }
for w e W.

3.1. LEMMA. (i) Sets Z,, w € W, are smooth subvarieties of X x X.
(ii) The map w — Zy, is a bijection of W onto the set of G-orbits in X x X.

PrOOF. Fix w € W. The set Z,, is G-invariant, hence it contains a G-orbit
O. Let z € X. Since G acts transitively on X, every G-orbit in X x X intersects
{z} x X, hence there exists ' € X such that (z,2') € O. Let (z,2") € Z,.
Fix a Cartan subalgebra ¢’ in b, N b,/, and ¢’ in b, N b,». Then, there exists
n € N, such that (Adn)(¢’) = ¢”. Since both (z,2’) and (z,2”) are in Z,,, we have
(Adn)(by) = byr. Hence o’ and 2’ are in the same Bg-orbit in X. This in turn
implies that O = Z,,. (]

Denote by p; and ps the projections of Z,, onto the first and second factor in
X x X, respectively.

3.2. LEMMA. The fibrations p; : Z,, — X, i = 1,2, are locally trivial with
fibres isomorphic to (w)-dimensional affine spaces. The projections p;, i = 1,2,
are affine morphisms.

PROOF. It is enough to discuss p;. Let (z,2') € Z,, and denote by B, resp. B,
the stabilizers of z, resp. x/, in G. Then, by 2, instead of p; : Z, — X we
can consider the the projection p; : G/(B N B') — G/B. Let N be the unipotent
radical of a Borel subgroup of G opposite to B. Then, by the Bruhat decomposition,
the natural map of N x B into G is an isomorphism onto an open neighborhood
of the identity [2, 14.13]. This implies that the orbit map g — ¢ -« induces an
isomorphism of N onto an open neighborhood U of x € X. Moreover, the orbit
map g — g (z,2') induces an isomorphism of N x (B/(BNB’)) onto p; ' (U) such
that the diagram

N x (B/(BNB')) — p;'(U)

pTlJ{ P1

N — U
commutes. The fibres of p; are isomorphic to B/(B N B
is an affine space of dimension

Card(X7") — Card(X" Nw(Eh)) = Card(EH N (—w(E1)) = £(w)
[5, Ch. VI, §1, no. 6, Cor. 2. of Prop. 17]. O

'Y = N/(N N N'), and this

Let Q| x be the invertible Oz, -module of top degree relative differential forms
for the projection p; : Z,, — X. Let T, be its inverse. Since the tangent space at
(x,2') € Z,, to the fibre of p; can be identified with n,/(n, Nn,), and p — wp is
the sum of roots in ¥ N (—w(XT)), we conclude that

Tw = pP1(O(p — wp)).
3.3. LEMMA. (i) Let v e P(X). Then
p1(O(wv)) = p3(O(v)).
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(ii) Let A € h*. Then
(D) = (D)7

PRrROOF. Let (z,2') € Z,. The stabilizer B, N B, of (x,2’) in G contains a
Cartan subgroup T' of G, which is therefore its Levi factor. It follows that B, N By
is a connected group. Evidently, we have canonical morphisms

b, Nby — (b Nby)/(ny Nby) — by /0,

and

by Nby — (b, Nby )/ (b NNy ) — by /nys;
and b, /n, and b, /n,s are naturally isomorphic to . These two natural morphisms
of b, N b, onto b differ by the action of w™!. The homogeneous invertible O, -
modules pj(O(wv)) and p5(O(v)) correspond therefore to the same character of the
stabilizer of (x,2’). This proves (i).

By definition (D,))?* and (D§?)7+ are G-homogeneous twisted sheaves of dif-
ferential operators on the G-homogeneous space Z,,. Then, as we know from ..., the
G-homogeneous twisted sheaves of differential operators on Z,, are parametrized
by (B N B,/ )-invariant linear forms on b, N b,/. The twisted sheaf of differential
operators (D, )P? corresponds to the linear form on b, Nb,s induced by wA+p € h*
under the first morphism, and the twisted sheaf of differential operators DY* cor-
responds to the linear form on b, N b, induced by A + p € h* under the second
isomorphism. Hence to get (Dyyx )P from DY?, we have to twist it by a homogeneous
invertible Oz, -module corresponding to the weight wA + p — w(A + p) = p — wp
under the first isomorphism. ([

Let w € W and A € h*. The morphism ps : Z,, — X is a surjective
submersion, hence p3 is an exact functor from Mg.(Dy) into My.((Dy)P2) ([8],
I11.10.4.). By 3, twisting by 7., defines an exact functor V — T, ®0,. p3 (V) from
Me(Dy) into Mge((Duwn)P*). Therefore, we have a functor V' — To, ®0,. p3 (V')
from DY(Dy) into D’((Dyx)P*). By composing it with the direct image functor
Rp1y : DP((Dyr)Pr) — DP(Dyy), we get the functor J,, : DP(Dy) — D®(Dy»)
by the formula

Ju(V') = Rp14(Tw ®o,, 3 (V')
for any V' € D%(Dy). Let V € M.(D,). Since p; is an affine morphism with
{(w)-dimensional fibres by 2, we see that H(J,, (D()))) vanish for i < —¢(w) and
i >0 (...). Moreover, the functor

L,(V) = R°p14+(To ®0,, p3 (V)

from Myo(Dy) into Myc(Dyy) is right exact. We call it the intertwining functor
attached to w € W between M.(Dy) and Mye(Dyyr). The reason for this will
become apparent later.

3.4. LEMMA. The category My.(Dx) has enough projective objects.

PrOOF. By twisting we can clearly assume that A is antidominant and regular.
But in this situation, My.(Dy) is equivalent to M(Up), by 1.3. O

Therefore, for any w € W, we can define the left derived functor
LI, : D™ (D)) — D™ (Du»)
of I,,. We shall see later that this functor, restricted to Db(DA), agrees with J,,.
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Now we study some basic properties of these functors. We start with an analysis
of their behavior under geometric translation.

3.5. LEMMA. Letw € W, A€ b* and v € P(X). Then
(i)

for any V' € D*(Dy);
(i)
LI,(V(v))=LL,(V)(wv)
for any V' € D™ (D,).

ProOOF. We start with the proof of the first relation. By 3.(i), for any V €
MqC(DA)a

ps (V) = p3 (V @0y OW)) =p3 (V) ®0,, p5(0(v)) = p3 (V) ®0,, pi(O(wr))

as (Dxt,)P2-module. Since the direct image functor is local with respect to the
target variety,

Ju(V'(v)) = Rp1+(To @04, p3 (V' (v)))
= Rp1+(Tw ®0,, p3 (V') ®0,, p1(O(wr)))
= Rp11(Tw ®0,, P2 (V') ®ox Olwr) = Ju (V') (wr),
for any V° € D®(D,). This, in particular, implies
Ly(V(¥)) = L (V) (wr)

for any V € My.(D,). Since twists preserve projective objects, the lemma follows.
O

The next step is a “product formula” for functors J,, w € W. First, we
need some additional geometric information on G-orbits in X x X. Let w,w’ €
W. Denote by p; and pe the projections of Z, into X, and by p} and pj the
corresponding projections of Z,, into X. Let Z,, xx Z,, be the fibre product of
Zy and Z,, with respect to the morphisms p), and p;. Denote by ¢’ : Z, Xx
Zw — Zy and q : Zy Xx Zyw — Zy the corresponding projections to the
first, resp. second factor. Then, by 2, ¢ and ¢’ are affine morphisms. Finally, the
morphisms pj o ¢ : Zy Xx Zyy — X and pyoq: Zy Xx Zy —> X determine a
morphism r : Z,, X x Z,, —> X x X. Therefore, we have the following commutative
diagram.

X xX

TT

Zwt XX Ly
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Moreover, all morphisms in the diagram are G-equivariant. From the construction
it follows that the image of r is contained in Z,,,,. Hence by the G-equivariance of
r, it is a surjection of Z, X x Z,, onto Z,.

3.6. LEMMA. Let w,w’ € W be such that {(w'w) = ¢(w') + l(w). Then r :
Tt XX Loy — Ly 18 am iSOmorphism.

PrROOF. By 2. we know that
dim(Zy X x Zy) = dim X 4+ {(w) + L(w') = dim X + {(w'w),

and

dim Zyryy = dim X + £(w'w).
By the G-equivariance of r any G-orbit O in Z,, X x Z,, projects onto Z,,,,. Hence,
dim O = dim X + ¢(w'w) = dim(Z,» Xx Z,), and O is open in Z,y Xx Z,. On
the other hand, Z,, xx Z, is irreducible, and it follows that O = Z,, X x Z,,.
This implies that Z, X x Z,, is a G-homogeneous space covering Z,,,,. Since the
stabilizer of a base point in Z,,,, is connected, r is an isomorphism. O

Therefore, if we assume that w,w’,w” € W satisfy w” = w'w and £(w") =
L(w') + £(w), we can identify Z,» and Z,, Xx Z,. Under this identification the
projections p; and pf of Z, into X correspond to the maps p} o ¢’ and p; o q.
Moreover, we have the following result.

3.7. LEMMA. Let w,w’ € W be such that {(w'w) = £(w') + {(w). Then
T 0 Ju = Juru-
PRrROOF. Let w” = w'w. By 3.(i), we have
() S0, 2 0°(Ta)
= (p10d)" (O(p—w'p)) ®o, 2, (P1°0)"(O(p —wp))
= (p1od")"(O(p—w'p)) ®0,_ w2, P20d)" (O(p —wp))
=4 (1" (Olp —w'p)) ®o,,, Ps" (O(p—wp)))
=q" (0" (O(p—w'p)) ®o, , P (O(w'p — w'wp)))
=q" (" (Olp —w"p))) = (ph 0 ¢)* (Op — w"p)) = Tur,
under the identification of Zw' x x Z,, with Z,,». Then, by the base change (...),
Jur (Jw(V) = RBP4 (Twr @0, ' (Rp1+(To @0, p5 (V)
= Ry (Tr ®o0,,, Rd\ (¢"(Tw @0y, p3 (V')
= R(py 0 d)+(a" (Twr) ®04 2, (P200)T (V) = Jur (V)
for any V' € D%(D,). O
3.8. COROLLARY. Let w,w’ € W be such that {(w'w) = l(w') + £(w). Then
Ly o Ly = Lyroy-

Now we want to analyze in more details functors attached to simple reflections.
Fix a simple root o € II. To simplify the notation in the following, we put Z = Z,_
and T = 7T,,,. In this situation, by 2, the fibres of the projection p; : Z — X
are affine lines. Hence one can view T as the invertible Oz-module of local vector
fields tangent to the fibres of p;.
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3.9. LEMMA. Let a €Il and A € h*. Then
H'(J,,(D(Dy))) = 0 fori # 0.

The proof of 9. will be a consequence of the following discussion, which will also
lead to more detailed information about the action of the intertwining functor I .
The basic idea is to reduce the analysis to the case of g = sl(2,C). This reduction
is based on a local trivialization result. Let X, be the generalized flag variety of
all parabolic subalgebras of type . Any Borel subalgebra b, in g is contained in
a unique parabolic subalgebra p, of type «, y € X,; hence we have the canonical
projection p, : X — X,. For any z € X, the fibre p;'(pa(z)) consists of z and
all 2’ € X such that b, is in relative position s, with respect to b,.

3.10. LEMMA. The projection p, : X — X, is locally trivial. Its fibers are
isomorphic to the projective line P'.

PRrROOF. Fix points y € X, and = € X such that p,(x) = y. Denote by B,
resp. P, the stabilizers of z, resp. y, in G. Let P’ be a parabolic subgroup opposite
to P and N’ its unipotent radical. Then the natural map N’ x P — G is an
isomorphism onto an open neighborhood of the identity in G ([?], 4.2). Therefore,
the natural morphism of N’ into X, induced by the orbit map ¢ — ¢ -y is an
isomorphism of N’ onto an open neighborhood U of y. Moreover, the orbit map
g — g - induces an isomorphism of N’ x (P/B) with p'(U) such that the
diagram

N'x (P/B) —— pg'(U)

o | e |

N’ — U
commutes. This implies that the fibres are isomorphic to P/B. Let R be the radical
of P. Then R C B, hence P/B = (P/R)/(B/R). Since P/R is a cover of PSL(2,C)
and B/R is its Borel subgroup, P/B is isomorphic to P*. O

We remark that p,!(U) is a homogeneous space for P’ and, if we denote by
L the common Levi factor of P’ and P, we see that p;!(U) is identified with
N’ x (L/(L N B)). Let M be the quotient of L with respect to its center, m its
Lie algebra and X, the corresponding flag variety. Clearly, M is isomorphic to
PSL(2,C) and X,, is isomorphic to P*. Choosing base points b and b N m in X
resp. X, determines a canonical inclusion of the Cartan algebra by, into h which
identifies the root system X, in by, with the restrictions of o and —a, and the
positive root f in X, corresponds to . We can identify the dual space of b, with
C via the map pp — 87(p). From the discussion of homogeneous twisted sheaves
(...), we see that, for any A € h*,

Dlp, ' (U) = Dnv B Dy-(5);

here we denoted by D,-(y) the homogeneous twisted sheaf on P! = X, determined
by a”(A) € C under the above correspondence. By definition, p, © p1 = pa © D2,
hence

Pyt (U) = py (0, (U),
as an open subset of Z. Moreover, under the above identifications, it is isomorphic
to N X ((Xm X Xm) — An), where we denoted by Ay, the diagonal in X, x Xy,.
Let ¢1, resp. g2, be the morphism of the variety Zy, = (X X Xn) — Ap into Xy,
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induced by the projection to the first, resp. second factor. Then, using the above
identifications, we have

R'p1(T ®0, p3 (DA))lpa " (U) = Dyt B R g1 (Ta ®0,,, 43 (Da-(n)))5

where we denoted by Ty, the invertible O -module of local vector fields on Z;, tan-
gent to the fibres of ¢;. Now we can prove 9. The preceding discussion reduces the
calculations to the case g = s1(2, C). Hence, we assume this in the following discus-
sion. Clearly, Dy is a G-homogeneous Ox-module, what implies that T®e, p3 (D)
is a G-homogeneous Oz-module. Its direct images under p; are G-homogeneous
Ox-modules. Hence they are completely determined, as O x-modules, by their geo-
metric fibres at the base point x € X, and their higher geometric fibres vanish. Let
F = X — {z}. Then p;'(z) is a smooth closed subvariety of Z equal to {z} x F.
Let ip : {2} x F — Z and i, : {x} — X be the natural inclusions and r the
projection of {} x F into x. Then we have the following commutative diagram:

{2y xF £ 7

| al

{2} —=o X
By the base change [1, 8.4],

T,(R'p1(T ®0, p§ (D)) = if (R'p1o(T ©o, p3 (Dy)))
= R'ri (if(T ®0, p3 (D)) = R4 (i5(T) ®oy (p2 0ir)* (D))
= R'ry(Tr ®0, DalF).

In addition, F' is the orbit of an one-dimensional unipotent subgroup of G, hence
the homogeneous invertible Op-module T is isomorphic to Op and Dy|F is iso-
morphic to Dr as a homogeneous twisted sheaf of differential operators. Finally,
Rir (Dr) =0 for i < 0. This ends the proof of 9.

Now we return to the general situation. The next step is critical for our analysis
of the intertwining functor attached to a simple root o € II. Since the morphism
p1 is an affine surjective submersion, we can use the de Rham complex (...) to
calculate I, (V) as Ox- and U(g)-module. For V € M.(D,), I (V) is the 0}
cohomology of the complex p1.(Cz x(V)), where Czx (V) denotes the complex

i — 00— T ®o, ps(V) —pg (V) —0—....

In particular, I (V) is a quotient of p1.(p5(V)). Therefore, there is a natural U(g)-
module morphism of the global sections of p1.(p3(V)) into I'(X, Is_ (V)). Since

(X, pre(p2(V)) = T'(Z,p2(V)),

this gives a natural Uy-module morphism of I'(X, V) into I'(X, I_(V)). It induces
a natural Ds_x-module morphism of A, (I'(X,V)) into I, (V), i.e. we have a
morphism of the functor Ag_x oI into I, . Applying this discussion to the special
case V = D,, we get, by C.6.1.(i), a natural D;_x-module morphism of D;_ into
I, (Dy).

For a root a € II, we say that A € h* is a-antidominant if () is not a strictly
positive integer.

3.11. LEMMA. Let o € II and A\ € bh* be a-antidominant. Then the natural
morphism of Ds_x into I, (Dy) is an isomorphism of Ds,x-modules.
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PROOF. The assertion is local, so we can apply the previous discussion. It
reduces the problem to the corresponding result in the case of s[(2,C). In this case
there exists only one simple root o and s, = —1; hence we can put [ = I _.

We claim first that the natural morphism from D_) into I(D,) is not zero. To
see this we consider the morphism of I'(X,D_j,) into I'(X, I(D,)). It is enough to
show that the section 1 € Uy = I'(X,D_,) always maps into a nonzero section of
(X, 1(Dy)). We recall that I(D,) is the 0 cohomology of the complex

coo =0 — p1(T ®0, p3 (Dy)) — p1«(p3 (D)) — 0 — ...,

and all other cohomologies of it vanish by 9. Since Z is an affine variety, by
the Leray spectral sequence we conclude that this is a left resolution of I(D)) by
I'(X, —)-acyclic Ox-modules. Therefore, the morphism

d: (T ®o, p3 (Dx)) — [(Z,p3 (Dy))

is injective and I'(X, I(D,)) is the cokernel of d. The morphism of Uy = T'(X,D_3,)
into I'(X, I(Dy)) is induced by the natural morphism of Uy = I'(X,D,) into
['(Z,p3 (Dy)). Therefore, 1 € Uy maps into the image of 1 € T'(Z,p5 (D)) un-
der the quotient map, and it is enough to show that 1 € I'(Z, p3 (D)) is not in the
image of d. To prove this we use the fact that d is G-equivariant, and analyze the
G-action on I'(Z, T ®0, py (Dy)). If we filter Dy by degree, we get a filtration by
G-homogeneous Ox-modules F, Dy, p € Z4, and GrDy = S(Tx). Therefore, we
have a filtration

Fy(T ®0, p3 (Dr)) =T ®0, p3(Fp Dy), p € Zy,
of T ®0, p4 (Dy) by G-homogeneous Oz-modules and
Gr(T ®o, p3 (Dy) =T ®0, p3(S(Tx)) = T @0, S(p3(Tx)).

By induction in degree we see that higher cohomologies of T ®0, py (D)) vanish,
hence the filtration of 7 ®e, p3 (D, ) induces a filtration of its global sections such
that
GrT(Z,T ®o, p3 (Dx) =T(Z,T ®0, p3(S(Tx))).

Because the group G is reductive, the algebraic G-modules I'(Z, T ®0, p3 (D))
and I'(Z, T ®o, S(p5(Tx))) are isomorphic. On the other hand, Tx = O(—a),
hence, by 3.(i), S(p3(7Tx)) is the direct sum of p}(O(ka)) for k € Z. In addition,
T = p;(O(a)) and finally

I(Z, T ®o, p3 (Dy)) = EPT(Z. p;(O(ka))).
k=1

By Frobenius reciprocity, G doesn’t act trivially on any submodule of the G-module
I'(Z,T ®o, ps (Dy)). This implies that 1 is not in the image of d.

Now we show that the natural morphism of D_j into I(D,) is an isomor-
phism for a-antidominant A. First, we remark that both D_, and I(D,) are G-
homogeneous Ox-modules and the natural morphism is G-equivariant. Hence it
is enough to show that the morphism induces an isomorphism of the geometric
fibres at a base point zy of X. Right multiplication by elements of D_) induces
on T;(D-,) a structure of a left ¢(g)-module isomorphic to U(g) ®u(v,,) Cr—p-
Therefore, T, (D_,) is a module which is the direct sum of one-dimensional weight
spaces corresponding to the weights {A\ —p—ka |k € Z }, and it is irreducible if the
a-antidominance condition is satisfied. Moreover, right multiplication by elements
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of I'(X, D,) induces on T, (I(D,)) a structure of a left U(g)-module, and the map of
geometric fibres is a morphism of ¢(g)-modules. Therefore, if A is a-antidominant,
the morphism of the geometric fibre T,,(D_)) into T,.(I(D,)) is injective.

The argument from the proof of 9. also implies that

T.(I(Dy)) = Rry(Dr) = I(F, OF)

as a vector space. On the other hand, it has the natural structure of U(b,)-
module, given by the linear form —\ + p. In addition, the stabilizer B, of g € X
acts on this module and induces the natural action on I'(F, Or). Therefore, it is
the direct sum of one-dimensional weight subspaces corresponding to the weights
{—ka|k € Z+}. The action by right multiplication by elements of U (b,,) on Dy|F
induces on T, (I(Dy)) a left U(b,,)-action which is the difference of the second
and the first action. Hence, T, (I(D,)) is the direct sum of one-dimensional weight
subspaces corresponding to the weights {\ — p — ka|k € Z; }. It follows that the
morphism of geometric fibres is an isomorphism. ([l

For any S C T, we say that A € b* is S-antidominant if it is a-antidominant
for all @ € S. Put
vh={ac S |wac -YT} =N (—w 1(Z))
for any w € W.
3.12. LEMMA. (i) =, =—wEh).
(ii) Let w,w’ € W be such that {(w'w) = £(w') + £(w). Then
¥, =w i (S ust.
(iil) Let w,w' € W be such that {(w'w) = L(w') + L(w). If X € b* is F, -
antidominant, then wA s E$,—antid0mmant.

PrOOF. (i) follows directly from the definition of XF. (ii) follows from [5,
Ch. VI, §1, no. 6, Cor. 2. of Prop. 17]. (iii) follows immediately from (ii). O

3.13. LEMMA. Let A € h* be antidominant. Then, for any w € W,
Juw(D(Dy)) = D(Du).

PRrROOF. By 11, the statement holds for simple reflections. We prove the general
statement by induction in ¢(w). Let ¢(w) = k + 1. Then there exist o € II and
w' € W such that w = spw’ and f(w’) = k. By 12.(iii), w'\ is a-antidominant,
hence

Juw(D(Dy)) = Js, (Juw (D(Dy))) = Js. (D(Durx)) = D(Duwx),
by 7,9, 11. and the induction hypothesis. [
3.14. THEOREM. Let w € W and A € h*. Then:
(i) For any V' € Db(D,), we have
LI,(V)=J,(V).
(ii) The left cohomological dimension of I, is < £(w).

PRrROOF. Clearly, (ii) follows from (i). To prove (i) we have to show that for any

projective P € My.(Dy), H'(Jw(D(P))) = 0 for i # 0. First we observe that, by

5, it is enough to consider the case of regular antidominant A. In this situation, by
1.3, P is the localization of a projective Up-module, and therefore a direct summand
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of (Dy)). Tt follows that it is enough to treat the case of P = Dy, and we can
apply 13. (]

As an immediate consequence, the intertwining functors LI, w € W, extend
to functors from D(D,) into D(D,). We now prove a preliminary version of the
product formula for the intertwining functors.

3.15. LEMMA. Let w,w’ € W be such that {(w'w) = L(w') + £(w). Then, for
any X € b*, the functors L1, o LI, and Ll,, from D™(D)) into D™ (Dyrwx) are
isomorphic.

PrROOF. By 8, it is enough to show that, for any projective P € M.(Dy),
the Dya-module I,,(P) is I-acyclic. By 5, we can also assume that X is regular
antidominant. In this situation, as in the proof of 14, we can assume that P = D,.
Therefore, by 13, I,,(Dy) = Dy and the assertion follows by a repeated application
of 13. and 14. O

Finally, we have the following result which explains the role of intertwining
functors.

3.16. THEOREM. Let w € W and let X € b* be X -antidominant. Then the
functors L1, o LAy and LA, from D~ (Uy) into D~ (Dyn) are isomorphic.

PROOF. We prove this result by induction on f(w). Assume first that w is
the simple reflection corresponding to « € II. Any V' € D~ (Up) is isomorphic to
a complex F" of free Up-modules. Moreover, LAy(V') = Ax(F") and, by 9, 11,
14. and C.6.1.(i), the natural morphism we described before is an isomorphism of

LA A(V7) = As a(F7) = A A (T(X, AX(EY))),
into
I (AN(F")) = LI, (AX(F")) = LI (LAA(V")).
Assume that the statement holds for w’ € W such that ¢(w’) < k. Take w € W
such that ¢(w) = k+1. Then w = s,w’ for some o € I and w’ € W with £(w’) = k.

By 12.(iii), w'\ is a-antidominant. Moreover, by the induction hypothesis and 15,
we see that

LI,o LAy = (LI, oLl,)oLAy=LI, o(LI,oLA))
is isomorphic to LI, oLA,, . Hence the assertion follows by applying the statement

for simple reflections. U

3.17. COROLLARY. Let A € b* be X7 -antidominant and let F € M(Uy) be a
flat Up-module. Then the localization Ax\(F) is an I,-acyclic Ax-module.

PROOF. Since F' is a flat module, its higher localizations vanish. Therefore,
the assertion follows from the spectral sequence associated to 18. ([

The next result is the final form of the product formula for intertwining func-
tors.

3.18. THEOREM. Let w,w’ € W be such that {(w'w) = £(w") + £(w). Then, for
any A € b*, the functors LI, o LI, and LIy, from D(D)) into D(Dyrwr) are
isomorphic.
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PROOF. By 5, we can assume that A is antidominant and regular. In this situ-
ation, by 1.4. and 1.12, we know that any complex V' € D(D,) is quasi-isomorphic
to the localization Ax(P") of a complex P € D(Uy) consisting of projective Up-
modules. Therefore, by 12, 16. and 17, we have

LI,(V') = LI,(Ax(P)) = Apr(P),
and A, (P’) consists of I,,-acyclic Dy,z-modules. It follows that
LIw’(LIw(V)) = LIw/(AwA(P')) = w’(AwA(P'))
= Aw’w)\(P.) = LIw’w(A)\<P)) = LIw’w(V.L
and the lemma follows. ([l
In addition, if we assume that A is regular, we have:

3.19. THEOREM. Let w € W and X € b* be X} -antidominant and regular.
Then
(i) LI, is an equivalence of the category D(Dy) with D(Dyy) isomorphic to
LAy 0o RT;
(ii) the functors LI, o LAy and LA, from D(Uy) into D(Dyy) are isomor-
phic.

PRrROOF. First we prove (ii). Any complex V' € D(Upy) is quasi-isomorphic to
a complex P’ consisting of projective Uy-modules. Therefore, LA) (V") = A\(P")
and, by 16. and 17,

LL(LANV)) = T(BA(P) = Aur(P) = LAua(V').
(i) follows from (ii) and 1.12. O

3.20. THEOREM. Let w € W and X € h*. Then:

(i) LI, is an equivalence of the category D(Dy) with D(Dyy);

(ii) LI, is an equivalence of the category D®(Dy) with D®(Dyy);
(iii) LI, is an equivalence of the category D2 , (Dy) with D% , (Dy).
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PRrROOF. Assume first that A is regular antidominant.

In this situation, by 1.12 and 19.(i), we see that the functor LI, is equivalent
to the functor LA, o RI' and the inverse functor is equivalent to LAy o RI". This
proves (i). Since the functor I' has finite right cohomological dimension, and the
localization functor A, has finite left cohomological dimension for regular u by
1.13, (ii) follows. The last statement follows from 1.16.

The general statement follows from 5. using geometric translation. O

Now we can improve the estimate of left cohomological dimension of intertwin-
ing functors.

3.21. THEOREM. Letw € W and A € h*. Then the left cohomological dimension
of Ly : Mge(Dy) —> Mye(Duy) is < Card(X], N Xy).

PrOOF. By 5. we can assume that A is regular and antidominant. The proof
is by induction in ¢(w). Assume first that w is the reflection with respect to a € II.
Then the left cohomological dimension of I, is < 1. Assume in addition that
o’ (A) ¢ Z. Then s,(\) is also regular and antidominant. By 19.(i), LI, is an
equivalence of category D(Dy) with D(Ds_») isomorphic to LA, » o RI'. Since,
by 1.3, functors I' : My.(Dy) — M(Up) and A, x : M(Up) —> Myc(Ds,») are
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equivalencies of categories, the functor Is, : Mg.(Dy) — Mge(Ds,2) is also an
equivalence of categories. It follows that its left cohomological dimension is 0. This
ends the proof for simple reflections.

Assume that the statement holds for all w’ € W such that ¢(w') < k. Let
w € W with {(w) = k4 1. Then there exist & € II and w’ € W such that
o(w') = k. By 12.(ii),

F N = {w @) }UsE) Nz,
hence
Card(X], N X)) = Card(Z}, N X)) + Card({a} N Sya).

The lemma follows from 18, the case of simple reflections and the induction hy-
pothesis. ([

3.22. COROLLARY. Let w € W and X\ € b* be such that 5 N Xy = 0. Then
Iy : Mge(Dr) — Mye(Duyy) is an equivalence of categories and I,-1 is its inverse.

Proor. By 12.(i) and 21, I, and I,-: are exact. Also, by 5, we can as-
sume that X is regular and antidominant. This implies that wA is regular and
antidominant. By 19.(i), LI, is an equivalence of category D(D,) with D(D,»)
isomorphic to LA, o RT'. Since, by 1.3, the functors ' : My.(Dy) — M(Up)
and Ay 1 M(Up) — Mye(Dya) are equivalencies of categories, I, : Mgc(Dy) —
M e(Dya) is also an equivalence of categories. The same argument applies to I,,-1.
This also implies that their compositions are isomorphic to the identity functor. [J

3.23. THEOREM. Let w € W and X\ € b* be X -antidominant. Then the func-
tors RT" o LI, and RT from D(D,) into D(Up) are isomorphic.

PRrROOF. If X is regular this follows from 1.12. For singular A, we can find
w' € W and v € P(X) such that w'A and —w'v are antidominant, w'(A — v) is
antidominant and regular, and A\ — v is X -antidominant. Let V' € D(D,). Since
the left cohomological dimension of I,, is finite, V' is quasi-isomorphic to a complex
C’ consisting of I ,-acyclic Dy-modules. Moreover, by 5, the complex C'(—v) consists
of I,-acyclic Dy_,-modules and

LI,V (-v)) =1,(C (—v)) = I,(C (—v)) = I,(C)(—wv) = LL,(V')(—wv).
In addition,

RU(LL,(V)(~wv)) = RT(LL(V'(~¥))) = RT(V'(~v),

using the statement for regular A — v. On the other hand, by C.2.1, if we denote
by F the irreducible finite-dimensional g-module with highest weight w'v, we have
RU(LI,(V')) = RU((LL,(V')(~wv) ®oy F)[r))
= (RT(LLu (V) (—wv)) @c F)y = (RT(V (—v)) ®@c F)y
= RI((V'(—v) ®ox F)) = RI(V').
O

We finally remark the following fact. It shows that, in general, the estimate of
left cohomological dimension of intertwining functors from 21. is the best possible.
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3.24. PROPOSITION. Let w € W and A € P(X). Then
L'L,(O\+ p)) =0 fori# —L(w)
and

L, (OA 4+ p)) = O(wA + p).

PrROOF. By 5. we can assume that A is antidominant and regular. In this
situation the assertion follows immediately from 16. and 1.22. O

4. The inverses of the intertwining functors

For any w € W and A € b*, the functor LI, : D(Dy) — D(Dyy) is an
equivalence of categories. It induces an equivalence LI, : Db , (D)) — D%, (Dy»)
of the subcategories of bounded coherent complexes. In this section, we prove a
formula for quasiinverses of these functors.

Let A € b* and 6 = W - \. Denote by —6 the Weyl group of —A.

First, we recall the duality functor D : Db , (D)) — D®_, (D_)) on bounded

coh coh
coherent complexes. For any complex V', we have

D(V') = RHomp, (V', D(Dy))[dim X].
This duality operation behaves well with respect to tensoring.

4.1. LEMMA. For any weight v € P(X), the following diagram of functors is

commutative
D(lzoh(DA) Dgoh(D*A)

4% }(w)
Dgoh (DA+V) Dgoh (D—)\—V)

PROOF. Let V' be a bounded complex of coherent Dy-modules. Then, V' (v)
is a bounded complex of coherent Dy _y,-modules. Moreover,

D(V'(v)) = RHomp,,, (V' (v), D(Dx4.))[dim X]
= RHOTTLD)\JW (O(V) Rox V', O(Z/) Rox D('D)\) Rox O(—V))[dlmX]
= RHomDAJru (O(V) RPox VI? O(V) Qox D(D)\))[dlm X] Rox O(_V)
= RHomp, (V', D(D,))[dim X] ®o, O(—v) =DV')(—v).
[l

As in 3.4, we see that the category M., (D) has enough projective objects.
Let P be a projective object in Mon(Dy). Then, from the spectral sequence

HP(X, Extd, (P,Dy)) = Exthh (P, Dy),
we conclude that

H?(X,Homp, (P,D,)) =0, for p > 0;
i.e., Homp, (P,D,) is acyclic for T'(X, —).

Consider the functor V' — RHomp, (V', D(D,)) from D__, (D,) into D}, (D_5)
and the functor RT from D}, (D_,) into DT (Up). Then the above remark implies
that

RF(RHO’ITL'DX (V, D(D)\))) = RHOIDDX (V, D(D)\))

This leads to the following result.



60 3. LOCALIZATION OF Us-MODULES

4.2. LEMMA. We have the isomorphism
RT'(D(V")) = RHomp, (V', D(D,))[dim X]
of functors from D° , (Dy) into D*(Up).

coh
Let 6 be a regular orbit. For such 6, the homological dimension of the ring Uy is
finite. Moreover, the principal antiautomorphism of #(g) induces an isomorphism
of the ring opposite to Uy with U_g. Let Ds’c g (Uy) be the derived category of finitely
generated Up-modules. We define a contravariant duality functor
]D)alg(V') = RHOIHMG (V, D(Z/[@))

from D?g(l/lg) into D?g(u,g). Clearly, D2, = 1.

Let V' be a complex of finitely generated Uyp-modules bounded from above.
Then there exists a complex F" bounded from above, consisting of free Up-modules
of finite rank and a morphism of complexes F* — V. Therefore,

RP(D(LAA(V)) = RI(B(A(F'))) = RHomp, (Ax(F), D(D))dim X]
= Homp, (AX(F"), D(Dy))[dim X] = Homy,, (F", D(Up))[dim X]
— RHomy, (F", D(Up))[dim X] = Dayy (V")[dim X].

Since LA} is an equivalence of D;’c o (Up) with D’ , (Dy) we get the following result.
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4.3. LEMMA. Let A € b* be regular, then the following diagram of functor
commutes o
ch)oh (DA) ch)oh (D—)\)

| Jar

Db (U, Db (U_
fg( o) W fg( 0)

Let a be a simple root. If A is a-antidominant, by 3.23, we have
RT'(V') = RI(LI,, (V)).
Hence, we have
RT(D(V)) = Dgig(RT(V"))[dim X]
= Dayg(RL(LL,, (V')))[dim X] = REU(D(LL, (V')))-
(D_») and D(LI,, (V")) is in D® , (D_,. ). Therefore, —s,\

coh

Here D(V') is in D?

coh
is a-antidominant. It follows that

RU(D(V')) = RU(LI,, D(LL,, (V'))).
Since D(V') and LI, D(LI, (V')) are in D®

oon(D—x) and RT is an equivalence of
categories, we have

D(V') = LI, (D(LIs, (V")))-

Therefore,
LI, o(DoLl; oD) =1
on D%, (D_)). Because all of these functors commute with twists, it follows that

this relation holds in general.
This implies that for arbitrary w € W we have

LI,o(DoLl,~10oD)=1.
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Therefore, we proved the following result.

4.4. THEOREM. The quasiinverse of the intertwining functor LI, : D® ,
ch)oh(,Dw/\) 18 6qual to

Do LI, 10D: D%, (Dyy) — Db, (D).

coh coh

(Dy) —

5. Global sections of irreducible D)-modules

Let A € b* be antidominant. Then for any quasi-coherent Dy-module V), higher
cohomology modules H*(X,V), i > 0, vanish. Therefore, we need to study only the
behavior of global sections I'(X, V) of V. We start with the following simple result.

5.1. PROPOSITION. Let A € h* be antidominant and V € My.(D.) irreducible.
Then either
(i) T(X,V) =0, or
(ii) V is generated by its global sections T'(X,V) and they form an irreducible
Up-module.

PROOF. As we remarked before, there is a natural morphism of Ay(T'(X,V))
into V, and its image is a coherent Dy-module. Therefore, it is equal to 0 or V. In
the first case we have I'(X, V) = 0, and (i) holds. In the second case, V is generated
by its global sections. It remains to prove that I'(X,V) is irreducible. Let K be
the kernel of the epimorphism of A)(T'(X,V)) onto V. Then we have the exact
sequence

0— K — A\[(X,V) —V—0

and therefore
0 —IT(X,K) — I'(X,A\T(X,V))) — T'(X,V) — 0.

By 1.1, this implies that T'(X, ) = 0.

Let U be a nonzero submodule of I'(X,V). Then the inclusion ¢ of U into
I'(X,V) induces a homomorphism Ay (7) of Ay(U) into Ax(I'(X,V)). Assume that
im Ay (i) is contained in K. By applying I' we would get that T'(Ax(i)) = 0,
contradicting 1.1. Therefore, im Ay (7) is not contained in K. This implies that
the natural morphism of I & A,(U) into Ax(I'(X,V)) is an epimorphism. By
the exactness of ' it follows that the natural morphism of T'(X, K & A, (U)) =
I'X,Ax(U)) = U into T'(X, A\(I'(X,V))) = I'(X, V) is surjective; hence, U =
Ix,V). O

The previous result allows the following converse.

5.2. PROPOSITION. Let V be an irreducible module from M(Uy). Let X € h* be
antidominant. Then there exists an irreducible Dy-module V such that I'(X,V) is
isomorphic to V. Such Dy-module V is unique up to an isomorphism.

We start the proof with a lemma.

5.3. LEMMA. Let A € b* be antidominant and V € Myc(Dy). Then there exists
a largest quasi-coherent Dy-submodule V' of V with no nonzero global sections.

PROOF. Let S be the family of all quasi-coherent Dy-modules U/ of V such that
D(X,U) = 0. We assume that S is ordered by inclusion. Let C be a chain in S. By
[7, Ch. I, 2.2.2], the union W of elements of C is a quasi-coherent Dy-submodule of
V and I'(X, W) = 0. Hence, by Zorn lemma, there exists a maximal element V' of
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S. Let U be any other element of S. Then U +V is a quasi-coherent Dy-submodule
of V and it is a quotient of Dy-module U & V’. By the exactness of T it follows that
DX, U+V')=0,i.e. U +Visin S. Therefore, U is a Dy-submodule of V'. O

Now we can prove 2. The localization Ay(V) of V' is a coherent Dy-module
generated by its global sections. Let W be a coherent Djy-submodule of Ay(V)
different from Ax(V'). Then we have an exact sequence

0—W—A\N(V)—V—0
of coherent Dy-modules and, since A is antidominant, we have
0 —T(X, W) —T(X,A\(V)) —T(X,V) —0.

By 1.1, I(X,Ax(V)) = V; hence our assumption implies that it is irreducible. It
follows that I'(X, W) is either 0 or equal to I'(X, Ax(V)). In the second case, all
global sections of Ax(V') would already be in W. By the definition of Ay(V), it is
generated by its global sections as a Dy-module. Therefore, this would imply that
W is equal to Ay(V), contrary to our assumption. It follows that T'(X, W) = 0
and I'(X,V) = V. Therefore, by 3, it follows that Ax(V') has the largest coherent
Dy-submodule W and corresponding V is irreducible. It is generated by its global
sections by 1.

It remains to show the uniqueness. Assume that U/ is an irreducible Dy-module
such that T'(X,U) = V. Then the image of the natural homomorphism of Ay(V)
into U is either 0 or U. In the first case, I'(X,U) = 0, contrary to our assumption.
It follows that this homomorphism is onto, and by the first part of the proof its
kernel is W. This ends the proof of 2.

Now we want to study the necessary and sufficient conditions for vanishing of
global sections of irreducible Dy-modules for antidominant A € h*. We start with a
discussion of the action of intertwining functors, attached to reflections with respect
to the roots from II,, on irreducible modules. Let a € IIy. Then

2L N8y =200 (=5a(3))) = 21 N (= (2X — {a}) U{a}) = {a},

hence, by 3.21, we know that the left cohomological dimension of I is < 1. As-
sume, in addition, that A is antidominant. Then n(s,A) < 1 and, by C.3.1, we
see that the right cohomological dimension of I' on M.(Ds, ) is < 1. By 3.23,
for any V € My.(D.,), we have a spectral sequence with Ep-term H? (X, LI, (V)
converging to I'(X, V). It follows that this spectral sequence converges at Eo-stage
and

(a) D(X, L7, (V) = HY(X, L, (V) =0,

(b) the Up-module I'( X, V) is an extension of I'(X, I, (V)) and H*(X, L~1I,_(V)).

5.4. LEMMA. Let a € II\ and A € §* be antidominant and such that o is
the only root from ILy orthogonal to A. Assume that V € My.(Dy) is such that
I'(X,V)=0. Then

(i) L, (V) =0,
(i) LI, (V) = V.

PROOF. Let p € P(X) be a regular antidominant weight and F' the irreducible
finite-dimensional g-module with lowest weight p. Denote by F = Ox ®¢ F. Then,
as we discussed in C.2, the U°-module G = (V ®0y F)[r+,) has a natural filtration
such that the corresponding graded module is the sum of V(v) for all weights v of
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F such that A4+p = w(A+v). This condition implies that A —wA = wv—p € Q(X),
hence w € W). In addition, since A is antidominant, the left side of this equation is
negative of a sum of roots from IIy. On the other hand, since p is the lowest weight
of F', the right side is a sum of roots from II. This is possible only if both sides are
equal to 0. Therefore, w =1 or w = s,. Hence, we have an exact sequence

0— V(sap) — G — V() — 0.
Also,
HZ(ng) = H’L(X,V ®ox ]:)P\-HA] = (HZ(Xa V) ®c F)[)\-‘ru] =0,
and the long exact sequence of cohomology implies that T'(X, V(sou)) = 0, T(X, V(u)) =
HY(X,V(sap)) and higher cohomology modules of V(s ) vanish. This finally im-
plies, by 3.23, that
RI(LI,, (D(V(n)))) = RE(D(V(sap))[1]).
By the equivalence of derived categories (3.19), we conclude that

LI, (D(V()) = D(V(sap))[1],

i.e. that I,,(V(n)) = 0 and L™'I;,(V()) = V(sap). The assertions (i) and (ii)
follow from 3.5.(ii). O

5.5. LEMMA. Let a € Iy and A € b* such that —a”(A) = p € Z4. Let V be
a quasi-coherent Dy-module such that I, (V) = 0 and L7 I, (V) = V(pa). Then
I'X,V(pa)) = 0.

PrOOF. By 3.23, we have
HY(X,V)=HT(X,L7'I, (V) = HT{(X,V(pa))
for all 7 € Z. 4

5.6. LEMMA. Let A € b* and a € TI. Put —a”(\) = p € Z. Let V be an

irreducible Dy-module. Then either
(i) L7, (V) =0, or
(i) Is, (V) =0 and L~ I, (V) = V(pa).

ProoOF. By C.3.5.(ii) we can assume that A is antidominant and regular. More-
over, because of irreducibility of V, T'(X,V) is irreducible Up-module, and either
I'(X,I, (V) =0or H'(X,L I, (V)) = 0. By C.4.3, we conclude that I;_ (V) =0
in the first case, and L=, (V) = 0 in the second case. Assume that I5 (V) = 0.
In this case, L™ (V) # 0. By 3.5.(ii) we can now assume that X is antidominant
and that « is the only root from IIy orthogonal to it. In addition, from previous
discussion and antidominance of s,A = A we conclude that

D(X,V)=H'(X,L7', (V) = 0.
The assertion follows from 3.5.(ii) and 4.4. O

5.7. LEMMA. Let A € b* and a € TIy. Put —a”(A\) = p € Z. Let V be an
irreducible Dy-module such that L= I, (V) = 0. Then I, (V) has a largest quasi-
coherent submodule U and

(i) we have an exact sequence

0—U— I (V) — V(pa) — 0;
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(i)
L™, (U) = U(—pa)
and LPI; (U) =0 for p # —1.
Moreover, if p >0, T'(X,U) = 0.

PROOF. Again, to prove the first statement we can assume that A is antidom-
inant and regular. As we remarked before, in this case all higher cohomology
modules of I;_(V) vanish. Let W be any quasi-coherent D;_x-submodule of I_ (V)
different from I,_ (V). Then, by C.3.1. and the long exact sequence of cohomol-
ogy we conclude that higher cohomology modules of C = I,_(V)/W also vanish.
Therefore, by C.4.3, we conclude that I'(X,C) # 0. The long exact sequence of
cohomology gives

0 — I'(X,W) —T(X, I, (V) — I'(X,C) — H X, W) — 0.

We can choose v € P(X) such that A+v is antidominant and « is the only root from
IT orthogonal to A+ v. This implies that a”(A+v) = 0 and a"(\) = —a”(v) = —p.
Then, the sequence

0 — W(sqv) — I, (V)(sqv) — C(sqv) — 0
is exact and, since s, (A + v) is antidominant, we get the exact sequence
0 — (X, W(sqr)) — T'(X, I, (V)(sqv)) — I'(X,C(sqv)) — 0.
Moreover, by 3.5.(ii) and 3.23, I, (V)(sav) = Is, (V(v)) and
(X, L, (V)(sav)) = I(X, L5, (V(v))) = T(X, V(v)),

hence it is either 0 or an irreducible Uy-module by 1. We claim now that I'( X, C(sqv)) #
0. Assume the contrary, i.e. I'(X,C(sqv)) = 0. Then, by 4, we have

I, (C(sqv)) = 0 and L™, (C(s4v)) = C(saV).
By 3.5.(ii) this leads to
I, (C(—pa)) =0 and L7 I,_(C(—pa)) =C.

Therefore, by 5, C has no global sections, contradicting the preceding discus-
sion. This in turn implies that I'(X, W(s,v)) = 0 and by 4. and 5, we see that
I'(X,W) = 0. We proved that any quasi-coherent D;_»-submodule W of I;_ (V) dif-
ferent from I_ (V) satisfies I'(X, W(sov)) = 0. Hence, by 3. we conclude that I;_ (V)
contains a largest quasi-coherent Dy-submodule ¢ and that T'(X,U) = 0. Moreover,
(Is, (V) /U)(sqV) is an irreducible Dy 4,,-module such that T'(X, (I, (V)/U)(saV)) =
I'(X,V(v)). By 2. it follows that (I, (V)/U)(sqv) = V(v). This implies that
I, (V)/U = V(pa). This porves (i).

We concluded already that T'(X,U(s,v)) = 0. Hence, by 4, L™ I, _(U(sav)) =
U(sqr) and LII, (U(sqv)) = 0 for ¢ # —1. Hence, we have L™ I, _(U) = U(sqv —
v) =U(—pa) and LPI, (U)) = 0 for p # —1. This proves (ii).

By (ii), L™, (U(—pa)) = U and all other derived intertwining functors vanish
on U(—pa). By 5. we see that I'(X,U) =0 if p > 0. O

5.8. COROLLARY. Let A € b* and « € IIy be such that —a”(A\) = p € Z,. Let
V be an irreducible Dy-module such that T'(X,V) # 0 and L™'I, (V) = 0. Then
(X, V(pa)) # 0.
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Proor. By 3.23,
(X, I, (V) =T(X,V) #0.
Hence, by the left exactness of I and 7, I'(X, V(pa)) # 0. O

5.9. THEOREM. Let A € bh* be antidominant and S subset of Il consisting
of roots orthogonal to \. Let V be an irreducible Dy-module. Then the following
conditions are equivalent:

(i) T(X,V) =0,
(i) there exists a € S such that I,_ (V) = 0.

PROOF. (ii)=(i) By 4, L~'I,_(V) = V. Hence, by 5, T(X,V) = 0.

(i)=(ii)) Let W(A) be the stabilizer of A\ in W. Then W(\) is generated by
reflections with respect to S. Let F' be a finite-dimensional representation with
regular lowest weight v, and put F = Ox ®c F. Then V ®p,, F satisfies

I'(X,V &0y F) =T(X,V)&c F =0.

Moreover I'(X, (V®ox F)x+2]) = 0. On the other hand, if we consider the filtration
of F' discussed in C.2, it induces a filtration of (V ®oy F)4y) such that the
corresponding graded sheaf is a direct sum of V(u) for all weights p of F such
that w(A +v) = A+ p for some w € W. This implies that wA — X\ = p — wv,
hence w € Wy. Moreover, the left side of the equality A —w™ A =w 'y —visa
negative of a sum of roots from Il and the right side is a sum of roots from II.
This implies that wA = A, i. e. w € W(A). Let w; € W(A) be such that V(wyiv) is
an Ox-submodule of (V ®oy F)a4u, then I'(X, V(wiv)) = 0. Assume now that
L7, (V) = 0 for all @ € S. We claim that in this case I'(X,V(wv)) # 0 for
any w € W(A), contradicting our assumption. We prove this by induction in the
length of w in W () (which is the same as the length in Wy by [5, Ch IV, §1, no. 8,
Cor. 4. of Prop. 7]). If w = 1, A+ v is antidominant and regular, and the statement
follows from C.4.4. Assume that £y(w) = k > 0. Let w = sqw’ with « € S and
w’ € W(A) such that £y(w’) = k — 1. Then, by [5, Ch. VI, §1, no. 6, Cor. 1 of
Prop. 17], it follows that w' !
that

a € Zj\'. This implies, by the antidominance of v,

oA+ wv) =a (wv) = (w "

and A + w'v is a-antidominant.
By the induction assumption we have I'(X, V(w'v)) # 0 and

L7, (V(w'v)) = L7, (V) (wr) = 0
by 3.5.(ii). Therefore, the assertion follows from 8. O

a)(v) e -N,

6. Intertwining functors and holonomic complexes

The category of holonomic modules is a thick subcategory of the category
Me(Dy). Therefore, we can consider the category D% (D)) which is the full sub-
category of D’(D,) consisting of complexes with holonomic cohomology. Clearly,
the geometric translation functor V — V(u), p € P(X), induces an equivalence of
the category D% ,(Dy) with the category D? ,(Dxi,).

Every holonomic module is of finite length. This results in the following con-
sequence

6.1. LEMMA. Irreducible holonomic Dy-modules form a generating class in

D;)wl(D)\)'
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PROOF. By a standard truncation argument [1, 1.12.6], all holonomic Djy-
modules form a generating class in Dﬁ’wl(DA). On the other hand, for a holonomic
Dy-module V of length n, let & be one of its maximal coherent submodules. Then
we have the exact sequence

0 U —svy ViU —— 0,
where V/U is irreducible and U of length n — 1. Let
Cp)
(1]
D) ——————= DY)

be the distinguished triangle attached to the morphism ¢. Then the cone C; is
isomorphic to D(V/U). Therefore, by induction in the length, we see that the tri-
angulated subcategory of D% _,(D,) generated by irreducible holonomic Dy-modules
contains all complexes of the form D(V) where V is a holonomic Dy-module. By
the first remark, it is equal to D% ,(D,). O

By its definition, for arbitrary w € W, the intertwining functor LI,, maps
DZ()Z(D)\) into DZOZ(DUJ/\)'

6.2. THEOREM. Let w € W and A\ € h*. Then LI, is an equivalence of the
category Db (D)) with D% _,(Dy)).

PROOF. By the product formula (3.18), it is enough to show this statement for
simple reflections. Using geometric translation and 3.5 we can also assume that A
is antidominant and regular.

There are two possibilities in this case. Either

(a) a’(\) ¢ —N, or

(b) a”(A) € =N.
In case (a), s4(\) is again regular antidominant. Therefore, by 3.22, I, is an exact
functor and I,,-: is its inverse. This immediately implies our assertion.

In case (b), p = —a’(A) € N. To prove the statement in this case it is enough to
show that the full subcategory A of DY (D, ) consisting of objects isomorphic to
complexes LI, (C),C € D% (D), is equal to D% ,(Ds, ). To show this, by 1, it is
enough to show that A contains complexes D(V(pa)) for all irreducible holonomic
Dy-modules V.

By 4.6, for an irreducible holonomic Dy-module V, there are two possibilities,
either

(i) L7 (V) = V(pa) and I, (V) =0, or
(i) L=, (V) =0.
If (i) holds, we have LI, (D(V)) = D(V(p«))[1]. Therefore
LI, (D(V)[-1]) = D(V(pa)),

and all complexes D(V(pa)), where V is an irreducible Dy-module of type (i), are
in A. This also implies that all complexes D(U(pa)), where U is a holonomic
Dy-module with all composition factors of type (i), are also in A.
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If (ii) holds, by 4.7. we have the short exact sequence

0 u I, (V) —— V(pa) —— 0.

We can choose v € P(X) such that A + v is antidominant and « is the only root in
II\ orthogonal to A 4+ v. Then, by 3.5,

0 —— U(sqv) —— I, V() —— V() —— 0

is exact. Moreover, 4.7 implies that I'(X,U(sqv)) = 0. Since A+ v is antidominant,
I is exact by C.3.2, and all composition factors of U(s,v) have no global sections.
By 4.9, this implies that all composition factors of U(s,v) are of type (i). By 3.5,
it follows that all composition factors of U are of type (i). From the first part
of the proof we conclude that U is in A. Consider now the distinguished triangle
associated to the morphism I (V) — V(pa),

-
DY) D(V(pa

The cone C' is isomorphic to D(U)[—1] and, since LI, (D(V)) and D(U)[—1] are
in A, we see that D(V(pa)) is in A either. By 1, we see that A= D% (Ds_»). O

This result has the following consequences.

6.3. THEOREM. Let A € b* and 6 = W - \. Let V be a holonomic Dy-module.
Then HP(X,V), p € Z+, are Up-modules of finite length.

PROOF. Let p € 6 be antidominant, and w € W such that A = wu. By 2,
there exists a complex C* with holonomic cohomology such that LI,(C") = D(V).
Since I' is exact functor from M.(D,) into M(Up) we see that RT'(C") = T'(C'),
and HP(RT'(C')) = T'(X, HP(C")) for arbitrary p € Z. By 4.1. we also conclude
that HP(RT'(C")), p € Z, are Up-modules of finite length. Therefore, RT'(C') is a
complex of Up-modules with cohomology modules of finite length. Finally, by 3.23,
we conclude that

HP(X,V) = HP(RL(D(V))) = H?(RU(L1,(C"))) = HP(RL(C)).
0

6.4. PROPOSITION. Let A € b* be regular antidominant and 6 =W - X\. Let V
be a finitely generated Ug-module. Then the following conditions are equivalent:

(i) Ax(V) is a holonomic Dx-module;
(ii) LAw,\( ) is a complex with holonomic cohomology for some w € W;
(i) Hp(ng, V), p € Zy, are finite-dimensional for all x € X ;
(iv) there existsw € W such that H,(nz, V) (watp), P € Zy, are finite-dimensional
forallx € X.

PROOF. First we remark that, by 1.19, LA, (V) € D2, (Dy,») for any w € W.

The assertions (i) and (ii) are equivalent by 3.19. and 2. Also, (iii) implies (iv).

Assume that (ii) holds. For z € X, denote by i, the injection of x into X.
Then
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is a complex with finite-dimensional cohomology. By 2.6, this implies (iv). On the
other hand, if (iv) holds, the same result implies that the complex LT, (LA, (V)
has finite-dimensional cohomology for all x € X. Hence (ii) follows from ([1],
VIL10.7.(ii)). 0

6.5. COROLLARY. Let 8 be a W-orbit in h* consisting of regular elements. Let
V' be a finitely generated Ug-module. If Hy(ng, V), p € Z4, are finite-dimensional
for all x € X, the module V is of finite length.

PROOF. Let A € 0 be antidominant. Then 4. implies that Ay (V) is holonomic,
and therefore of finite length. By equivalence of categories this implies that V is of
finite length. O

7. Tensor products with finite-dimensional modules

Let 6 be a Weyl group orbit in h* and A € 6. Let F' be a finite-dimensional
representation of g and m = dim F. Let (u;;1 <14 < m) be the family of all weights
of F' counted with their multiplicities. Since the weights of F' and their multiplicities
are invariant under the action of the Weyl group W, the family S(6,F) = (v; =
A+ pi; 1 <i<m), A €6, depends only on 0 and F.

7.1. LEMMA. Let V € M(Uy), and F a finite-dimensional representation of g.

Then
IT €—x(), ¢e 2,

veS(0,F)
annthilates V ®c¢ F'.

PROOF. Let A € 6 be antidominant. Put F = Ox ®c I and consider its
filtration (F;;1 <4 < m) from the beginning of C.2. Then, it induces a filtration
(Ax(V)®ox Fi; 1 <i<m)of A\(V)®p, F. The corresponding graded module is
the direct sum of Ax(V)(u;), 1 < i < m. It is evident that Ay (V)(u;) is annihilated
by ¢ — xu,(¢) for any ¢ € Z(g). This immediately implies that A\(V) ®p, F is
annihilated by [, (¢ — x,(¢)) for any ¢ € Z(g). In particular, the module of its
global sections is annihilated by these elements. On the other hand,

NX,A\(V) Q0 F) =T(X,A\(V)@c F) =V &c F
by 1.1. O

In particular, V ®c F' has a finite increasing filtration by /(g)-submodules such
that all composition factors are modules with infinitesimal character.

Let My;(U(g)) be the full subcategory of M(U(g)) consisting of U (g)-modules
of finite length. Let M,.(U(g)) be the full subcategory of M s, (U(g)) consisting of
modules V' € My (U(g)) such that V @c F € My (U(g)) for any finite-dimensional
g-module F.

7.2. REMARK. An example due to T. Stafford shows that there are irreducible
Up-modules V such that V ®c¢ F is not artinian. Therefore, M..(U(g)) is strictly
smaller than M s (U(g)).

7.3. LEMMA. i) The category M .(U(g)) is a thick subcategory of the
category M (U(g)).

(ii) If V € M.(U(g)) and F is a finite-dimensional g-module, V @c F €
Mee(U(g))-
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PROOF. (i) follows immediately from the exactness of — ®¢ F'. (ii) is evident.
(]

7.4. LEMMA. Let A € b* be antidominant and 6 = W - X. Let V. € M(Up).
Then the assertion:
(i) HP(X,Ax(V)(v)), p € Z4, are Up-modules of finite length for any weight
v € P(X), implies
(ii) V®cF is an g-module of finite length for any finite-dimensional g-module
F.

If, in addition, X is regular, (i) and (ii) are equivalent.

PROOF. We use the notation from the proof of 1. From the spectral sequence
of a filtered object [7, II1.13.6], we see that there exists a spectral sequence with
FEi-term equal to

HP™U(X, Grg(A\(V) ®o F)) = H'7(X, Ax(V)(1v))
which abutts to
HP (X, A\(V)®o, F) = HP(X,Ax\(V)) &c F

and which is equal to V ®@¢ F for p = 0 and 0 otherwise. Since the E;-term consists
of g-modules of finite length and all differentials are morphisms of g-modules, we
conclude that V ®¢ F is of finite length.

Assume now that X is regular and that that (ii) holds for V'€ M(Uy).

Let p is a dominant weight and F the irreducible finite-dimensional module
with lowest weight —u. Then, by C.2.2 and 1.1, we see that

DX, AN (V) (=) = T(X, A\ (V) ®ox F)in-ul
= (F(AX’7 A)\(V)) ®(C F)[/\—H] = (V ®(C F)[/\—H]'

By 2, V' = (V ®c F')x—, also has the property (ii) and Ax_, (V') = Ax(V)(—p).
Since an arbitrary weight v can be written as a difference of two dominant
weights ¢/ and p, we have

A(V)(v) = Ax(V) (1" = p) = Ax—pu (V) ().

Therefore, it is enough to prove (i) for dominant weights v.
We complete the proof by induction in p. Assume first that p = 0. Let F be
the irreducible finite-dimensional g-module with the highest weight v. Then

HP(X,A\(V) ®ox F) = H (X, A\(V)) @c F
for all p, 0 < i < dim X; therefore it vanishes for p > 0. On the other hand, we

have an injection of F; = O(v) into F. It follows that, by tensoring with Ay (V),
we get the exact sequence of /°-modules

0— A\(V)(v) — Ax(V) ®oy F — K — 0.

Applying T to this exact sequence we see that I'(X, Ay (V)(v)) is a g-submodule
of the tensor product T'(X, - (V)) ®c F = V & F, which is of finite length by our
assumption. This proves our assertion for p = 0.

Assume now that p > 1. Then the long exact sequence of cohomology implies
that HP(X, Ax(V)(v)) is a quotient of H*~1(X,K). On the other hand, from the
definition of the filtration of F, it follows that IC has a natural &/°-module filtration
such that the corresponding graded module Gr K is equal to @A (V) (u), where the
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sum is taken over all weights p of F different from v. By the induction assumption,
HF1(X, A5 (V)(p)) are g-modules of finite length. An induction in the length of
the filtration of X implies that H*~!(X, K) is a g-module of finite length. O

7.5. PROPOSITION. Let A € h* be antidominant and 6 = W - X\. Let V €
M(Uy) and F a finite-dimensional representation of g. If A\(V) is a holonomic
Dy-module, V @c F is a module of finite length.

PRrOOF. This follows from 5.3. and 4. |

Therefore, M,.(U(g)) contains all Up-modules with holonomic localizations.

7.6. REMARK. Is there an irreducible Uy-module V in M...(U(g)) such that its
localization is not holonomic?

Let K(My;(U(g))) be the Grothendieck group of M f;(U(g)). Denote by ch the
natural character map from Mg (U(g)) into K (Mg (U(g)))-

Denote by M..(Uy) the full subcategory of M(Uy) consisting of objects which
are also in M..(U(g)).

7.7. THEOREM. Let A € h* be regular antidominant and V' an irreducible module
in Mc.(Up). Then there exists a unique function ® from P(X) into K(M s (U(g)))
such that

(i) ®(0) = ch(V);
(ii) ®(v) is a difference of g-modules with the infinitesimal character x4 ;
(iii) for any finite-dimensional g-module F'

ch(V@cF)=> o)

where the sum is taken over the set of all weights v of F' counted with
their multiplicities.

The function ® is given by the following formula
B(u) = Y (=1)P ch(HP (X, A\(V)(1)))
PEL4
for pe P(X).

ProoF. First show that the function

S(u) = Y (~1)7 h(HP(X, Ax(V)(1))

pEly

has the required properties. The first two properties are evident from the definition.
As in 4, from the spectral sequence of a filtered object, we get a spectral sequence
with Ei-term equal to

HP™U(X, Grg(AN(V) ®oy F)) = HP 79X, Ax(V)(vg))
which abutts to

HP (X, A\(V) @0y F) = HP (X, Ax(V)) ®@c F
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and which is equal to V ®¢ F for p = 0 and 0 otherwise. The Euler characteristic
of the total complex attached to the Ei-term is

D (FPHR(HPTIX, AN(V) (1)) = Y (=1)P7 T ch(HPTI(X, Ax(V)(1)))
P,qEZ P,qEZ

= S (1) ch(H* (X, A\ (V) ()
SEZ
where the sum is taken over all weights v of F' counted with their multiplicities. By
the Euler principle, this is equal to the Euler characteristics of the total complex
of E, i.e. to ch(V ®c F). This proves the third property.

It remains to show the uniqueness. First, the map F' +—— ch(V ®¢ F') extends to
the Grothendieck group of the category of finite-dimensional g-modules. Moreover,
the notions of weights and their multiplicities transfer directly to this setting. By
[5, Ch. VI, §3, no. 4, Prop. 3], for any dominant weight x there exists an object in
the Grothendieck group of the category of finite-dimensional g-modules with the set
of weights equal to {wu |w € W} and each weight has multiplicity one. Therefore,
> wew P(wp) is uniquely determined by the third property. On the other hand,
Xatp = Xotwy implies w' (A +wp) = X+ p for some w’ € W. This implies that
WA=\ =p—wwyu € P(X). Therefore, w’ € Wy. Since A is antidominant, w'A — A
is a sum of roots from Ej\'. On the other hand p is a dominant weight and g —w'wp
is negative of a sum of roots from ¥ . This implies that w’XA = X and w’ = 1 since
A is regular. But this immediately leads to w’u = p. Hence, by (ii), all summands
in ), cy ®(wp) correspond to different infinitesimal characters. This implies that
they are uniquely determined. (|

The map @ is usually called the coherent family attached to V.

8. Intertwining functors for simple reflections

In this section we study more carefully the action of intertwining functors I_,
a € II, on irreducible Dy-modules. If a’(\) is not integral, by 3.22, I, is an
equivalence of the category M,.(Dy) with M,.(Ds,»). A more interesting case
which we want to analyze is when «”()\) is an integer. We start with a simple
geometric preliminary result.

8.1. LEMMA. The varieties Z,,, w € W, are affinely imbedded in X x X.

PROOF. The variety X x X is the flag variety of g x g. By 3.1.(ii), Z,, w € W,
are the Int(g)-orbits in X x X under the diagonal action, hence they are affinely
imbedded by H.1.1. [

Let o € II. Denote by X, the variety of parabolic subalgebras of type «, and by
Do the natural projection of X onto X,. Let Y, = X xx_ X be the fibered product
of X with X relative to the morphism p,. Denote by ¢; and ¢s the corresponding
projections of Y, onto the first and second factor respectively. Then the following
diagram
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is commutative. Moreover, there is a natural imbedding of Y, into X x X. It
identifies Y, with the closed subvariety of X x X which is the union of Z; and Z_.
Under this identification, Z; is a closed subvariety of Y,, and Z,_ is a dense open
subvariety of Y,. In addition, Z,_ is affinely imbedded into Y, by 1.

Fix a base point y € X, and denote by P, , the stabilizer of y in G. As we
have discussed in (...) the G-homogeneous twisted sheaves of differential operators
on X, are parametrized by P, ,-invariant linear forms on the Lie algebra qq,, of
Pay. Since Py, 4 is connected, a linear form u € p7, , is Py y-invariant if and only
if it is pa y-invariant. Therefore p is P, y-invariant if and only if it vanishes on
the commutator subalgebra [pa,y,Pa,y] Of Pa,y. Let b be a Borel subalgebra of g
contained in py . Then [pq,y, Pa,y] contains the nilpotent radical n of b and we have
a canonical map from b into Pay/[Pa,y, Pa,y]. This map is surjective and its kernel
is spanned by the dual root o of a. Therefore, G-homogeneous twisted sheaves
of differential operators on X, are parametrized by linear forms p € h* satisfying
o (@) = 0. In addition, for any p € b* satisfying a”(u) = 0, the twisted sheaf of
differential operators (Dx, ,)P* is a G-homogeneous twisted sheaf of differential
operators on X and

(Dxmu)pa = 'DX# = DM—P'
For any A € h*, (D)% and (Dy)? are twisted sheaves of differential operators on
Y,. Since py © g1 = pa © g2, We see that

(Du—p)q1 = (D

for any p € b* such that a”(u) = 0. Let A € h* be such that p = —a”(X) is an
integer. Then we can put g = A + pp. In this case, a’(p) = o’ (A) + pa’(p) = 0,
and p satisfies our condition. Therefore, by (...), we get the following result:

(Dy)" = ((D,,_,)CPHDyar — ((Dy_,)a1)a1 (O((=p+1)e)

and analogously, since u = sq A + psap,

M—p)q2

(Dy)% = ((D,_,)C Pt sarte)yar — ((p, _)71)a (O=p+Dsapta))
Let £ be the invertible Oy, -module on Y, given by
L =qi(O((=p+)sap + ) ®o,, 6(O((—p+1)p))~".
Then, by the preceding calculation, we have the following result.
8.2. LEMMA. Let A € b* be such that p= —a” () is an integer. Then
(Dsn)™ = ((D2))~.
In particular, we have well-defined functors U’
V — Raqii(a5 (V) ®oy, L)

from M.(D,) into Mye(Ds, »). Since the fibers of g1 are one-dimensional, U’ = 0
for j # —1,0,1. Now we want to analyze the connection between the functors U’
and the intertwining functor I,_. Denote by ¢; the natural inclusion of Z; into Y,
and by 7, the natural inclusion of Z,_ into Y,. Since ¢; is a closed immersion and
i 1s an open affine immersion, we have the distinguished triangle

F[Zl](W.) W — ia*(W'|Zsa) — F[Zl](W')[l]
in D?((Ds, )% for any W € D?((Ds, )% ). This leads to the distinguished triangle
Rq14(TzyW)) = R W) = Rq14(iaxWV'|Zs, ) — Rq14 (T2, (W)[1])
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in D*(D;, ). Moreover, g o i, = p1, hence
Rq1y (iax(W'|Zs,,)) = Rp1e(W'|Zs,,).-

Assume now that W = D(g5 (V) ®o,. L) for some V € Mg.(Dy). Then, by 3.3.(i),
L|Zs, = i (O((=p + 1)sap + ) R0, p5(O((=p +1)p) ™" = pi(O(a)) = T,
It follows that, in this case, W'|Z,, = D(p3 (V) ®0y,, Ts.), and we conclude that
Ry (iax(W'|Zs,)) = Lls, (D(V)).

By [1, 7.12], we know that Rz, (W) = Riy4 (Li{ (W )[—1]), hence
Rq1+(RT(2,)(W')) = R(q1 0 i1)+ (Lif (W)[-1]).

Here ¢; o 47 is the natural isomorphism of the diagonal Z; in X x X with X
induced by the projection onto the first factor. If we assume again that W =
D(q3 (V) ®oy,, L), we see that

Lif (D(g3 (V) ®oy, L)) = L(gz 0 i1) " (D(V)) ®0,, i1 (L)

Here ¢o 047 is again the natural isomorphism of the diagonal Z; in X x X with X
induced by the projection onto the second factor. If we use this map to identify Z
with X, we see that i} (£) = O(pa) and

Rq1+(RU(z,)(D(g3 (V) ®oy, L)) = DV(pa)[-1]).

By applying the long exact sequence of cohomology to the above distinguished
triangle this finally leads to the following result.

8.3. THEOREM. Let A € h* be such that p = —a”(X\) is an integer, and V €
Mye(Dy). Then
(i) U'(V) = L7, (V);
(ii) we have an exact sequence of D  x-modules

0—U(V) — L,(V) — V(pa) — U (V) — 0.
We can say more if V is irreducible.

8.4. THEOREM. Let A € h* be such that p = —a”(\) is an integer, and V €
Mye(Dy) an irreducible Dy-module. Then either
(i) U=L(V) = UL(V) = V(pa) and U°(V) = 0, and in this case I, (V) = 0
and L=, (V) = V(pa); or
(i) U=Y(V) = UY(V) =0, and in this case L~ I, (V) = 0 and the sequence

0— U'(V) — I, (V) — V(pa) — 0

is ezact. The module U°(V) is the largest quasi-coherent D;_ x-submodule
of I, (V) different from I (V).

From 4. and 4.7. we immediately see that U°(V) in (ii) can be characterized as
the largest quasi-coherent D, _x-submodule of I,_ (V).

To prove the remaining assertions, we first we remark that if U~1(V) # 0,
L7'I, (V) # 0 by 3. Hence, by 4.6, I, (V) = 0 and L7'I,_(V) = V(pa). By
applying 3. again, we conclude that U%(V) = 0 and U1 (V) = V(pa).

Assume that U=1(V) = 0. Then, by 3, L~'I,_(V) = 0. Hence, by 4.6, we see
that I, (V) # 0. It remains to show that U(V) = 0.
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Assume that U'(V) # 0. Then, by 3, U}(V) = V(pa). We shall show that this
leads to I, (V) = 0, what is a contradiction. This argument will also give us some
insight in the structure of irreducible Dy-modules with U*(V) # 0.

We start with a preliminary result. Let p € h* be a linear form such that
a’(n) = 0. Let U be a Dy, ,-module on X,. Then pf () is a D,,_,-module on X.

8.5. LEMMA. Let V = pt(U) for someU € My(Dx, ). Then I, (V) =0 and
L7, (V) = V().

PRrROOF. As in the discussion preceding the proof of 3.9, the proof reduces to
the corresponding statement for g = s[(2,C). In this case, V is a direct sum of
copies of Ox and our claim follows from 3.24. (]

This result implies that if W is a translate of a module of the form p (i), we
have I,_ (W) = 0. On the other hand, by applying the base change (...) to the
diagram

YV, —2— X

q1 l Pa l
X 2 X,
we see immediately that U'(V) is a translate of such a module. Therefore, V has

also this property, and we conclude that I;_ (V) = 0. This ends the proof of 5.4.
In addition, we proved the following result.

8.6. PROPOSITION. Let A € b* be such that p= —a” () is an integer, and V €
Me(Dy) an irreducible Dy-module. Then the following conditions are equivalent:
(i) L, (V)=0;
(ii) V is a translate of a module of the form pt(U).

This result, combined with 4.9. implies the following simple criterion for van-
ishing of global sections of irreducible Dy-modules.

8.7. THEOREM. Let A € h* be antidominant. Let S be the subset of 11 con-
sisting of all roots orthogonal to A. Assume that S is contained in I1. Let V be an
irreducible Dy-module. Then the following conditions are equivalent:

(i) T(X,V) =0;

(ii) there exists « € S such that V is a translate of a module of the form
+
P (U).

9. Supports and n-homology

In this section we prove some results on n-homology which follow from analysis
of the action of intertwining functors.
We start with some geometric preliminaries. Let S be a subset of the flag
variety X. For w € W put
E,(S) ={x € X | b, is in relative position v
with respect to b, for some v < w,y € S}.
9.1. LEMMA. (i) If S is a subset of X and w e W,

dim S < dim E,,(S) < dim S + £(w).
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(ii) If S is a subset of X and w € W,
E,(S) = Eu(S).
(iii) If S is a closed subset of X and w € W, E,,(S) is the closure of the set

{x € X | by is in the relative position w with respect to some b, y € S}.

(iv) If S is irreducible, E,,(S) is also irreducible.
(v) Let w,v € W be such that {(wv) = l(w) + £(v). Then

Euw(S) = Ey(Ey(9)).

PROOF. Let o € II. Denote by X, the variety of all parabolic subalgebras of
type a and by p, : X — X, the natural projection. Then we have

E;_ (S) ={x € X | b, is in relative position v
with respect to b, for some v < 54,y € S}
= SU{x € X | b, is in relative position s,
with respect to b, for some y € S} = p ' (pa(9)).

Clearly, since p, : X — X, is a locally trivial fibration with fibre isomorphic to
P, B, (S) is closed (resp. irreducible) if S is closed (resp. irreducible). Moreover,
we see that

dim § < dim E,_(S) < dim S + 1.

Therefore, Es_ (S) is closed. Hence, Es_ (S) C Es_ (S). On the other hand, since

S C Es, (S) it follows that S C E_(S). If x € E,_(S), the whole fiber p,!(pa(z))

is contained in E,_(S). This implies E;_(S) C Es_(S). This proves (ii) for simple
reflections.

Now we prove (v) by induction in the length of w € W. First we claim that the
formula holds if w = s, a € II. In this case, E,_(E,(S)) consists of all points z € X
such that either z € E,(S) or there exists y € E,(S) such that b, is in relative
position s, with respect to b,. Hence, it consists of all z € X such that there exists
y € S and by, is in relative position v with respect to b, for either u < v or u = st/
with «/ < v. In the second case, we have either £(u) = ¢(u') + 1 and u < s,v or
lu) = L(u') —1 and u < v/ < v. Hence, E;_(E,(S)) C Es_,(S). Conversely, if
u < sq, we have either u < v or s,u < v, hence E,_(E,(S)) = Es_.(S5).

Assume now that w is arbitrary. Then we can find o € II and w’ € W such
that ¢(w) = £(w’) + 1. Therefore, by the induction assumption,

Ew(Ev(S)) = Esaw/(Ev(S)) = Esa (Ew’(EU(S))) = Esa (Ew/v(S))v

which completes the proof of (v).

Now, for arbitrary w € W, a € II, and w’ € W such that ¢(w) = £(w’) + 1, we
have E,,(S) = E_(E. (S)). Using the first part of the proof and an induction in
l(w), (i), (ii) and (iv) follow immediately. In addition, we see that E,,(.S) is closed,
if S is closed.

(iii) Let

V = {z € X | b, is in relative position w with respect to some by, y € S}.

Then V C E,(S). Since E,(S) is closed, V C E,,(S). Let y € S. Then the closure
of the set of all x € X such that b, is in relative position w with respect to by is
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equal to Ey({z}). This implies

Vo | Bu({z}) = Eu(S).

zeS
([l
We say that w € W is transversal to S C X if
dim E,,(S) = dim S + 4(w).
If w is transversal to S, £(w) < codim S.
9.2. LEMMA. (i) The element w € W is transversal to S if and only if it

is transversal to S.
(ii) Let S be a subset of X and w,v € W be such that £(wv) = £(w) + £(v).
Then the following statements are equivalent:
(a) wv is transversal to S;
(b) v is transversal to S and w is transversal to E,(S).
Proor. (i) By 1.(ii) we have

dim E,,(S) = dim E,,(S) = dim E,,(S5),

and the assertion follows from the definition of transversality.

(i) By 1.(i)

dim E,,,(S) < dim S + £(wv) = dim S + ¢(w) + £(v),

and the equality holds if and only if wv is transversal to .S. On the other hand, by
1.(v),

dim Eyy, (S) = dim By, (E,(5)) < dim B, (S) + {(w) < dim S + £(v) + {(w).
Hence, if (a) holds, the last relation is an equality, i.e.,

dim E,,(E,(S)) = dim E, (S) + {(w)
and
dim E,(S) = dim S + £(v).

Hence, (b) holds.

Conversely, if (b) holds, we see immediately that wv is transversal to S. O

9.3. LEMMA. Let S be an irreducible closed subvariety of X and w € W. Then
there exists v < w such that v is transversal to S and E,(S) = E,(S5).

ProOF. First we consider the case of w = s,, o € II. In this case E;_(5) =
Pt (pa(9)) is irreducible and closed, and we have two possibilities:
(a) sq is transversal to S and dim Es_(S) = dim S + 1, or
(b) s4 is not transversal to S, dim F,_(S) = dim S and since S C E,_(5), we
have E;_(S) = 5.
Now we prove the general statement by induction in ¢(w). If {(w) =0, w = 1 and
E,(S) = S, hence the assertion is obvious. Assume that ¢(w) = k. Then there
exists w’ € W and « € II such that w = spw’ and £(w) = £(w') + 1. In this case,
E,(S) = Es_(E. (S)) by 1.(v). By the induction assumption, there exists v’ € W,
v’ < w' which is transversal to S and such that E,/(S) = E,(S5).
Now, by the first part of the proof, if s, is not transversal to E,(S) we have

Ew(S) = Esa(Ew’(S)) = Ew/(S) = Ev/(S)
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Since v/ < w’ < w the assertion follows. If s, is transversal to E,(S), we have
dim B, (S) = dim E;_ (FEy (S)) = dim B, (S) + 1 =dim S + £(v) + 1
Put v = s,v’. If we have £(v) = £(v") —
By (S) = Es, (Eo(8)) = pa (Pa(Eu(S)))
by 1.(v) and
Eq, (Ey(S)) = pa’ (Pa(pa (Pa(Es(5)))) = Ev (S),

contrary to transversality of s,. Therefore L) =LW')+ 1, v <wand E,(S) =
E;_ (Ey(S)). We conclude that E,,(S) = E,(S5),

dim E,(S) = dim E,(S) = dim S + £(v') + 1 = dim S + £(v)
and v is transversal to S. O

Fix A € h*. Let Mon(Dy) be the category of coherent Dy-modules. The
support supp V of a coherent Dy-module V is a closed subvariety of X [9]. We want
to analyze how the action of intertwining functors changes supports of coherent
D-modules.

First we remark the following simple fact which is a direct consequence of the
definition of the intertwining functors and 1.(iii). If V" is a complex in D?(D,), we
define the support of V' as

suppV = U supp HP (V).
pEL

Clearly, by the above remark, the support of V' € Dcoh(D)\) is a closed subvariety
of X.

9.4. LEMMA. For any V € D? , (D)) and w € W, we have
supp LI,,(V") C Ey(supp V).
PRrOOF. First we establish this result for simple reflections. If o € II,
LI, (V') = Rp1+(Ts., ®0,,, p3 (V)
and we have the spectral sequence
Rp1o(Ts, ®0,,, H'(p3 (V) = H*(LL,, (V)

hence the support of LI, (V") is contained in the closure of the image of the support
of p§ (V'). The support of pJ (V') is contained in the closed subset

{(z,2") € Z,, |2’ €suppV'} = {(z,2') € X x X |
b, is in relative position s, with respect to b/, 2’ € suppV'}
of Z,_ . The projection of this set under p; is equal to
{z € X | b, is in relative position s, with respect to b/, 2" € supp V'}
C E;, (supp V).

Hence,
supp LI, (V') C Es_(supp V).
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Now we prove the general statement by induction in #(w). Assume that w =
WS, w € W, a € I and {(w) = {(w’') + 1. Then LI, = LI, o LI, by 3.18.
Hence, by the induction assumption and 1.(v),

supp LI,,(V") = supp LI, (LI, (V")) C Ey (supp LI (V"))
C Eyw (Es, (supp V")) = Ey(supp V).
O

The next result is more subtle.

9.5. LEMMA. Let V € Mon(Dy) and o € 1. Then
(i)
dimsupp L' I,_ (V) < dimsupp V;
(i) if sq is transversal to supp V,

dimsupp I (V) = dimsupp V + 1.
PrROOF. Let S = supp V. Then either

(a) sq is transversal to S, or
(b) sq is not transversal to S.

Consider first the case (b). Then, dim S = dim E;_(S). Therefore, by 4,
dimsupp LI, (V) < dim S

for p € Z. In particular, (i) holds in this case.
It remains to study the case (a). We start with some geometric preliminaries.
Let S; , 1 <i <mn, be the irreducible components of S. Then

EsCY (S) = Esa <0 Sz) = UES"“ (Sz)

Since Ej, (S;) are closed and irreducible by 1.(iv), the maximal elements of the
family (Fs_(S;);1 <1 < n) are the irreducible components of E;_(.S). Hence,

dim E;_ (S) = max dim F;_(S;),
1<i<n

and there are irreducible components S; of S satisfying dim E_(.S;) = dim E,_(S).
By relabeling the indices, we can assume that this holds for 1 < i < m. Since s,
is transversal to S, we have dim E;_(S) = dim S + 1. Therefore, dim E;_(S;) =
dim S+1 for 1 <4 < m. On the other hand, dim F;_(S;) < dim S; + 1, implies that
dim S; =dim S for 1 < i < m. Hence S;, 1 <1i < m, are irreducible components of
S of dimension dim S. Since Es_ (S;) = p, 1 (pa(Si)) and p, : X — X, is a locally
trivial fibration with fibers isomorphic to P!, we see that

dim po(S;) = dim p;* (pa(S;)) — 1 = dim S; = dim S

for 1 <i < m. On the other hand, if m < i < n, dim F;_(S;) < dim S, hence either
dim S; < dim S or s, is not transversal to S;. In both cases, dim p,(5;) < dim S.
Hence, if we denote by Sp the union of the singular locus of S and J,,;<, Si,
we see that dimp,(Sp) < dim S and dim E,_(Sp) < dimS. Let X’ = X — Sp.
Then SN X’ is a smooth closed subvariety of X’ and its irreducible components are
Si=8,nNX" 1<i<m. Therefore, S}, 1 <i < m, are mutually disjoint smooth
subvarieties of dimension dim S, and s, is transversal to all of them.
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If we consider the restrictions p,|S: : S; — pa(S), 1 < i < m, there exist open
dense sets U; in p, (S;) such that the fibres p;!(u)NS are finite foru e U = (J;, U
[11, Ch. I, §8, Theorem 3]. The set p,*(U) is open in E,_(S) of dimension dim S+1.
Since S and Ej_(Sp) are closed subspaces of Ey_(S) of codimension 1, the set

V =p,'(U) = (SUEx,(S))
is open in E,_ (S) of dimension dimS + 1 and its complement is a subvariety of
dimension dim S.
Let z € V. Consider the projections p; : Zs, — X, ¢ = 1,2, induced by
projections of X x X to the first and second factor. Then
prt (@) Ny (8) = {(z,2") € X x X | pa(@) = pala’), 2’ € S}
={(z,2") [ 2" € p3 ' (x) N S}

is a nonempty finite set, and po induces a bijection of this set onto p;!(x) N S.
Now we turn to the analysis of geometric fibres of LI; . For any z € X we
denote by i, the natural injection {z} — X. Then we have

LT,(U) = Li} (U) = Ri',(U ) [dim X]
for any U € D%(D,). Therefore, for any z € X, we have
LT,(LI,,(D(V))) = Riy (LI, (D(V)))[dim X]
= Riy,(Rp1+(Ts, ®o,,, p3 (D(V))))[dim X].

Let Z, = pfl(:r) C Zs, be the fibre of p; over x. Denote by j, the immersion of
Z, into Z_. Then, by base change [1, VI.8.4], we have

LT,(LI,,(D(V))) = Riy,(Rp1(Ts, ®0,, p3(D(V))))[dim X]
= R(p1 0 ju)+(Rjy(Ts, ®0,, p3 (D(V))))[dim X]
= R(p1 0 j2)+ (75 (Ts.) @0z, Rig(p2(D(V))[-1]))[dim X]
= R(p1© o)+ (73 (Ts.) ®0,, R(p2 0 jz)' (D(V)))[dim X — 1].
The projection pgoj, of Z, onto its image F' = (po(x)—{z}) C X is an ismorphism.
Denote by g1 : F' — X and ¢ : F — X the compositions of p; and ps with the
inverse of this isomorphism. Then ¢, is the natural inclusion of F' into X. Since
Ts.. = pi(O(a)) = p5(O(—a)) by 3.3.(1), we finally see that
LT,(LI,..(DOV))) = Ray+(63(O(~0)) ®0, Rab(D(V)))[dim X — 1]

Assume now that z € V. Then F C X’. On the other hand, §' = SN X’
is a smooth closed subvariety of X’. Let j be the natural immersion of S’ into
X. Then, by Kashiwara’s equivalence of categories [1, VI.7.11], we have V| X' =
j+(Rj' (V)| X’ Hence,

Rgy(D(V)) = Rax(D(j+(R"5'(V)))) = Ras(j+(Rj (D(V)))).

Let k and h be the natural immersions of F'N .S into F' and S’ respectively. Then,
applying again the base change, we have

Ray(D(V)) = Ray(j+ (Rj (D(V)))) = Rk+ (RR (R} (D(V))))
= Rk (R(j o h)'(D(V))) = Rk (R(gz © k) (D(V))).
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Since the set F'N S is finite, if we denote by k, the natural immersion of {y} into
F', we have

Ray(D(V)) = Rk (R(g2 © k) (D(V)))
= @D kB, (DOV) = D ky+(LT,(DOV)))[- dim X]
yeEFNS yeFNS
This implies that
LT, (LI, (D(V))) = D LT,(D(V))[-1]
ye(pa ' (@)—{z})ns
as a complex of vector spaces.

By [1, V.9.3], by shrinking U even more, we can assume that j'()) is a locally
free O-module on S N p,(U). This implies that LPT,(5'(V)) = 0, for p # 0 and
y € SNpt(U); and

E,=T,(j'(V)) #0
for y € SNp;'(U). Therefore, if we denote by I, the inclusion of {y} into S’, we
get
LT,(D(V)) = Ri,,(D(V))[dim X] = R, (Rj'(D(V)))[dim X]
= LT,(D(j'(V)))[dim X — dim S] = D(E,)[dim X — dim S]
for all y € SN p;t(U). Hence,
LT, (LI, (D(V))) = P D(E,)[dim X — dim S — 1]
y€(pa’ (@)—{z})ns

for z € V, and x € supp LI, (D(V)). Therefore, supp L, (D(V)) contains the
closure V' of V' and dimsupp LI, (D(V)) > dim S + 1. By 4, we have

dimsupp LI, (D(V)) = dim S + 1.

Since
dimsup LI,_(D(V)) = max dim supp LPI_ (V)
P

= max (dimsupp I, (V), dim supp L', V),

to complete the proof we have to show that dimsupp L=, (V) < dim S. Let X"
be the complement of the union of the singular locus of E;_(5) and its irreducible
components of dimension < dimS. Then T = E,_(S) N X" is a closed smooth
subvariety of X’ and all its irreducible components are of dimension dim S+ 1. Let
v : T — X be the natural inclusion. By Kashiwara’s theorem, LPI, (V)| X" =
v4(Cp)| X", for coherent D-modules C, = v'(LPI,, (V)) on T. By shrinking X" if
necessary, we can assume that C, are locally free O-modules [1, VIL.9.3]. If we
denote by h,, the inclusion of {z} into T, using again base change, we see that

LT, (D(L?1,,(V))) = LTo(D(v4(Cp))) = Riyy(v4(D(Cp)))[dim X]
= Rh (D(C,))[dim X] = LT,(D(C,))[dim X — dim S — 1]
= D(T,(Cp))[dim X — dim S — 1]
for z € T and p € Z. Hence,
LT, (LP 1, (V) =0
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for ¢ # dim S — dim X + 1 and
LA SmAm XA ([P, (V) = Tu(Cy).
By this calculation, the spectral sequence
LT, (L7 15, (V) = H"M(LT (LI, (D(V)))),
converges at Fs-stage and
HAm ST A AP (LT (L, (D(V)))) = Ta(Cp)
for x € T. Hence,
LT, (LI, (D(V))) = D(T,(C_1))[dim X — dim S] & D(T},(Co))[dim X — dim S — 1]

forx € T.
Since the set of all irreducible components of E;_(.5) is equal to the set (Es_ (S5;);1 < i < m),
we see that TNV is dense in T. Comparing the preceding calculations, we see that
T,(C-1) =0 for x € TNV. Since C, are locally free, we conclude that C_; = 0.
Hence, supp L~ 11, (V) € X — X” and dimsupp L™, (V) < dim S. This com-
pletes the proof of (i) in this case, and implies that (ii) must hold. O

9.6. PROPOSITION. Let V € Mon(Dy) and w € W. Then
dim supp LPI,,(V) < dimsupp V + ¢{(w) + p,
forpeZ.

PROOF. We prove this result by induction in ¢(w). If w is a simple reflection,
this follows from 1.(i), 4. and 5.(i). Let w = sqw’ with o € II and w’ € W with
f(w) = 4(w') + 1. Then, by the induction assumption,

dimsupp LP I,/ (LI, (V)) < dimsupp LI, (V) + {(w') + p
< dimsuppV + ¢(w') + 1+ p+ g = dimsupp V + £(w) + p + g,
for p,q € Z. From the spectral sequence attached to 3.18. we conclude that
dim supp LI, (V) < dimsupp V + £(w) + s,
for any s € Z. Il

9.7. LEMMA. Let V € Mcon(Dy) and w € W transversal to supp V. Assume
that the support S of V is irreducible. Then

supp Iy (V) = Ey (S)

PROOF. We prove this result by induction in £(w). If {(w) = 1, w = s, for some
a €1I. By 4, supp I, (V) C Es_(S). Also, by 1, both sets are closed and E;_(S) is
irreducible. Since dimsupp I,,(V) = dim S + 1 = dim E_(S) by transversality and
5.(ii), the statement follows.

Let w € W with ¢(w) = k > 1. Then w = sqw’ with @ € Il and f(w') =k — 1.
Since w is transversal to S, w’ is transversal to S and s,, is transversal to E,, (S) by
2. By the induction assumption, supp I,» (V) = E,(S). Hence, by 3.8 and 1.(iv),
we have

supp L, (V) = supp Is, (I, (V) = Es, (Eyw (5)) = Ey(S).
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To any coherent Dy-module we attach two subsets of the Weyl group W:
SW)={weW |suppl,(V) =X}

and
E(V) = the set of minimal elements in S(V).

9.8. PROPOSITION. Suppose V € Mcon(Dy) has irreducible support. Then
(i) the set S(V) is nonempty;
(i)

EW) ={w e W | w is transversal to supp V and ¢(w) = codim supp V},

i.e., E(V) consists of all w € W transversal to suppV with the mazimal possible
length.

PROOF. Assume that w € W is transversal to supp V and ¢(w) = codim supp V.
Then, by 7, we conclude that w € S(V). If v < w, ¢(v) < codimsuppV, and
dimsupp I, (V) < dim X by 4. Hence, v ¢ S(V), i. e. w € E(V).

Conversely, assume that w € £(V). Then, by 4, we have E,(suppV) = X.
Since the support of V is irreducible, by 3. we can find v < w such that v is
transversal to suppV and E,(suppV) = X. By 7. this implies v € S(V). Since w
is a minimal element in S(V) we must have w = v, and w is transversal to supp V.
This proves (ii).

To show (i) it is enough to show that £(V) is nonempty. Clearly, if wq is the
longest element in W, E,,,(S) = X. By 3, there exists w transversal to S such that
E,(S) = X, hence the assertion follows from (ii). O

To formulate the main result of this section we need another notion. Let V be
a finitely generated Up-module. We say that \ € 0 is an exponent of V' if the set

{Q? e X | HQ(nI,V)()\+p) 75 0}

contains an open dense subset of X.

We say that A € b* is strongly antidominant if Rea”(A) < 0 for any o € X7
Clearly, a strongly antidominant A is antidominant.

We also define a partial ordering on h* by: A < u if u— ) is a linear combination
of simple roots in II with coefficients with non-negative real parts. This order
relation is related to the ordering on the Weyl group W by the following observation.

9.9. LEMMA. Let A € h* be strongly antidominant. Then for any v,w € W,
v < w implies vA X wA.

Proor. Clearly, it is enough to show that for any w € W and « € II such that
L(sqw) = £(w) 4+ 1, we have wA < spwA. But sqwA = wA — o’ (wA)a, hence
SaWA —wh = (wla) (Na,
and it is enough to prove that Re(w™1a)"(\) > 0. Since w™ta is in ¥ T [5, Ch. VI,

§1, no. 6, Cor. 2 of Prop. 17], this follows immediately from strong antidominance
of \. O

9.10. THEOREM. Let A € b* be strongly antidominant. Let V € M on(Dy) be
such that S = suppV is irreducible. Put V =T(X,V).

(i) If w is an exponent of V, there exists w € W transversal to S with
l(w) = codim S such that wA X w.
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(ii) Assume that V is irreducible and V- # 0. If w € W is transversal to S
and ¢(w) = codim S, then w is an exponent of V.

PROOF. (i) Let u be a regular dominant weight and F' the irreducible finite-
dimensional g-module with highest weight yu. Let F = Ox ®c F. Then A — i is
regular and strongly antidominant. Let U = I'(X,V(—pu)). Then, by C.2.1,

V=V(-p) ®ox Fn-
This implies

V =T(X,V) = T(X, V(~p) ®ox F)p))
=T(X,V(—p) ®oy F) = (L(X,V(~p) ®c F)py = (U ®c F)py)-

Let w be an exponent of V, i.e., Ho(ng, V) (w4p) # 0 for all 2 in some open dense
subset of X. Then

Ho(ng, V) = Ho(ng, (U ®c F)y)
is the direct sum of generalized U(h)-eigenspaces of Hy(n,, U ® F) corresponding
to weights vA + p, v € W. Hence,

H()(ﬂm, V)(w+p) = Ho(nm,U ®c F)(w+p)-

Let (Fp;1 < p < n) be an increasing b,-invariant maximal flag in F. It induces a
filtration (U ®c Fp; 1 < p < n) of the by-module U ®@c F. The corresponding graded
module is the sum of modules of the form U ®¢ C,, where v goes over the set of
weights of F. Clearly, the semisimplification of Hy(n,,U ®c F) is a submodule
of the direct sum of modules Hy(n,,U) ®c C,. Since the infinitesimal character
of U is regular, Hy(n,,U) is a semisimple h-module by L.2.4. This implies that
Ho(ng, V) (w+p) is a submodule of the direct sum of modules Ho(ng,U)(w—v+p) ®c
C,. In particular, if Ho(ng, V)w+p) 7# 0, Ho(ne, U)(w—r+p) # 0 for some weight v
of F. Since the set of weights is finite, we can assume that Ho(ng,U)w—14p) # 0
for all z in an open dense subset of X. On the other hand, w — v = v(A — u) for
some uniquely determined v € W. This implies that v=!(w — v) = XA — p. Since
w = uA for some u € W, we see that

vuN = A= —(u—v ).

Since p is the highest weight of F, the right side is the negative of a sum of positive
roots. Hence v~'u € Wy and since ) is antidominant, we see that the left side is
a sum of positive roots. It follows that both sides must be zero, v~'u is in the
stabilizer of A and w = u\ = vA. Since X\ — p is regular, V(—pu) = Ax_,(U).
Moreover, from 2.6. we conclude that supp A,x—,)(U) = X. Since I,(V(—p)) =
I,(Ax—u(U)) = Ayr—) (U) by 3.16, we see that v € S(V(—p)) = S(V). Hence, by
6. there exists w < v such that w is transversal to S and ¢(w) = codim S. But, by
7, this implies that wA < vA = w.

(ii) If V is irreducible, V(—pu) is also irreducible and their support S is ir-
reducible. Hence, U is irreducible by the equivalence of categories. Since w is
transversal to S and £(w) = codim S, by 7. we see that supp A,x—,)(U) = X.
Put U = Ayn—p)(U). Since U is irreducible, by applying 1.16. with p = 0, we get
UcCT(X,U).

Assume that s € U is a global section of ¢4 which vanishes on the open dense
subset in X. Then it generates a submodule of global sections supported in the
complement of this open set. This submodule must be either equal to U or to zero.
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The first possibility would imply that the localization Ay, x—,(U) is also supported
in the complement of this open set, contradicting our assumption. Therefore this
submodule is equal to zero, i.e., s = 0. This implies that the support of any nonzero
global section in U is equal to X. Let F be the irreducible finite-dimensional
representation of g with highest weight u. Then, as before, by C.2.1,

Uwp) = (U @ox F)r)-

Hence, we see

(X, U(wp)) =T(X, (U ®oyx F)n)
=T(X,U ®oy .7:)[)\] = (T'(X,U) &c F)[)\] D (U ®c F)[)\] =V.

Moreover, the support of any nonzero global section of U ®p,, F = U ®@c F which
comes from URc F is equal to X, and the support of any nonzero global section of its
subsheaf U(wpu) which belongs to (U ®c F)py = V is also equal to X. Since U (wp)
is coherent, there exists an open dense subset O in X such that U (wp)|O is a locally
free Op-module [1, VIL.9.3]. Therefore, on this set, a section vanishes if and only if
its values (i.e. its images in geometric fibres) vanish everywhere. Hence, there exists
an open dense subset O’ of O, such that for z € O, some sections from V' do not
vanish at . On the other hand, for any x € O’, the global sections in n,V vanish at
that point. Therefore, for € O’ the geometric fibre map U(wu) — Tp (U(wp))
induces a nonzero map of V into T, (U (wp)), which factors through Hy(n,, V), and
this factor map is a morphism of b,-modules. It follows that Ho(nu, V)(watp) # 0
for z € O/, i.e., wA is an exponent of V. O

The next result is a direct consequence of 10.

9.11. THEOREM. Let V # 0 be a finitely generated Up-module. Then the set of
exponents of V' is nonempty. In particular, there exists an open dense subset U of
X such that Ho(ng, V) #0 forz € U.

PRrROOF. Since V' is nonzero, it has an irreducible quotient U # 0. Let \ € 0
be strongly antidominant. Then U = I'(X,U) for some irreducible Dy-module U
by 4.2. By 8.(ii), there exists w € 6 which is an exponent of U. Since Hy(ng, U) is
a quotient of Hy(n,, V), it follows that w is an exponent of U. O



CHAPTER 4

Harish-Chandra modules

1. Group actions on flag varieties

Let g be a semisimple Lie algebra and G = Int(g). The following result will
play an important role later.

1.1. PROPOSITION. Let K be a subgroup of G. Then K -orbits in the flag variety
X are affinely imbedded.

The proof is based on the following observations.

1.2. LEMMA. Let S be a solvable algebraic group and S’ its closed subgroup.
Then S/S’ is an affine variety.

PROOF. Assume first that S is unipotent. Let s be the Lie algebra of S and s’
the Lie algebra of S’. If S’ # S, there exists a Lie subalgebra t of s of codimension
one which contains s’. Since the exponential map is an isomorphism of s onto S,
the variety S is isomorphic to the product of an affine line with the closed subgroup
R determined by t. Moreover, S/S’ is isomorphic to the product of the affine line
with R/S’. By induction in codimension of S’ in S, it follows that S/S’ is an affine
space.

Assume now that S is arbitrary and S’ is unipotent. Then S’ is a closed
subgroup of the unipotent radical N of S [2, I11.10.6]. By the Levi decomposition,
in this case S/S’ is isomorphic to the product of a maximal torus T" of S and N/S".
This reduces the proof to the first case.

Consider now arbitrary S’. Let N’ be its unipotent radical and 7’ a maximal
torus in S’. By Levi decomposition, S’ is the semidirect product of N’ with T".
By the first part of the proof, S/N’ is an affine variety. The group 7" acts on the
variety S/N’ and the quotient is S/S’. Since T is reductive this quotient is an affine
variety. O

Now, let Y be a homogeneous space for G. We define an action of G on Y x X
by
9(y, x) = (gy, gx)
forgeG,ze X, yeY.

1.3. LEMMA. The G-orbits in' Y x X are affinely imbedded.

PRrOOF. Fix a point v € X. Let B be the Borel subgroup corresponding to v.
Every G-orbit in Y x X intersects Y x {v}. Let u € Y. Then the intersection of
the G-orbit Q of (u,v) with Y x {v} is equal to Bu x {v}. Let N be the unipotent
radical of a Borel subgroup opposite to B. Then Nv is an open neighborhood of v
in X, and the map 7 — 7w is an isomorphism of N onto this neighborhood. The
intersection of Q with Y x Nwv is equal to the image of the variety Bu x N under

85
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the map (y,n) — 7y, v), which is obviously an immersion. Since B is solvable,
its orbit Bu is an affine variety by 2. Then Bu and it is an affine variety. Clearly,
this implies that Bu x N is an affine variety. It follows that the intersection of Q
with Y x Nu is affine. Therefore we can construct an open cover of Y x X such
that the intersection of () with any element of the cover is an affine variety. Since
the affinity of a morphism is a local property with respect to the target variety, this
ends the proof. ([

Now we can prove 1. Let Y = G/K and u € Y the identity coset. Then
the image of the immersion 4,, : X — Y x X given by i,(z) = (u,x) is a closed
subvariety of Y x X isomorphic to X. Let v € X. Denote by Q' the K-orbit of v.
Then the intersection of the image of 4, with the G-orbit @ of (u,v) in Y x X is
equal to

(0 NQ = ({u} x X)NQ = {u} x .
Let U be an open affine subset in Y x X. Then U N(Q is open affine subset of Q) by
2. Moreover, since i, (X) is closed in Y x X, U N (i, (X) N Q) is open affine subset
in 4, (X) N Q. This implies that U N ({u} x Q') is an open affine subset of {u} x Q'
Furthermore, since i, is a closed immersion, V = i; }(U) is an open affine subset of
X and VNQ' is an open affine subset of @)'. Clearly, this implies that Q' is affinely
imbedded into X and completes the proof of 1.

2. Harish-Chandra pairs

Let K be an algebraic group and ¢ : K — Int(g) a morphism of algebraic
groups such that the differential of ¢ is injective. In this case we can identify the
Lie algebra of K with a subalgebra ¢ of g. Clearly, the group K acts naturally on
X.

We say that the pair (g, K) is a Harish-Chandra pair if the K-action on X has
finitely many orbits.

If (g, K) is a Harish-Chandra pair, K has an open orbit in X. Actually, these
two properties are equivalent [?].

2.1. THEOREM. Let K be a closed subgroup of Int(g). Then the following con-
ditions are equivalent:
(i) K has an open orbit in X ;
(ii) K has finitely many orbits in X.

An example of a Harish-Chandra pair is the pair (g, B) where B is a Borel
subgroup of Int(g). The finiteness of B-orbits in X is the Bruhat lemma [2, 14.11].

Another important class of examples arises in the following way. Let ¢ be an
involution of g and £ the Lie subalgebra of all vectors in g fixed by 0. We say that
€ is an ‘nvolutive subalgebra of g.

2.2. PROPOSITION. Let K be a closed subgroup of Int(g) such that its Lie algebra
t is an involutive subalgebra of g. Then K acts with finitely many orbits on X.

We denote the involutive automorphism of G = Int(g) with differential o by
the same letter. The key step in the proof is the following lemma. First, define an
action of G on X x X by

9(z,y) = (97,0(9)y)
for any g € G, z,y € X.
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2.3. LEMMA. The group G acts on X x X with finitely many orbits.

Proor. We fix a point v € X. Let B, be the Borel subgroup of G correspond-
ing to v, and put B = o(B,). Every G-orbit in X x X intersects X x {v}. Let
u € X. Then the intersection of the G-orbit @ through (u,v) with X x {v} is equal
to Bu x {v}. Because of the Bruhat decomposition [2, TV.14.11], this implies the
finiteness of the number of G-orbits in X x X. O

Now we show that 2. is a consequence of 3. First we can assume that K is
connected. Let A be the diagonal in X x X. By 3, that the orbit stratification of
X x X induces a stratification of A by finitely many irreducible, affinely imbedded
subvarieties which are the irreducible components of the intersections of the G-
orbits with A. These strata are K-invariant, and therefore unions of K-orbits. Let
V be one of these subvarieties, (z,2) € V and @ the K-orbit of (z,z). If we let b,
denote the Borel subalgebra of g corresponding to x, the tangent space T, (X) of
X at z can be identified with g/b,. Let p, be the projection of g onto g/b,. The
tangent space T(, »)(X x X) to X x X at (z,z) can be identified with g/b, x g/b.
If the orbit map f: G — X x X is defined by f(g) = g(x,z), its differential at
the identity in G is the linear map & — (p, (&), pz(c(&))) of g into g/b, X g/b,.
Then the tangent space to V' at (x,z) is contained in the intersection of the image
of this differential with the diagonal in the tangent space T(, (X x X), i.e.

Tw,2)(V) € {(p2(£),p=(§)) | € € g such that p,(§)

= p2(0(§)} = {(P2(£),p2(8)) | € € 8} = T(1.2)(Q).

Consequently the tangent space to V' at (z,z) agrees with the tangent space to @,
and @ is open in V. By the irreducibility of V, this implies that V is a K-orbit,
and therefore our stratification of the diagonal A is the stratification induced via
the diagonal map by the K-orbit stratification of X. Hence, 2. follows.

The following result is just a reformulation of 2.

2.4. THEOREM. Let K be an algebraic group and ¢ : K — Int(g) a morphism
of algebraic groups with injective differential. Assume that the Lie subalgebra € of
g is involutive. Then (g, K) is a Harish-Chandra pair.

Such Harish-Chandra pair is called an involutive Harish-Chandra pair.

3. Harish-Chandra modules and Harish-Chandra sheaves

Let (g, K) be a Harish-Chandra pair. A Harish-Chandra module V is a vector
space which is

(i) a finitely generated U(g)-module, which is locally finite as a Z(g)-module;
(ii) an algebraic K-module;
(iii) the actions of g and K are compatible, i.e., the action of ¢ given by the
differential of the K-action is the same as the action of ¢ as a subalgebra
of g and

(p(k)€) v=k-&-k -0
forke K, { egandveV.
A morphism of Harish-Chandra modules is a linear map which is a morphism

of U(g)-modules and K-modules. We denote by My, (U(g), K) the category of
Harish-Chandra modules. For A € h*, 8 = W - A\, we denote by M ¢,(Up, K) the
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full subcategory of M ;,(U(g), K) consisting of modules with infinitesimal character
X

The objects of Mon(Dy, K) are called Harish-Chandra sheaves.

Let A € h* and § = W-A. By ..., it is evident that for any object of M ¢, (Up, K),
the localization Ay (V) is an object of M op(Dy, K). Moreover, by L.1.21, the
cohomology modules H*(X,V), 0 < i < dim X, of a Harish-Chandra sheaf V in
Mon(Dy, K) are finitely generated as Uyp-modules. Since they are algebraic K-
modules by ..., it follows that they are in M sy (Up, K).

3.1. LEMMA. Any Harish-Chandra sheaf V has a good filtration FV consisting
of K-homogeneous coherent O x-modules.

PROOF. By tensoring with O(u) for sufficiently negative p € P(X) we can
assume that A is antidominant and regular. In this case, by L.1.3, V = D) ®y, V,
where V' =T'(X,V). Since V is an algebraic K-module and finitely generated Up-
module, there is a finite-dimensional K-invariant subspace U which generates V as
aUp-module. Then F,Dy®cU, p € Z, are K-homogeneous coherent O x-modules.
Since the natural map of F, Dy ®c U into V is K-equivariant, the image F,V is a
K-homogeneous coherent Ox-submodule of V for arbitrary p € Z,..

We claim that FV is a good filtration of the Dy-module V. Clearly, this is
a Dy-module filtration of V by K-homogeneous coherent Ox-modules. Since V
is generated by its global sections, to show that it is exhaustive it is enough to
show that any global section v of V lies in F, V for sufficiently large p. Since V is
generated by U as an Ug-module, there are T; € Uy, u; € U, 1 < i < m, such that
v =", Tyu;. On the other hand, there exists p € Z such that T;, 1 < i < m, are
global sections of ', D. This implies that v € F, V. Finally, by the construction
of FV, it is evident that F, DAF,V = F,,V for all p,q € Z,, i.e., FV is a good
filtration. O

The critical result on Harish-Chandra sheaves is the following remark.

3.2. THEOREM. Harish-Chandra sheaves are holonomic Dy-modules. In par-
ticular, they are of finite length.

We shall actually prove a stronger result. First we need some notation. Let
Y be a smooth algebraic variety of pure dimension and Z a smooth subvariety
of Y. Then we define a smooth subvariety Nz(Y) of T*(Y) as the variety of all
points (z,w) € T*(Y) where z € Z and w € T,(Y)* is a linear form vanishing on
T.(Z) C T,(Y). We call Nz(Y) the conormal variety of Z in Y.

3.3. LEMMA. The dimension of the conormal variety Nz(Y) of Z in'Y is equal
to dimY.

PRrROOF. The dimension of the space of all linear forms in T, (Y")* vanishing on
T.(Z) is equal to dimT,(Y) —dim T, (Z) = dimY —dim, Z. Hence, dim, Nz (Y) =
dimY. O

Let A € b*. Then, by ..., GrDy = m,(Op«(x)), where m : T*(X) — X is the
natural projection. Let £ € g. Then £ determines a global section of D) of order
<1, i.e. a global section of F; D). Therefore, the symbol of this section is a global
section of 7, (Or-(x)) independent of . Let z € X. Then the differential at 1 € G
of the orbit map f, : G — X, given by f.(g9) = gz, maps the Lie algebra g onto
the tangent space T,,(X) at x. The kernel of this map is b,, i.e. the differential
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Ty (fz) of f. at 1 identifies g/b, with T,,(X). The symbol of the section determined
by £ is given by the function (z,w) — w(T1(fz)(§)) for z € X and w € T,.(X)*.

Let K be a closed subgroup of Int(g) and ¢ its Lie algebra. Denote by Zx the
ideal in the Ox-module . (Ogp-(x)) generated by the symbols of sections attached
to elements of €. Let N the set of zeros of this ideal in 7*(X).

3.4. LEMMA. The variety Nk is the union of the conormal varieties No(X) to
all K-orbits Q in X.

PrOOF. Let z € X and denote by @ the K-orbit through x. Then,

Nk NT(X)" ={w e T, (X)* | w vanishes on T (f,)(€) }
={w € T,(X)* | w vanishes on T,(Q) } = No(X) N T(X)",
i.e. Nk is the union of all No(X). O

3.5. COROLLARY. Assume that K acts on X with finitely many orbits. Then:
(i) dimNg = dim X.
(ii) If K is connected, the irreducible components of Nk are the closures

Ng(X) of the conormal varieties No(X) of K-orbits ) in X.

PrOOF. For any K-orbit @ in X, its conormal variety Ng(X) has dimension
equal to dim X by 3. Since the number of K-orbits in X is finite, by 3. and 4, N
is a finite union of subvarieties of dimension dim X. This implies (i).

Moreover,

Nk =|JNo(X).
Q

If K is connected, its orbits in X are also connected. Hence, their conormal varieties
Nq(X) are connected too. Since they are smooth this immediately implies that they
are irreducible. Hence their closures Ng(X) are irreducible closed subvarieties of N
of dimension dim X. Therefore, they are the irreducible components of N . This

proves (ii). O
Therefore, 2. is an immediate consequence of the following result.

3.6. PROPOSITION. Let V be a Harish-Chandra sheaf. Then the characteristic
variety Char(V) of V is a closed subvariety of Nk .

ProOOF. By 1, V has a good filtration F' V consisting of K-homogeneous coher-
ent Ox-modules. Therefore, the global sections of D, corresponding to £ map F,V
into itself for p € Z. Hence, their symbols annihilate GrV and Zy is contained in
the annihilator of GrV in 7. (Op«(x)). This implies that the characteristic variety
Char(V) is a closed subvariety of Ng. O

The following result is an immediate consequence of 2.
3.7. THEOREM. FEvery Harish-Chandra module is of finite length.

PrROOF. Let V be a Harish-Chandra module. Since it is finitely generated as a
U(g)-module and locally finite as a Z(g)-module, there exists a finite-dimensional
Z(g)-submodule U of V which generates V. Therefore, there exist a finite set
A1y A2, ..., A € b* and n € N such that

k
PE) = [0,

i=1
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¢ € Z(g), annihilates U. Since U generates V as a U(g)-module, it follows that
P(¢) annihilates V for each € € Z(g). Therefore, V is a direct sum of submodules

Vi={veV|(€—xx(&)"v=0forall £ € Z(g) and sufficiently large n € N}

for 1 <i<k.

Therefore, we can assume that V is annihilated by (£ — xa(£))", £ € Z(g).
We claim that such V' has a finite filtration F V' by Harish-Chandra submodules
such that the corresponding graded module is has infinitesimal character x,. Te
proof is by induction in dimU. If dimU = 1 the assertion is evident. In general,
U contains an one-dimensional eigenspace Uy for Z(g). Clearly, U; generates a
Harish-Chandra submodule V; of V' with infinitesimal character xx. The quotient
Vo = V/V; is generated by the image Us of U and dim Uy < dimU — 1.

Therefore, we can assume that V' has an infinitesimal character, i.e., V is in
My4(Uy, K). In this case we can choose A € 6 which is antidominant. The local-
ization Ay (V) is a Harish-Chandra sheaf, and therefore a of finite length by 2. By
L1.1, V = I'(X,Ax(V)). Hence, the exactness of I" and L.4.1 imply that V has
finite length. [l

4. The n-homology of Harish-Chandra modules

Let V be a Harish-Chandra module. For any « € X, the n,-homology of V' can
be calculated from the standard complex C"(n,, V') given by

CP(ng, V) =N"Tn,®cV, p €
with the differential

bS]

A NN NGRV) =D ()TN AGA. . NG®E
=1
Z( D EINE A AEGEN NN NERY
i<j
for &1,...& € ny and v € V. This immediately implies that the h-modules
H,(n,, V) for various points z in the same K-orbit @) in X are canonically iso-
morphic.

4.1. THEOREM. Let V be a Harish-Chandra module and x € X. Then all
n,-homology modules H,(n,, V), p € Z, are finite-dimensional.

PrROOF. In the proof of 3.7 we constructed a finite filtration of V' by Harish-
Chandra submodules, such that its composition factors are Harish-Chandra mod-
ules with infinitesimal character. Therefore, using the spectral sequence of a fil-
tered object (...), we see immediately that it enough to prove the statement for
Ve Myo(Up, K).

If 6 is a regular orbit of W, this result follows from L.5.4 and 3.2. Assume now
that 6 is an arbitrary Weyl group orbit. Fix an antidominant A € 6. Let F be a
finite-dimensional irreducible g-module F' with regular highest weight u € P(X).
Then A — p is regular antidominant, and

AX(V) = (Ax(V)(=1) ®ox F)i
by C.2.1. Therefore,
V =T(X,A\(V)) = (X, Ax(V)(=p)) @c F)p5)-
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Clearly, U = T'(X, Ax(V)(—p)) is a Harish-Chandra module with regular infinites-
imal character xa—,, and Hyp(n,,U), p € Z, are finite dimensional. Let (Fj;1 <14 <
m) be an increasing Jordan-Hélder filtration of F' as an n,-module. Then the cor-
responding graded module is a trivial n,-module. Therefore, (U ®@¢ F;;1 <i < m)
is a ng-module filtration of U ®¢ F' such that the corresponding graded module is a
direct sum of m copies of U. From the spectral sequence of the filtered object (...)
it follows that Hy,(n,,U ® F), p € Z, are finite-dimensional. The assertion follows
from V = (U ®c F)[x- O

The next result is considerably deeper it follows from the main result of L.8.
Let @, be the unique K-open orbit in X.

4.2. THEOREM. Let V be a Harish-Chandra module. If V is a nonzero module,
Ho(ng, V) #0 for all x € Q.

PROOF. Since @, is open and dense in X and Hy(n,, V') are canonically iso-
morphic for all z € Q,, we see that A € b is an exponent of a Harish-Chandra
module V' if and only if Ho(ng, V)4 # 0 for o € Q,. Hence, the result follows
from L.8.11. ([l

5. Irreducible Harish-Chandra sheaves

Now we want to describe all irreducible Harish-Chandra sheaves for a Harish-
Chandra pair (g, K). For simplicity we assume that K is connected. We start with
the following remark.

5.1. LEMMA. Let V ba an irreducible Harish-Chandra sheaf. Then its support
supp(V) is the closure of a K-orbit Q in X.

PROOF. Since K is connected, the Harish-Chandra sheaf V is irreducible if and
only if it is irreducible as a Dy-module. To see this we may assume, by twisting
with O(u) for sufficiently negative u, that A is antidominant and regular. In this
case the statement follows from the equivalence of categories and the analogous
statement for Harish-Chandra modules (which is evident).

Therefore, by ..., we know that supp(V) is an irreducible closed subvariety of
X. Since it must also be K-invariant, it is a union of K-orbits. The finiteness
of K-orbits implies that there exists an orbit @ in supp(V) such that dim@Q =
dimsupp(V). Therefore, @Q is a closed irreducible subset of supp(V) and dim Q =
dim supp(V). This implies that Q = supp(V). O

Let V be an irreducible Harish-Chandra sheaf and @ the K-orbit in X such
that supp(V) = Q. Let X' = X — 0Q. Then X' is an open subvariety of X and Q
is a closed subvariety of X’. By ..., the restriction V|X’ of ¥ to X’ is irreducible.
Leti:Q — X, :Q — X' and j : X’ — X be the natural immersions.
Hence, i = j oi’. Therefore, Ri' = R(i')' o j', where j' = j* is just the ordinary
restriction to the open subvariety X’ of X. It follows that RPi'(V) = RP(i') (V| X")
for p € Z. Since i’ : Q — X’ is an immersion of a closed smooth subvariety and
supp(V|X’) = Q, by Kashiwara’s equivalence of categories, we see that RPi'()) = 0
for p # 0 and 7 = 4'(V) is an irreducible (D}, K)-module on Q. Moreover, i’ (1) =
V|X'. Since V is holonomic by 3.2, 7 is a holonomic module. This implies, by ...,
that there exists an open dense subset U in @ such that 7|U is a connection. Since
K acts transitively on ), 7 must be a K-homogeneous connection.
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Therefore, to each irreducible Harish-Chandra sheaf we attach a pair (Q, )
consisting of a K-orbit ) and an irreducible K-homogeneous connection 7 on @)
such that:

(i) supp(V) = @;
(i) i'(V) = 1.
We call the pair (Q, ) the standard data attached to V.

Let Q be a K-orbit in X and 7 € M(Dj, K) an irreducible K-homogeneous
connection on Q. Then, by ..., Z(Q,7) = i+ (7) is a (Dy, K)-module. Moreover, by
..., it is holonomic, i.e., Z(Q, 7) is a Harish-Chandra sheaf. We call it the standard
Harish-Chandra sheaf attached to (Q, 7).

5.2. LEMMA. Let Q be a K-orbit in X and 7 an irreducible K -homogeneous con-
nection on Q. Then the standard Harish-Chandra sheaf T(Q,T) contains a unique
irreducible Harish-Chandra subsheaf.

PRrOOF. Clearly,
I(Q,7) = it (1) = ji (i’ (7))
Therefore, Z(Q, 7) contains no sections supported in 9Q. Hence, any nonzero Dj-
submodule U of Z(Q, 7) has a nonzero restriction to X’. By Kashiwara’s equivalence
of categories, i’ 4 (7) is an irreducible (Dy|X’)-module. Hence, U| X' = Z(Q, )| X".
Therefore, for any two nonzero Dy-submodules U and U’ of Z(Q,7), U NU" # 0.
Since Z(Q,7) is of finite length, it has a minimal Dy-submodule and by the pre-
ceding remark this module is unique. By its uniqueness it must be K-equivariant,
therefore it is a Harish-Chandra sheaf. O

We denote by £(Q, ) the unique irreducible Harish-Chandra sheaf of Z(Q, 7).
The following result gives a classification of irreducible Harish-Chandra sheaves.

5.3. THEOREM. (i) An irreducible Harish-Chandra sheaf V with the stan-
dard data (Q,T) is isomorphic to L(Q,T).
(ii) Let @ and @' be K-orbits in X, 7 and 7' irreducible K-homogeneous
connections on Q and Q' respectively. Then L(Q,7) =2 L(Q', ) if and
only if Q = Q" and 7 = 7.

PROOF. (i) Let ¥ be an irreducible Harish-Chandra sheaf and (Q, ) the cor-
responding standard data. Then, as we remarked above, V| X’ = (i) (7). By the
universal property of ji, there exists a nontrivial morphism of V into Z(Q,7) =
J+((¢")4+(7)) which extends this isomorphism. Since V is irreducible its kernel must
be zero and its image must be £(Q, 7) by 2.

(ii) Since Q = supp £(Q, ), it is evident that £(Q,7) = L(Q',7’') implies
Q = Q'. The rest follows from the formula 7 = i'(£(Q, T)). O



CHAPTER 5

Verma modules

1. Category of highest weight modules

Fix a Borel subalgebra by in g and ng = [bg, bg]. Let by be a Cartan subalgebra
of g contained in bg. The root system ¥ specializes to the root system Ry in hg and
the root subspaces corresponding to positive roots from Rar span ng. To simplify
the notation in the following, when it doesn’t cause confusion, we shall identify
the Cartan triple (h, %, ©F) with (ho, Ro, R ) via this specialization. Denote by 1o
the nilpotent subalgebra spanned by root subspaces corresponding to the negative
roots in Ry. A g-module V is called a highest weight module (with respect to bg) if

(i) V is finitely generated,
(if) V is U(bp)-finite, i.e. for any v € V, U(bg)v is finite-dimensional.
We call the full subcategory of the category M q(U(g)) consisting of highest weight

modules the category of highest weight modules.
Let V be a highest weight module. For A\ € h§ we put

VA={veV|(E-XE))v=0, € €by, for some k € N}.

Then V?* is a ho-submodule of V and V is the direct sum of V*, A € b5, If VA #£0
we say that \ is a weight of V.

1.1. LEMMA. Let V be a finitely generated g-module. Then the following con-
ditions are equivalent:

(i) V is a highest weight module,
(il) V satisfies:
(a) V =@V and V*, X € b}, are finite-dimensional.
(b) There exists a finite set of weights Sy of V' such that for any weight
v of V there exists p € Sy such that p—v is a sum of roots from Ra'.

PrOOF. Assume that V is a highest weight module. By definition, V is gen-
erated as a g-module by a finite-dimensional bgp-invariant subspace U. Hence, by
the Poincaré-Birkhoff-Witt theorem, the natural map of U(ng) ®c U into V is a
surjective morphism of ho-modules. This clearly implies (a) and (b).

Assume now that V satisfies (a) and (b). Let v € V*. Then U (bg)v is contained
in the direct sum of V¥ for weights v such that v — A is a sum of positive roots.
The number of such weights is finite by (b). Therefore, (a) implies that U(bg)v is
finite-dimensional. (I

1.2. LEMMA. Let
0—V—=V —-V"—0

be an exact sequence of g-modules. Then V' is a highest weight module if and only
if V and V" are highest weight modules.

93
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PROOF. It is clear that if V’ is a highest weight module V and V" are highest
weight modules either. Assume that V and V' are highest weight modules. Then
V' is clearly finitely generated. Also, it satisfies the conditions in 1.1.(ii). Hence,
V' is a highest weight module. O

We say that v € V is Z(g)-finite if Z(g)v is finite-dimensional. Clearly, V*
are Z(g)-invariant, and consist of Z(g)-finite vectors by 1.1.(ii). This implies that
all vectors in V' are Z(g)-finite, i.e. V is a Z(g)-finite module. Finally, since V is
finitely generated, we have the following result.

1.3. LEMMA. Let V be a highest weight module. Then the annihilator of V in
Z(g) is of finite codimension.

Also, we have the following converse.

1.4. PROPOSITION. Let V' be a g-module satisfying the following conditions:
(i) V is finitely generated,

(ii) for any v € V, there exists k € N such that nk -v =0,

(iii) the annihilator of V in Z(g) is of finite codimension.

Then V' is a highest weight module.

PROOF. Let U be a finite-dimensional ng-invariant subspace which generates
V. We shall prove that V is a highest weight module by induction in dimU. If
dimU = 1, U is annihilated by U(g)ng. On the other hand, from the properties
of the Harish-Chandra homomorphism we know that the projection of Z(g) C
U(ho) ® U(g)no into U(bo) is an algebra homomorphism and that U (ho) is finitely
generated over its image. This clearly implies that U(ho)U = U(bo)U is a finite-
dimensional subspace in V. One checks easily that the linear subspace V' consisting
of all vectors u € V such that U (bg)u is finite-dimensional is a g-submodule of V. Tt
contains U by the preceding discussion, what in turn implies that it is equal to V,
i.e. V is a highest weight module. Assume now that dimU > 1. Then by Engel’s
theorem U has an one-dimensional subspace Uy such that ngUy = 0. Let Vy be the
g-submodule of V' generated by Uy. Then Vj is a highest weight module by the first
part of the proof. Let Vi = V/V,. Then V; is generated by U; = U/(U N'V) and
dimU; < dimU — 1. Therefore, V7 is a highest weight module by the induction
assumption. By 1.2 we see that V is a highest weight module. (]

Let Ny be the unipotent subgroup of Int(g) corresponding to ng. Then, by 1.4,
one can exponentiate the action of ny to an algebraic action of Ny and view highest
weight modules as elements in Mf4(g, No). Actually, in this way one can identify
the category of highest weight modules with the full subcategory of Ms4(g, No)
consisting of modules annihilated by ideals in Z(g) of finite codimension.

Now we want to describe irreducible objects in M4(g, No), i.e. irreducible
highest weight modules. First we construct some closely related modules. Let Cy
be the one-dimensional bg-module defined by A € . Then, if we consider U(g) as
a right U(bo)-module via right multiplication, the tensor product U(g) ®(s,) Cx
has a natural structure of a left /(g)-module given by left multiplication at the first
factor. It is clearly a highest weight module; and we put

M(X) = U(8) @u(oe) Ca—p-
The highest weight module M (\) is called the Verma module determined by .
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1.5. LEMMA. Let A € b§. Then

(i) all weights of M(\) are of the form A — p— v where v is a sum of positive
roots,
(i) dim M(\)*—r =1,
(iii) M(A) has a unique mazimal g-submodule N(\),
(iv) N(A) P =0.

PRroOF. By the Poincaré-Birkhoff-Witt theorem, we see that M (\), considered
as a ho-module, is isomorphic to U(ig) ®c Cr—,. This immediately implies (i)
and (ii). Clearly, by definition of M()), the one-dimensional subspace M (\)*~7
generates M () as a g-module. Therefore, any g-submodule different from M ())
cannot contain M(A)*~?. Let M be a maximal g-submodule of M ()\) and N any
g-submodule different from M (). Then, either N C M or M + N = M(A). In the
second case we would have

M) P = (M + N)}° = M? 4 NY* =0,
what is clearly impossible. Therefore, M is the unique maximal g-submodule. [J

This implies that M (A) has the unique irreducible quotient g-module L(A).
Also, L(A\)*~7 is one-dimensional. We say that A\ — p is the highest weight of L()\).

1.6. PROPOSITION. (i) Any irreducible highest weight module is isomor-
phic to some L(\).
(ii) L(A) is isomorphic to L(w) if and only if A = pu.

PRrROOF. (i) Let V be an irreducible highest weight module. Let S be the set
of all weights of V. Then, by 1.1, we can find a weight A € S such that A + « is
not in S for any a € ¥*. This implies that V* is annihilated by ng. Hence, V?* is
bp-invariant, and it contains a one-dimensional subspace invariant for by. Let v be
a nonzero vector from that subspace. Then, the homomorphism & — £ - v from
U(g) into V is surjective and factors through M (A + p). This implies that V is
isomorphic to L(A + p).

(ii) This follows from 1.5.(i) and (ii). O

1.7. LEMMA. The center Z(g) acts on M(X) via xx.

ProOF. This follows from the definition of the Harish-Chandra homomor-
phism. ([l

1.8. PROPOSITION. Highest weight modules have finite length.

PrOOF. Let V be a highest weight module. If V' is not of finite length, we
can construct a decreasing g-module filtration (V;;4 € Z) of V such that V;/V; 41,
i € Z, are irreducible. Therefore, by 1.6.(i), L()\;) = V;/V;11 for some \; € . By
1.3 and 1.7, it follows that the set of possible ); is finite. Therefore, by 1.6.(ii), the
set of possible L(J;) is finite, what contradicts the finite-dimensionality of weight
subspaces of V. O

By [5, Ch. VIII, §5, Prop. 2], there exists an involutive automorphism ¢ of g
with the property that ¢|hg = —1. Then, t(go) = g_q for any a € RO+. Let 7 be the
antiautomorphism of U (g) which is the product of the principal antiautomorphism
of U(g) and the automorphism which extends ¢. Then 7 is the identity on by and
it maps ng into ng.
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1.9. LEMMA. The antiautomorphism T acts as identity on Z(g).

PROOF. Let v be the Harish-Chandra homomorphism, i.e., the projection of
Z(g) C U(ho) ® nold(g) into U(hp) along nold(g). By definition, the antiautomor-
phism 7 acts as identity on U(hy) and maps nold(g) into U(g)ng. On the other
hand, the intersections of nold(g) and U(g)ny with the centralizer of bo in U(g) are
equal, what implies immediately that v and o 7 agree on Z(g). The injectivity of
v implies that 7|Z(g) is the identity. |

For any highest weight module V, let V* be its linear dual. We define the
action of U(g) on V* by

(Ef)w) = f(r(&v), E€U(g), feV, veV.

In this way V* becomes a g-module. Let V™ be the subspace consisting of f € V*
such that U(ho)f is finite-dimensional. It can be easily checked that V™ is a g-
module.

1.10. LEMMA. V™ is a highest weight module.
(ii) (V7)) =V.

(iii) (V7)* = (VM)* for any X € b,

PrOOF. Clearly V™ = @(V*)* as an ho-module and (V7)* = (V*)*. Hence,
the set of weights of V™ is the same as the set of weights of V. The canonical map
of V into (V7)™ is injective, a g-module morphism and

dim((V))* = dim(V")* = dim V?*,
for any A € b, what implies that it is an isomorphism. Let U be an g-submodule
of V™ and Ut be the subspace of (V7)” = V orthogonal to U. Then Ut is a
g-submodule of V. Also, (U+)* = U. This implies that every g-submodule of
V™ is the orthogonal of some g-submodule of V. By 1.8, it follows that V™ is of

finite length. In particular, V™ is finitely generated and a highest weight module
by 1.1. (I

Therefore, V' — V™ is an exact contravariant functor from M 4(g, No) into
itself. We call V™ the dual of V. Also, for any orbit 8 of the Weyl group W in h*,
we conclude from 1.9 that V' € Ms,(Up, No) implies that V™ e M, (Up, No), i.e.,
V — V7 is an antiequivalence of the category M ¢4 (Us, No) with itself.

1.11. LEMMA. For any X € b5, L(A\)" = L(A).

Proor. It follows from 1.10 that L(A)™ is an irreducible highest weight module
with the highest weight A. By 1.6, L()\)™ is isomorphic to L(\). |

We put I(A) = M(A)". Then, by 1.5 and 1.11, I(\) has a unique irreducible
g-submodule L(A). The modules I(A) have the following universal property.

1.12. LEMMA. Let A € b* and 6 =W - .

(i) Let V be a highest weight module such that A — p is a weight of V' and
A — p+a is not a weight of V for any positive root o € . Then there
exists a nonzero morphism of V. into I(X).

(ii) Let V be a highest weight module satisfying following conditions:

(a) V contains a unique irreducible submodule isomorphic to L(X);
(b) dim V* = dim I(\)* for any p € h*.



1. CATEGORY OF HIGHEST WEIGHT MODULES 97

Then V is isomorphic to I(X).

Proor. (i) By 10. V™ is a highest weight module such that A — p is a weight
of V7 and XA — p + « is not a weight of V™ for any positive root a € £T. Hence, if
v € (V) =P, v # 0, v is annihilated by ng. Therefore, the homomorphism & — ¢-v
from U(g) into V factors through M (A), and we constructed a nonzero morphism
¢ of M(A) into V". By duality, ¢~ is a nonzero morphism of V' into I()).

(ii) By (i) there exists a nonzero morphism ¢ of V into I(A). Since the image
of ¢ is nontrivial, it must contain the unique irreducible submodule L(X) of I(\).
Denote by K the kernel of ¢. Since dimV*~? = dim I(\)*~” = 1 by (b), and
dim L(A\)*~? = 1, we conclude that K*~? = 0. By (a), this implies that K = 0,
and ¢ is injective. From (b) we finally conclude that ¢ is an isomorphism. O

Now we can relate our results to the general geometric scheme for classification
of irreducible objects in M, (Uy, No). First, by the Bruhat lemma ([2], 14.11), Ny
has finitely many orbits in the flag variety X. Therefore, we have the following
remark which enables us to apply the results of ... .

1.13. PROPOSITION. (g, Ng) is a Harish-Chandra pair.

The Ng-orbits in X are the Bruhat cells C(w), w € W. They are affine subva-
rieties of X ([2], 14.11) and

dim C(w) = £(w), w € W.

Therefore, if C(s) is in the boundary 0C(w) = C(w) — C(w) of C(w), we have
£(s) < b(w).

Let A € b*. Let C(w) be a Bruhat cell and i,, : C(w) — X the canonical
immersion. Then, from ... we see that the only irreducible Nyg-homogeneous (D) )%-
connection on C(w) is O¢(y). The standard Dy-module corresponding to data
(C(w), O¢(w)) we denote by Z(w, A), and its unique irreducible Dy-submodule by
L(w, ). The key connection between the geometric classification of irreducible
objects and 6. is given by the following result.

1.14. THEOREM. Let A € h* be antidominant. Then
(X, Z(w,\) = I(w)), weW.

To prove 14. we need some preparation. We start with a very special case of
14.

1.15. LEMMA. Let A € h* be antidominant. Then
N(X,Z(1,)\) = M(\) = L(\) = I(N).

PRrOOF. Clearly, Z(1, ) is an irreducible Dy-module. Hence, by L.4.1, the
Up-module T'(X,Z(1,\)) is either an irreducible highest weight module or zero.
Since Z(1, A) is supported at the point C'(1) the second possibility is automatically
eliminated. Therefore, to prove the statement it is enough to establish the first
equality.

Now we need to describe the structure of the direct image module Z(1,\) =
i14+(Cxyp). We can view it as a right D_y-module. Then it is equal to i (D_x c(1)—x)
as a right D_y-module in the natural way. On the other hand, as in the proof of
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L.2.4, we conclude that as a right U(g)-module
D_xc1)—x = Tuy(D-x)
= (U(g)/nold(g))/ (T-x+p(U(g)/nolh(9))) = Cxtp Bue,) U(9),

where we denoted by ¢ the point in C'(1). This implies that, as a left ¢ (g)-module,
Z(1, ) is equal to M(A). O

Now we need some results about the action of the intertwining functors on the
standard modules.

1.16. LEMMA. Let w € W and A € h*. Then
LI (D(Z(1,)))) = D(Z(w™ ', w))).

PROOF. We use the notation from the L.3. Let Z,, C X x X be the variety
of ordered pairs of Borel subalgebras in relative position w € W. Denote by p;,
i = 1,2, the projections to the i*" factor in X x X. Then

= {(x,2") € X x X | by = by, b, in relative position w™! with respect to by}
=C(w™') x C(1),
i.e. we have the following commutative diagram
Clw™) x C(1) —L— Z,
s | |
C(1) U, X

and by base change ([1], VI.8.4), since pro and py are submersions and i, and j
affine immersions, we have

p3 (Z(1, X)) = p3 (i1 (Oc1))) = j+(r3 (Oc))) = j+(Ocw-1yxc1))-

The projection p; induces an immersion of p, ' (C(1)) into X and its image is equal
to C(w™1), i.e. we have the following commutative diagram

Clw™) x C(1) —L— Z,

Phl Pll

C(w™1) TN e

and we get, after checking the appropriate twists, that
= Rp1+(Tw ®0s, j+(Ocw-1)xc))) = Dliw-14(Ocw-1)))) = DZ(w ™", w)).

O
1.17. COROLLARY. Let w,w’ € W be such that L(ww') = l(w) + (w'). Then
LI,(D(Z(w' ™", A)) = D(Z(w' " w™,w\)).
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PrOOF. Clearly, by 16.
Ll (D(Z(1,w'~"N)) = D(Z(w'
On the other hand, by L.3.18 we have

-1

w™twl)).

LI (D(Z(1,w'~"\))) = LI, (LI, (D(Z(1,w' "' \)))
= LI,(D(Z(w' ™", \)).
O

In particular, if wq is the longest element in W, and w an arbitrary element of
W, the element w' = wow satisfies ww' ™" = wy? = wo and £(w') = L(w) — £(w)
([5], Ch. VI, §1, no. 6, Cor. 3. of Prop. 17.). It follows that LI, (D(Z(w,\))) =
D(Z(wg, w'N)).

The next result is critical for the proof of 14.

1.18. LEMMA. Let A € h*. Then
(1) Hp(X’I(w07A)) =0 fO?”p > O;
(i) T'(X,Z(wo, ) = I(woA).

PROOF. Since C(wyp) is an affine open subvariety of X,
HP(X, Z(wo, A)) = HP(C(wo), Oc(wy)) = 0

for p > 0. This proves (i).

Now we can prove (ii). Assume that A € h* is antidominant. Then, by 15, we
have T'(X,Z(1, X)) = M()\) and it is an irreducible g-module. If we take a nonzero
v € I(X,Z(1,))), it generates a finite-dimensional bg-invariant subspace U. By
Engel’s theorem, there exists a vector v’ € U which spans a bg-invariant subspace.
Therefore, v’ is a weight vector of M () for some weight u € h* and it is annihilated
by np, hence there exists a natural morphism of M (u + p) into M (A). Since M ()
is irreducible, we have L(u + p) = M(X) = L(\). By 6. we finally conclude that
A = u+ p. Hence, we have proved that every bp-invariant subspace U of M(A)
contains the highest weight subspace M (\)*~?. By 16, we also conclude that for
antidominant A € bh*,

D'(X, Z(wo, wo\)) = M(A)
and every bg-invariant subspace U of it contains the highest weight subspace. As
we remarked before, for arbitrary p € b*,

D(X, Z(wo, 1)) = T(C(wn), Ocuy))-

Therefore, the constant function 1 on C(wy) is a global section of Z(wo, ). It
is clearly Np-invariant. Denote by x,, € C(wo) the point corresponding to the
Borel subalgebra which contains hg and is opposite to bg. The section n - x,,, —
Ad(n)¢, € € bho, of U°|C(wp) maps into the constant section (wop — p)(§) in
DaoulC(wo), hence it acts on the section 1 as multiplication by (wop — p)(§).
This in turn implies that £ acts on this section as multiplication by (wou — p)(§),
i.e. 1 € T'(X,Z(wo, p))"#~P. In particular, for antidominant A € h*  any bg-
invariant subspace U of T'(X,Z(wo,wo\)) contains the highest weight subspace
(X, Z(wg, wo)))*~* consisting of constant functions on C(wp). Since the geomet-
ric translation of Z(wo, ) is Z(wo, 1) ®0 O(v) = I(wo, u+v), and Ov)|C(wo) =
Oc(we) as an Og(yy)-module, we have a natural isomorphism of the bp-module
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(X, Z(wg, u + v)) with T'(X,Z(wp, 1)) ®c C,. Hence, we see that for arbitrary
pebh
(a) dim (X, Z(wp, 1))¥ = dim M (wop)* = dim I(wop)¥ for any weight w €
b
(b) any bg-invariant subspace U of I'(X, Z(wq, pt)) contains the highest weight
subspace T'(X, Z(wq, p))“°*~? consisting of constant functions on C(wy).
In particular, from (b) we conclude that any g-submodule of T'(X, Z(wp, 1)) con-
tains the constants. This implies that I'(X,Z(wo, 1)) has a unique irreducible g-
submodule L.
Then (a) implies that wou — p is the highest weight of L, i.e. L = L(wop).
Finally, by 12.(ii), we conclude that T'(X, Z(wg, u)) = I(wop). O

Now we can prove 14. If A € h* is antidominant, w an arbitrary element of W
and ww' ™ = wy, we have

RT(D(Z(w, A))) = RT(LIy (D(Z(w, A)))) = RT(D(Z(wo, w')))
by the preceding discussion and L.3.23. This implies that
(X, Z(w,\) = T(X,Z(wy,w'\)) = I(wow'\) = I(w).

and proves 14.
Now it is quite straightforward to determine the global sections of irreducible
modules. Let W () be the stabilizer of .

1.19. THEOREM. Let A € h* be antidominant.

(i) Any left W(X)-coset contains the shortest element.

(ii) Let w € W. Then the following assertions are equivalent:
(a) I'(X, L(w,\)) #0;
(b) T'(X, L(w,A)) = L(wA);
(¢) w is the shortest element in a left W(X)-coset.

ProOOF. Let w € W. First, by L.4.1, we know that I'(X, L(w, \)) is an irre-
ducible g-module or zero.

By exactness of I' and 14, if it is nonzero, it must be the unique irreducible
submodule L(wA) of I(w\) = T(X,Z(w, \)).

Let w and w’ are in the same left W (\)-coset with I'(X, L(w,A)) # 0 and
I(X, L(w',\)) # 0. Then, we have wA = w'A and L(wA) = L(w'A). By L.4.2,
this implies £(w,A) = L(w',\) and w = w’. Therefore, the element w in a left
W (A)-coset such that T'(X, L(w, \)) # 0 is unique.

Let v # w be in the same left W (\)-coset as w. Then T'(X, L(v, A)) = 0. From
the exact sequence

0— L(v,A) — Z(v,\) — Z(v,\)/L(v,A) — 0
and exactness of I' we conclude that
DX, Z(0, A)/ L0, A)) = T(X, Z(0, X)) = T(0) = I(w)),

hence it contains L(wA) as its composition factor. This in turn implies that L(w, A)
is a composition factor of Z(v, A)/L(v, A). Hence, C'(w) C dC(v) and £(w) < £(v).
Therefore, ¢ attains at w its minimum on the coset wW (). O

In particular, we have the following result if A is regular in addition.
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1.20. COROLLARY. Let A € b* be regular antidominant. Then, for any w € W,
we have

(X, L(w,\)) = L(w).
PROOF. Since A is regular, W(X) = {1}. O
The discussion in the proof of 14. has the following consequence.

1.21. THEOREM. Let A € b* and 6 = W - A. Then the annihilator of M () in
Uy is {0}.

PROOF. Tt is enough to show that the annihilator of I(\) is trivial for any
A € h*. But, by 1.18.(ii), this is equivalent to showing that no nontrivial element
of I'(X, Dy) annihilates I'(X, Z(wo, A)) = I'(C(wo), Oc(w,)) Which is evident. O

Finally, we want to discuss the necessary and sufficient conditions for the ir-
reducibility of standard modules Z(w, A) and Verma modules. First we analyze a
critical special situation.

1.22. LEMMA. Let A € b* and o € II be such that p = —a’(\) € Z. Let
w = w'sy with {(w) = L(w') + 1. Then:
(i) we have an exact sequence
0 — UNZ(w',saN)) — Z(w,\) — Z(w', \) — 0;
(i) UYNZ(w', saN)) # 0 and it is a translate of a module of form pt (V).
ProoF. By 16. and L.3.18, we have
Z(w, ) = L, (Z(1,w)) = I, (1,1 (Z(1,w))) = I, (Z(w', s4M)).
Hence, by L.5.3.(ii), we have an exact sequence

0 —— U%Z(w',50\) —— Z(w,\) —— Z(w', 5, \)(—pa) —— UHZ(w', 84))) — 0

Z(w',N)
Let po : X — X, be the natural projection of the flag variety X onto the variety
of all parabolic subalgebras of type . Then, using the notation from L.5. we have
the commutative diagram

Y, — 25 X

@ | e |

X s X,
and by base change, using the fact that the composition of p, © i, is an immer-
sion of the affine variety C(w’) into X,, we conclude that U'(Z(w’, s,))) = 0,
UYZ(w', s4))) # 0 and it is a translate of a module of form p} (V). This implies
both assertions. g

1.23. THEOREM. Let A € h* and w € W. Then the following conditions are
equivalent:
(i) 22: Ny =0;
(ii) Z(w, \) is irreducible Dy-module.
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ProoF. (i)=(ii) If ¥} N3, = 0, by L.3.22, the intertwining functor I, :
Mge(Dr) — Mye(Dyy) is an equivalence of categories and I,,-: its inverse. By
16, we have

T, (Z(1,wX)) = Z(w, N).
Since Z(1,wA) is evidently irreducible, Z(w, ) is an irreducible Dy-module.

Now we shall prove, by induction in #(w), that XF N3, # ( implies that
Z(w, A) is a reducible Dy-module. If (w) = 0, w = 1 and the assertion is obvious.
Therefore, we can assume that the statement holds for w’ € W with £(w’) < k. Let
l(w) = k. Then w = w’s, for some a € IT and w’ € W with £(w’) =k —1. Asin
the preceding proof, from 16. and L.3.18 we deduce that

Z(w, ) = I (Z(w', saN)).
Moreover, by L.3.12.(ii),
YENEy =54(25 NE ) U({a}nNEy).

w’

If @ ¢ Xy, Card(X4 N X)) = Card(Z}, N S, 1), and by induction assumption
Z(w', sqA) is areducible D, _y-module. Since, by L.3.22, in this case I, : Mge(Ds n) —
M(Dy) is an equivalence of categories, Z(w, A) is a reducible Dy-module.

If « € ¥y, Z(w, A) is reducible by 21. O

Now we deduce a necessary and sufficient condition for irreducibility of Verma
modules.

1.24. THEOREM. Let A € h*. Then the following conditions are equivalent:

(i) A is antidominant;
(il) M () is irreducible.

PRrROOF. (i)=-(ii) If A is antidominant, I(A) = I'(X,Z(1, \)) by 14. Moreover,
Z(1,\) is clearly irreducible. By L.4.1, I(\) is an irreducible g-module, and M (\) =
I(\)™ is also irreducible.

(ii)=(i) Take A which is not antidominant. Assume that M () is irreducible.
Let w € W be a shortest element of W such that w ™'\ is antidominant. Then, by
14, we have

D(X,Z(w,w ) = I(\) = M(\)" = L(\)" = L(\) = M(\).

Let a € II such that w = w's, with £(w) = £(w') + 1. Then w'~ '\ is not an-
tidominant. We claim that p = —a (w™'\) € N. Since w™!\ is antidominant,
B (w=tA) ¢ N for any B € ¥F. In addition, s, permutes the roots of X — {a},
hence (so8) (w™'A) = B7(w'~'A) € N for any 8 € £+ — {a}, and since w' '\ is
not antidominant, o (w'~'A) € N. From 21.(i) we get the exact sequence

0 — UNZ(w',w' ™" N)) — Z(w,w'A) — T(w',w™'A) — 0
of D,,-1y-modules. Since w™'\ is antidominant, by C.3.2, we get the exact sequence

0 — (X, U%(Z(w',w' ™ X)) = D(X, Z(w, w™\)) = D(X, Z(w',w™t\)) — 0,
and I'(X, Z(w, w™'\)) = I(\) = M(A\)” is irreducible. By 14, we have
DX, Z(w,w™'N) = I(swa)) # 0.

This implies that T'(X, U(Z(w’,w'~'\))) = 0 and I(\) = I(swa)). By dualizing
we conclude that M(\) = M(sya)), what is possible only if A = s,qA. This in
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turn implies that s, stabilizes w=!), what contradicts a”(w='\) € N. Therefore,
M (X) must be reducible. O

Finally we want to discuss the action of the intertwining functors for simple
reflections on irreducible modules L(w, A).

1.25. PROPOSITION. Let A € b* and o € II. Then:

(i) If (N ¢ Z, Is, (L(w,N)) = L(WSa, SaN).
(ii) If & () € Z, there are two possibilities:
(a) if l(wsy) = L(w) + 1, I, (L(w,\)) #0 and L™ I,_(L(w,\)) = 0;
(b) if L(wsy) = Lw) — 1, I, (L(w,\) = 0 and L7, (L(w,N\)) =
L(w, $aA).

Proor. In this case, I, is an equivalence of categories by L.3.22, hence it is
an exact functor. By L.3.5. we can assume in addition that A is antidominant and
regular. This implies that s, is also antidominant and regular. Therefore, the
statement follows from L.1.16, L.3.23. and 19.

(ii) Let P, be the parabolic subgroup of type a containing a Borel subgroup
B. Then P, = B U Bs,B. This implies that p;!(p,(C(w))) = C(w) U C(wsy).
Since p,, is a locally trivial projection with fibres isomorphic to P!, it follows that
2 (pa(C(w))) = Clw) U C(wsy). If L(wsy) = L(w) + 1, C(w) C C(ws,) and
P2t (pa(C(w))) = Clwsy) # Clw); if L(wsy) = L(w) — 1, C(wsy) C C(w) and
Pt (pa(C(w))) = C(w). Since supp L(w, \) = C(w), we see that L(w, \) can be a
translate of a module of the form pt (V) only if £(ws,) = ¢(w) — 1. Hence, by L.5.6,
I (L(w,\)) = 0 implies that £(ws,) = ¢(w) — 1.

It remains to prove the converse. Let {(wss) = ¢(w) — 1. In this case, by 21,
we have the exact sequence

0 — UNZ(wsa, 5a))) — Z(w,\) — L(wsa, A) — 0

and UY(Z(wsq, $4))) is a non-zero translate of a module of the form pf (V). Hence,
U°(Z(wsq, 84 \)) contains L(w, A) as its unique irreducible submodule and, in par-
ticular, supp U%(Z(wsq, sa\)) = C(w). Moreover by L.5.5, L~ I, (U°(Z(wsq, 5a)\))) =
UY(Z(wsa, N)). Since, by 17, L™, (Z(wsq,A)) vanishes, from the long exact se-
quence of derived functors of I applied to the preceding short exact sequence, we
conclude that

L7, (Z(w,\) = UY(Z(wsa, \)) # 0.

Also, since L™, is left exact, we conclude that L=, (L(wsq, A)) = 0. Consider
now the short exact sequence

0— L(w,\) — Z(w,\) — Q — 0,

where supp @ C 9C(w) = C(w)—C(w). By the preceding discussion, the conditions
C(v) € 9C(w) and p;*(pa(C(v))) = C(w) imply that v = ws,. Therefore, if
L(v, \) would be an irreducible constituent of Q with supp LI, (L(v,\)) = C(w),
we would have v = ws, what is impossible by the preceding remark. Hence, by

induction in the length of Q, we conclude that supp L~11;_(Q) # C(w). Therefore,
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the part of the corresponding long exact sequence of derived intertwining functors
0 —— L', (L(w,\) —— L', (Z(w,\)) —— LI, (Q)

U(Z(wsa, N))
implies that the second horizontal arrow is nonzero, hence L~1I, (L(w,)\)) # 0.
This implies by L.5.4. that I,_(L(w,A)) = 0.
Therefore, (ii) is a consequence of L.5.4. O

2. Kazhdan-Lusztig Algorithm

In this section we want to develop an algorithm for calculating the multiplicities
in the composition series of Verma modules. We start with a critical combinatorial
result.

Let W be the Weyl group of a reduced root system 3 and S the set of simple
reflections attached to a set of simple roots II. Denote by ¢ : W — Z the length
function on (W, S). Let Z[g,q '] be the localization of Z[g| at (q), i.e. the ring of
finite Laurent series in ¢. Denote by H the Z[q, ¢~*]-module with basis 6,,, w € W.
Let « € TI. Then, for any w € W, either £(ws,) = £(w) + 1 or l(wsy) = (w) — 1.
We define a Z[q, ¢~ ']-module endomorphism T, of H by

@0 + Ows,, if l(wsy) = (w) + 1;

To(0w) =
(0w) {qlgw + 0ws,  if l(wsy) = L(w) — 1.
The mentioned combinatorial result is the following theorem.

2.1. THEOREM. There exists a unique function ¢ : W — H, such that the
following properties are satisfied:

(i) forw e W we have
Qp(w) - 5w + Z Pwv5v7

v<w
where Py, € qZ[q].
(ii) for a € I and w € W such that {(wsy) = l(w) — 1, there exist ¢, € Z,
which depend on o and w, such that

To(p(wsa)) = Z coip(v).

v<w

The function ¢ : W — H determines an unique family {Py, |w,v € W,v <
w} of polynomials in Zlg| such that p(w) = > -, Puwdy for w € W. These
polynomials are called the Kazhdan-Lusztig polynomials for (W, S).

2.2. REMARK. Our Kazhdan-Lusztig polynomials differ in normalization from
the ones defined originally [?]. We shall discuss the connection of the two normal-
izations later ... .

First we shall prove the uniqueness part of 2.1. To prove the existence, we
need it in a slightly stronger form. For k € Z, denote by W<, the set of elements
w € W such that ¢(w) < k.

2.3. LEMMA. Let k € N. Then there exists at most one function ¢ : W<y, — H,
such that the following properties are satisfied:
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(i) for w € W<y, we have
(p(U]) = 5w + Z Pwv5v7
v<w
where Py, € qZ[q].
(i) for a € II and w € W<y, such that l(wsy) = (w) — 1, there exist ¢, € Z,
which depend on o and w, such that

To(o(wsy)) Z cop(v

v<w

PrROOF. The proof is by induction in k. Let k = 0. Then W<j, = {1}. Clearly,
(1) implies that ¢(1) = 01 and (ii) is void in this case.

Assume that k& > 1. By the induction assumption, ¢|W<j_1 is unique. Then,
for w € W<y, such that ¢(w) = k we can find a simple root « such that ¢(wsy) =
l(w) —1=Fk—1. By (ii) we know that

To(p(wsy)) Z cup(v
v<w
and, by evaluating at ¢ = 0 and using (i),
To(p(wsy))(0) = Z Cp0yp.
v<w

By the induction assumption, the left side is uniquely determined. This implies
that ¢, are uniquely determined. On the other hand, if we put y = ws,, we have

To(p(wsa)) = Ta(0y + > Pydy) = Ta(8y) + Y PpuTa(dy)
v<y v<y
=q0y + 0w+ Y PpTa(0y).
v<y
By the construction, ¢(v) < {(y) = k — 1. Hence, terms in the expansion of Ty (d,)
can involve only ¢, with ¢(u) < k — 1. In particular, they cannot involve §,,. This
implies that c,, = 1. But this yields to

p(w) = To(p(wsa)) Z (v

v<w

O

The uniqueness part of 2.1 follows immediately from 2.3. The difficult part
of the proof of 2.1 is the existence. We shall prove the existence by relating the
Kazhdan-Lusztig polynomials with the structure of the category M on(Dx, No). As
a byproduct of this analysis we shall get a connection between the Kazhdan-Lusztig
polynomials and the multiplicities of irreducible g-modules in Verma modules.

First we want to establish a “parity” property of solutions of 2.3. Define addi-
tive involutions i on Z[g,¢~!] and ¢ on H by

i(¢g™) = (=1)"¢™ for m € Z,
L(q™0y) = (1) W gms, for m € Z and w € W.
Then (T, is Z[q, ¢~ ]-linear endomorphism of H, and we have

(tTt)(0w) = (71)Z(M)L(Ta(5w)) = (71)Z(w)L(q§w+5wsa) = —(q0w+0uws,) = —Tu(6w),
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if {(wsq) = £(w) + 1, and
(Tat) (6u) = (=D U(T(60)) = (—) (g 6 0u,) = —(4  bu+bus,) = —Ta(0u),
if {(wsy) = £(w) — 1. Therefore,

Tyt = =Ty,

2.4. LEMMA. Let k € N. Let ¢ : W<y, — H, be a function satisfying the
properties 2.8.(i) and 2.3.(ii). Then

Puy = ¢" @0,
where Quy € Zlq%, q72].
PrOOF. Define ¢(w) = (—=1)““)i(p(w)). Then ¢ : W<y, — H, and
Y(w) = (=1 (60 + Y Pundy) = 0w+ 3 _ (=1 I i(P,,)5,,
v<w v<w

hence v satisfies 2.3.(i). By the previous remark, for a € II and w € W<y, such
that £(ws,) = ¢(w) — 1, we have

To($(wsa)) = =(=1) I Ta(lp(wsa))) = (1) u(Ta(p(wsa)))
= (=1 (D ewp() = (1) Y curlp(v) = D (1) Weyip(v),
v<w v<w v<w
hence v satisfies also 2.3.(ii). Therefore, by 2.3, we conclude that ¢ = . [
Let F € Mcon(Dx, Np). For w € W we denote by i,, the canonical immersion
of the Bruhat cell C(w) into X. Clearly, for any k € Z, L=*i} (F) is Np-equivariant
connection on C'(w), i.e. it is isomorphic to a sum of copies of O¢(y). On the other
hand, dim C(w) = £(w), hence R*“(W)=ki! (F) = L=Fi}(F) for any k € Z. We
put
v(F)= Y Y dimo(R™i,(F))q"dw.
weW meZ
Therefore, v is a map from Mo, (Dx, No) into H.
For any w € W, we put
Ty =Z(w,—p) and L, = L(w,—p).
The existence part of 2.1 follows from the next result.
2.5. PROPOSITION. Let p(w) = v(Ly,). Then ¢ satisfies 2.1.(i) and 2.1.(ii).
Checking that ¢ satisfies 2.1.(i) is quite straightforward.

2.6. LEMMA. Let p(w) = v(Ly). Then
p(w) = 0y + Z Py,

v<<w

where Py, € qZ[q].

PROOF. Clearly, supp £, = C(w). By definition of the Bruhat order, v < w is
equivalent with C(v) C C(w). Therefore, we see that R™i} (L,,) = 0, for all m € Z,
if v is not less than or equal to w. By Kashiwara’s theorem, we conclude that

R, (Ly) = R%.,(Ty) = R, (R%uws (Oc(w))) = Oc(uw),
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and, for m # 0,
R, (£,) = R, (L) = R, (Rt (Oc()) = 0.

Finally, if v < w, denote by X’ the complement in X of the boundary 9C(v) =
C(v) — C(v) of C(v). Since the restriction of an irreducible Dx-module to an open
set is either zero or irreducible, £,,| X’ is an irreducible Dx,-module. Let j, be the
natural inclusion of C'(v) into X’. Then j, is a closed immersion. On the other
hand, R%j,, (R%! (L)) is the Dx/-submodule of £,,| X" consisting of local sections
supported on C(v). Hence, we must have R%j, (R (L,)) = 0. Therefore, it
follows that R%i! (L) = 0. O

The main part of the proof is to establish that p(w) = v(L,,) satisfies 2.1.(ii).
First we need an auxiliary result.

Let a € II and X, the corresponding flag variety of parabolic subalgebras
of type a. Denote by p, : X — X, the natural projection map. Let C(v)
be a Bruhat cell in X for v € W. Since it is isomorphic to C**) the natural
imbedding 4, : C(v) — X is an affine morphism. The projection p,(C(v)) of
C(v) to X, is also an affine space, and therefore affinely imbedded into X,,. Since
the fibration p, : X — X, is locally trivial, we conclude that p,*(p.(C(v)))
is a smooth affinely imbedded subvariety of X. If P, is the standard parabolic
subgroup of type « containing the Borel subgroup B, we have P, = B U Bs,B.
This implies that p; ! (pa(C(v))) = C(v)UC(vs,). One of these Bruhat cells is open
and dense in p;!(pa(C(v))), the other one is closed in p,!(pa(C(v))). We have
either £(vs,) = (v)+1 or £(vs,) = £(v) — 1. In the first case, dim p, *(po(C(v))) =
l(v) + 1, C(vsy) is open and C(v) closed in p;t(pa(C(v))). In the second case,
dim p; t(pa(C(v))) = £(v), C(v) is open and C(vs,) closed in it. Moreover, in the
first case pq : C(v) — pa(C(v)) is an isomorphism, while in the second case it is
a fibration with fibres isomorphic to an affine line. We define the functors

UL(F) = pt (Rpay (F)),

from Mg.(Dx) into itself, for any ¢ € Z. Since the fibres of the projection map
Do @ X — X, are one-dimensional, U4 can be nonzero only for ¢ € {—1,0,1}.
These functors are closely related to the functors we discussed in L.5. In particular,
we have the following lemma.

2.7. LEMMA. Let w € W and a € 11 be such that {(wsy) = £(w) — 1. Then:

(i) Ud(Lys,) =0 for all ¢ #0;
(i) U(Lys,) is a direct sum of L, for v < w.

PROOF. First, by the construction, U%(L,,s,, ) are holonomic (Dx, Ng)-modules
supported inside the closure of p ! (po(C(w))), which is equal to the closure of C'(w)
by the preceding discussion. This implies that U2(L,s,) are of finite length and
their composition factors could be only £, for v < w. Since p, is a locally trivial
fibration with fibres isomorphic to P! and L, is the direct image of Oc¢(ws.,,) and
therefore of geometric origin (...), by the decomposition theorem (...) R%po+(Luys, )
are semisimple. This implies, using again the local triviality of p,, that UZ(Lys,,)
are semisimple, and completes the proof of (ii).

To prove (i) we establish the connection with the results in L.5. Let Y, =
X xx, X denote again the fibered product of X with X relative to the morphism
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Ppo- Denote by ¢; and go the corresponding projections of Y, onto the first and
second factor respectively. Then the following diagram

Y, — 25 X

qll pal
X Py X,

is commutative. By base change,

Ud(Luws,) = pz(RanJr(ﬁwsa)) = qulJr(QQ+ (Lwsa))-

Since Dx = D_,, we easily check that UZ(Lys, )(e) = U (Lys, ). Hence, (i) follows
immediately from L.5.4. if we show that Is_(Lys,) 7 0. On the other hand, this
follows immediately from 1.21. |

Now we want to calculate v(UQ(Lys,)) for w € W and o € II such that
lwsq) = L(w) — 1. First, let v € W be such that v < w. Then C(v) is in the
closure of C(w). Since, by our assumption, the closure of C'(w) is also the closure of
ot (pa(C(w))), we conclude that p;t(pa(C(v))) = C(v)UC (vsy) is also contained
in the closure of C(w), i. e. vs, < w. Therefore, without any loss of generality, we
can assume that £(v) = £(vsy) + 1, i. e. C(v) is open in Z, = p; ' (pa(C(v))). Let
Jj:Zy — X and j, : pa(C(v)) — X4 be the natural inclusions. Then we have
the following commutative diagram

Za % X
Pa(C) —— X,

and by base change and 7. we get
me@m>m@mwmﬂmmm>
= Hkil (Rj!(Rp&(Rpa+( wS{y ) Hk ! (R(poé O]) (RpOH-( (E Sa))))
= H""1 (R(ju © ga)' (Rpa+ (D(Lws,)))) = H " (Rag (R, (Rpas+ (D(Lws,))))
— g (H" (R} (Rpas (D(Lus.)))) = ¢ (H* (Raas (RS (D(Las,))) -

Now we analyze in more details the structure of the complex Rj'(D(Lyys,)). As
we remarked before, Z, = C(v) UC(vsy), C(v) is open in Z, and C(vs,) is closed
in it. If we denote by i : C(v) — Z, and ¢’ : C(vs,) — Z,, the canonical affine
immersions, we have the following distinguished triangle

i (RIN(F) — F — i (F|O)
in the category D?(Dy.), for any object F . Therefore, in particular we have the
following distinguished triangle
iy (Ri"(Rj' (D(Luws,))) — RjH(D(Lus,)) — i+(Rf (D(Luws,))|C(v))

and
1

Zii- (Ribsu (D(ﬁwsa))) — Rj!(D(Ewsa)) — i-i- (RZ"U (D(L‘wsa)))-
By applying the functor Rq, we get the distinguished triangle

Ra+ (i (Riy,, (D(Lws,)))) = Rat(Rj'(D(Luws,))) = Rda (i4(Riy(D(Luws,))))
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in D(D,,, (c(v)))- Since pa(C(v)) is a No-orbit in X,, and all D-modules involved
in the preceding arguments are Np-equivariant, the cohomologies of the complexes
in this triangle are sums of copies of O,_(c(v))- In addition,

R (7, (Bily (D(L0s.))) = Rlga o 7)1 (R, (D(Lus,)
and ¢, 04" : C(vsy) — pa(C(v)) is an isomorphism. Therefore,
dimo H* (R(ga o ')+ (il (D(Lus,)))) = dimo BYil, (Lus,)
for any k € Z. On the other hand,

Rqa+ (iJr (RZ;) (D(['wsa)))) = R(Qoz o Z)+(RZL (D(‘Cwsa)))

and g, 07 : C(v) — po(C(v)) is a a locally trivial projection with fibres isomorphic
to an affine line. Therefore, since cohomologies of Ri! (D(L,s,)) are sums of copies
of OC(v)a

dimo H* (R(ga © 1)1 (Riy(D(Lus,)))) = dime R, (Lus,)

for any k € Z. This also leads to the long exact sequence

o= HY (R(ga 044+ (Riby (D(Luws,)))) = H* (Rgas (R (D(Lws.))))

VSq

— H" (R(qa 0 1) 4 (Riy,(D(Lws,)))) = H* (R(qa 0 ") (Rify (D(Luws,)))) = -

consisting of D, (¢(v))-modules which are are sums of copies of O,,_(c(v))-

Now we want to prove that p(w) = v(L,,) satisfies 1.(ii) by induction in the
length of w € W. If {(w) = 0, w =1 and 1.(ii) is void in this case. Therefore, we
can assume that p(w) = v(L,,) satisfies 1.(ii) on W<y, for some k € N. By 4, it
satisfies the parity condition on W<y, i. e. for any u € W<y, we have R*i (L£,) =0
for all v € W and k € Z, such that k = ¢(v) — f(u) — 1 (mod 2). Let w € W
be such that ¢(w) = k + 1. Then there exists a € II such that f(wsy) = k,
ie. wsqy € Wxi. Then for any v € W in the preceding calculation, we either
have k = £(v) — £(wsy) (mod 2) or k = £(v) — £(wss) — 1 (mod 2). In the first
case, we have R* il (L, ) =0 and R* (L,s,) =0, what in turn implies that

v

H*(Rqa+ (Rj (D(Lys,))) = 0. In the second case, we see that
dimo H*(Rga+ (Rj (D(Luws,))) = dimo R*i(Lus,,) + dimo R¥iy, (Lus,)-
This implies that R¥j'(US(Luys,)) = 0 if k = £(v) — £(ws,) (mod 2), and
dime R*5'(U2(Lops,)) = dime R¥il, (Lys, ) + dime RFil, (Lus,.)

for k = £(v) — l(wsy) — 1 (mod 2).
By restricting further to C'(v) and C(vs,,) we finally get, for all k € Z, that

dimo R} (US (Lus,)) = dimo RMi (L4, ) + dimo R¥iy, (Lus,)
and

dime R*iy, (U2(Lys,)) = dime R¥4!,(Luys, ) + dime RF 76l (Lus,),
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what leads to

V(U (Lus,)) = Y Y dime R¥i, (US(Lus,)) 4",

veW keZ
Z Zdlmo Rk UO( wse ) k5 + Z Zdlmo Rk (,Cwsa)) qkévsa
V8o <V kKEZ VS$a <V kEZ
Z Z dimep RFH1! v (Luws, ) + dime RF! Gy, (Ewsa)) qkév
v8q <V KEZ
+ ) Y (dime RYily(Las, ) + dime RF Vil (Lus,)) 0500,
V5o <V KEZ
Z Z dlmo Rk+1 ;! (»Cwsa) + dlmo Rk (»Cwsa)) qk (51) + qévsa)
V854 <V kEZL

Z Zdlmo Rk+1 ! [:wsa) k+1(q716v +6U3a)

V54 <V kEZ
+ 33 dimo RML, (Lus,) 6560 + @00s,) = Ta(U(Luss, ) = Talp(wsa).
V8 <V kEZ
In combination with 7. we get
To(p(wsa)) = v(Ug(Luws,) Z co(Ly) = Z cop(v)
v<w v<w

i.e. 1.(ii) holds for ¢ on W<y41. By induction we see that ¢ satisfies 1.(ii), and this
ends the proof of 5. This also completes the proof of 1.

Now we want to establish the connection between the Kazhdan-Lusztig poly-
nomials and the multiplicities of irreducible g-modules in Verma modules. We start
with the following observation.

2.8. LEMMA. The evaluation of the map v at —1 factors through the Grothendieck
group K(Mcoh(DXa NO)) Of Mcoh(DX7 NO)

PRrRoOOF. Evidently

= > (=)™ dime(R™i),(F))) duw.

weW meZ
On the other hand, if

0—F — Fo—F3—0
is an exact sequence in Mon(Dx, Np), we get a long exact sequence
— R™iy,(F1) — R™iy (F2) — R™i, (F3) — R, (Fi) —
of Ny-homogeneous connections on C(w). By the Euler principle,

Y (=)™ dimo(R™i, (F2))

mEeZ

= > (=)™ dimo(R™i),(F1)) + > (—1)™ dimo (R™i), (F3))-

meZ MEZL

Also we need the following simple fact.

2.9. LEMMA. v(Zy) = dy-
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PROOF. By definition, Z,, = R%4(Oc(w)). Therefore, by Kashiwara’s theo-
rem
R\, (Ty) = R, (Rt (Oc(w))) = Oc(w),
and, for m # 0,
Rmi!w(zw) = Rmiiu(ROinr(OC(w))) = 0.
Moreover, by the base change, for any y € W, y # w, we have
R™i, (L) = R™ i, (R4 (Oc(w))) = 0.
([l

Let x : Meon(Dx, Ng) — K(Mon(Dx, Ng)) denote the natural map of the
category Mon(Dx, Np) into its Grothendieck group.

2.10. THEOREM. Let Py, w,v € W, be the Kazhdan-Lusztig polynomials of
(W, S). Then
X(‘Cw) = X(Iw) + Z Pwv(fl)X(Iv)'
v<w
PrROOF. Since Z,, contains L, as the unique irreducible submodule, and all

other composition factors are £, for v < w, we see that x(Z,,), w € W, form a
basis of K(M.on(Dx,No)). Hence

(Lw) = 3 Mo X(T

v<w

with Ay, € Z. By 8, v(—1) factors through K (M.on(Dx, No)) and by 9, v(Z,)(—1) =

6, for v € W, what leads to
= > Au(T =) Awubo.

v<w v<w

Hence, from definition of P, it follows that Ay, = 1 and Py, (—1) = Aye. O

This gives an effective algorithm to calculate the multiplicities of irreducible
modules in Verma modules for infinitesimal character x,. We can order the elements
of W by an order relation compatible with the Bruhat order. Then the matrix
(Awv;w,v € W) is lower triangular with 1 on the diagonal. If (piy,;w,v € W) are
the coefficients of its inverse matrix, we see from 10. that

=D D hwdu x(T Zuwv<ZAvux )

ueWveW veW uceW
E Haww X E Haww X
veW v<w

and fly = 1 for any w € W. By 1.11, 1.14. and 1.19. we finally get the following
result.

2.11. COROLLARY. The multiplicity of irreducible module L(—vp) in the Verma
module M(—wp) is equal t0 iy, -

Clearly, by twisting by a homogeneous invertible Ox-module we get the re-
sults analogous to 10. for standard modules in Mo, (D,,, No) for arbitrary weight
u € P(X). This immediately leads to an analogue of 11. for Verma modules with
infinitesimal character x,, for regular weights p € P(X). In the next section we
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shall discuss the analogous problem for Verma modules with arbitrary regular in-
finitesimal character.
At the end, we list a few simple properties of P,,.

2.12. COROLLARY. The coefficients of the Kazhdan-Lusztig polynomials Py,
are non-negative integers.

PRrROOF. This follows immediately from 5. and the definition of the map v. O

2.13. LEMMA. Let w € W with {(wsy) = (w) — 1. Then, for any v € W,
V8q < w is equivalent to v < w. If v < w with l(vs,) = £(v) — 1, we have
quv = P’wvsa-

PROOF. In the proof of 1.21, we have shown that £(ws,) = £(w)—1 is equivalent

to C(w) = p; " (pa(C(w))). Therefore, C(v) C C(w) implies that
C(v) UC(vsa) = pg ' (pa(C(v))) € C(w),

i.e. vs, < w. This proves the first assertion.
Moreover, by 1.24. and L.5.6, £,, is of the form p}! (V). Therefore, using the
notation from the proof of 5, we have
dime Rpii;sa (Ly) = dimep Lp_n+€(v)_1ijsa (Ly) = dimp Lp—n+£(v)—1j7j- V)
= dimp LP7" MW=t (L) = dimp RP71i (L),

for arbitrary v < w such that ¢(vs,) = £(v) — 1. O



CHAPTER 6

Generalized Verma modules

1. Cosets in Weyl groups

Let ¥ be a reduced root system and X7 a set of positive roots. Denote by II
the corresponding set of simple roots. As before, we put

=" n{~w(EMH} ={a et |wa € -XT}.

1.1. LEMMA. Let w € W and o € II. Then the following statements are
equivalent:
(i) l(wsy) =4(w) +1,
(ii) o ¢ B

w*

PRrROOF. Let {(wsy) = ¢(w) + 1. Then by L.3.12.(ii) we have
She. =sa(EF) u{al},

WS o
ie. o€ X, . This implies that
—wa = wsqa € =N,

ie. ad¢ .

If f(wsy) = L(w) — 1, L(w'sy) = L(w') + 1 for w' = ws, and o ¢ ¥, This in
turn implies that

wa =w'spa = —w'a € =X,

and a € B}, O

Let © C II. Denote by Yg the root subsystem of ¥ generated by ©, and by
We the subgroup of W generated by simple reflections Sg = {s, |« € ©}. Clearly,
the length function of (Wg, Sg) is the restriction of £ to Wg. Also, define the set

We={weWw|StnO=0={weW |0 cuw }{(ZH)}.

1.2. THEOREM. Fuvery element w € W has a unique decomposition in the form
w=uw't,w € W, t e We. In addition, {(w) = £(w') + £(t).

ProOOF. By 1, for any w € W, the following conditions are equivalent:
(i) we We;
(i) f(wsq) = £(w) + 1 for any o € O.
First we claim that a shortest element in a left Wg-coset must be in W®. Assume
that w is a shortest element in a left We-coset and that w ¢ W®. Then there
would exist an o € © with f(ws,) = ¢(w) — 1. Therefore, there would exist an
element in the same left Wg-coset of shorter length, contradicting our assumption.
Now we prove, by induction in length, that every element w in a left Wg-
coset has a decomposition of the form w = w't with w' € W®, t € Weg and
l(w) = L(w') + £(t). We already proved this for elements of minimal length. Take

113
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an arbitrary element w of a left Weg-coset. If it is in W® we are done. If it is not
in W9, by the preceding remark we can find an a € © with f(ws,) = £(w) — 1.
By the induction assumption ws, = w't’ for some w’ € W® and t' € Wg with
Uwsg) = L(w’) + £(t'). This implies that w = w't's,. Put t = t's,. Then w = w't,
t € Weo and £(t) < £(t') + 1. Moreover, we have

L(w) < L(w') +4(t) <L) +0{H) +1 = Llwsy) + 1 = L(w),

which implies that we have the equality ¢(w) = £(w’) + £(t). This completes the
proof of the existence of the decomposition.

To prove that this decomposition is unique it is enough to show that there is
at most one element of W® in each left We-coset. Assume that w,w’ € W® and
w = w't with t € Wg. Then

O cw () =t N (Z).

The set Eg = Yo NXT is the set of positive roots in Yo determined by ©. Then

ng ctlw' TN (s,
and

HEg) cw' (T,
Analogously,

sE cw T ET).

Since Wg is isomorphic to the Weyl group of Xg, if ¢ # 1, there would exist a root

B € £ such that —3 € t(3§). This would imply that 8, — € w' ~(ST), which is
impossible. Therefore, t =1 and w = w'. |

Let we be the longest element in Wg. This element is characterized by the
following property.

1.3. LEMMA. The element wg is the unique element in W with the following
properties:
(i) we(©) = —6;

(ii) we permutes positive roots outside S&.

ProoF. To prove that we satisfies (i) it is enough to remark that weg maps
positive roots in X into negative roots.

Let 3 € ©. Then the reflection sz permutes elements in X7 — {8} and also
roots in Xg. This implies that it also permutes positive roots outside Zg. By
induction in length we conclude that any element of Wg permutes positive roots
outside . This shows that we satisfies (i).

On the other hand, if w satisfies the conditions (i) and (ii),

w(ET) = (=) U (ET - 55),

and, since W acts simply transitively on all sets of positive roots in 3, there is only
one element of W with this property. ([l

1.4. THEOREM. (i) Each left Wg-coset in W has a unique shortest ele-
ment. It lies in W®.
(ii) If w is the shortest element in a left Wo-coset C, wweg is the unique
longest element in this coset.
(iii) Fach right Wg-coset in W has a unique shortest element.
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(iv) If w is the shortest element in a right We-coset C, wow is the unique
longest element in this coset.

PrOOF. The statements (i) and (ii) follow immediately from 2. Since the
antiautomorphism w — w™' of W preserves Wg, we and the length function
¢ : W — Z,, and maps left Wo-cosets into right We-cosets, (i) and (ii) imply
also (iii) and (iv). O

Therefore, the set W® is a section of the left We-cosets in W consisting of the
shortest elements of each coset. Hence, the shortest elements of right Wg-cosets in
W are the elements of the set

fweW|w''eW={weW|OcwXEh
This implies the following result.
1.5. LEMMA. The set
OW={weW|O6c-wx)}

is the section of the set of right Wg-cosets in W consisting of the longest elements
of each coset.

PROOF. Let w be the shortest element of a right Wg-coset. Then, by the
preceding discussion, © C w(X). Therefore,

-0 = we(0) C wew(LT),
and the longest element of this right coset wew is in ®W.
On the other hand, if w € W, © C —w(X+) and
-0 = we(0) C —wew(LT),
what implies that wew is the shortest element in its right Wg-coset. Therefore, w
is the longest element in this coset. (I

For a right We-coset C in W we denote by w® the corresponding element in
OT/. We define an order relation on the set Wo\W of all all right We-cosets by
transfering the order relation on ®W induced by the Bruhat order on W.

1.6. PROPOSITION. Let C' be a right Wg-coset in W and o € II. Then we have
the following three possibilities:

(i) Csq =C;
(ii) Cso > C, and in this case w = wCs, and L(wsy) = L(w) + 1 for any
w e C;
(iii) Cso < C, and in this case wC*> = w%s, and l(wsy) = £(w) — 1 for any
weC.

PrOOF. Assume that Cs, # C. Let w be the shortest element in C. Then
there are two possibilities, either f(ws,) = ¢(w) + 1 or f(ws,) = £(w) — 1.

Assume first that f(ws,) = ¢(w) + 1. Let t € Wg. Suppose that £(tws,) =
L(tw) — 1. Since (wsy) = ¢(w) + 1, by the exchange condition we conclude that
there exists ' € Wg such that ws, = t'w. This implies that C's, = C, contrary
to our assumption. Therefore, £(tws,) = £(tw) + 1. This implies that ws, is the
longest element in C's, and (ii) holds.

Assume now that £(wsy) = £(w) — 1. Let t € Wg. Then

L(twsy) < () + L(wsy) = L(t) + 0(w) — 1 = L(tw) — 1,
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which implies £(tws,) = £(tw) — 1. Therefore, w®s,, is the longest element in C's,,
and (iii) holds. O

Let C be a right We-coset and w its shortest element. Then w® = wew and
l(w®) = (w) + £(we). This implies that we < wew = w® in the Bruhat order,
i. e. Wg < C in the ordering on We\W. Hence, Wg is the smallest element in
Weo\W. Later we shall need the following characterization of this element.

1.7. LEMMA. Let C € Wo\W. Assume that for any « € II we have either
Csqa=C orCsy, >C. Then C = Wg.

PrROOF. Let w be the shortest element in C'. Our assumption implies that
Uwsy) = L(w)+1 for any o € TI. But this is possible only if w = 1 and C = Wg. O

Finally, we remark the following fact.
1.8. LEMMA. If w € ®W and t € We, we have
L(tw) = L(w) — £(t).
PROOF. Let w € W and t € Wg. Then wew is the shortest element in the
right We-coset of w. Moreover, by 2,
L(tw) = L((twe) (wew)) = {(twe) + {(wew) = L(we) — L(t) +L(wew) = £(w) —L£(t).
O

Let B be a Borel subgroup of G and Pg the standard parabolic subgroup of G
of type © containing B. Then the Pg-orbits in X are B-invariant, and therefore
unions of Bruhat cells in X. More precisely, we have the following result.

1.9. LEMMA. Let O be a Pg-orbit in X and C(w) C O. Then

o= |J C(tw).

teWe

Proor. This follows from ([5], Ch. IV, §2, no. 5, Prop. 2). O

Therefore, we have a bijection between Wg\W and the set of Pg-orbits in X.
Let C be a right Wg-coset in W and O the corresponding Pg-orbit. Then

dim O = max dim C(tw®) = max £(tw®) = £(w),
teWe teWeo

by 8. Therefore, C(w®) is the open Bruhat cell in O. This implies the following
result.

1.10. PROPOSITION. The map attaching to Pg-orbit O in the flag variety X the
unique Bruhat cell C(w) open in O is a bijection between the set of all Pg-orbits
in X and the set of Bruhat cells C(w) with w € ®W.

Finally we want to give a geometric interpretation of the order relation on
Wo\W.

1.11. PROPOSITION. Let C € Wo\W. Let O be the Pg-orbit in X corresponding
to C. Then the closure of O consists of all Pg-orbits in X corresponding to D < C.
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PROOF. The Bruhat cell C(w?) is open in O. Since O is irreducible, C(w®) is
dense in O and O = C(w®). Therefore, O = U,<,,cC(v). On the other hand, O is
a union of Pg-orbits. Let D correspond to a Pg-orbit in O. Then C(w?”) is in O
and w” < w% ie. D < C. If D < C, we have w” < w® and C(wP) ¢ C(w®) = O.
If O’ is the orbit corresponding to D we get

O c O =CwP)cCw’) =0.

2. Generalized Verma Modules

Let bg be a fixed Borel subalgebra of g and denote by By the corresponding
Borel subgroup of the simply connected covering group G of Int(g). To each subset
O of II we associate a standard parabolic subalgebra pg containing by and denote
by Peo the corresponding parabolic subgroup of G. Let qo = [po,po] and Qo the
commutant of Pg.

2.1. LEMMA. (i) The unipotent radical No of Pe is the unipotent radical
of Qe-
(ii) Let Lo be a Levi factor of Po. Then the commutator subgroup Se of Lo
is a Levi factor of Qo .
(iii) The Pg-orbits in X are also Qg-orbits.
(iv) The stabilizer in Po of x € X is connected.
(v) The stabilizer in Qo of x € X is connected.

PrROOF. Let ¢ be a Cartan subalgebra of g contained in by and R the root
system in ¢*. We identify © with a subset of the set of simple roots in R which
corresponds to IT under the specialization defined by by. Then pg is spanned by
¢, and the root subspaces g, corresponding to positive roots in R and rots of the
form —f where (8 is a sum of roots in ©. This implies that the Lie algebra ng of
Np is spanned by the root subspaces g, corresponding to positive roots which are
not sums of roots in ©. Also, the Lie algebra lg of a Levi factor Lg is spanned by
¢ and the root subspaces g, which are sums of roots in © or their negatives. Put
se = [le, lo]. Then, since [¢,ng] = ng we have

go = [pe,pe] = [lo, lo] + [lo, ne] + [ne, ne] = se + ne.

By the conjugacy of Levi decompositions these results are independent of the choice
of ¢. Since Pg is connected, the decompositions for groups follow immediately from
the results for their Lie algebras. This completes the proof of (i) and (ii).

(iii) We see that Qg and By generate Pg. Let O be a Pg-orbit in X and z € O.
Then B, N By contain a common Cartan subgroup C of G, and Ny and C' generate
By. This implies that Qg and C generate Pg, and the Qg-orbit of = agrees with
0.

The stabilizer Pg N B, is the semidirect product of the Cartan subgroup C
with the unipotent radical Pg N N, of the stabilizer. Analogously, the stabilizer
Qo N B, is the semidirect product of a Cartan subgroup in Sg with the unipotent
radical Qo NN, of the stabilizer. This immediately implies the statements (iv) and
(v). O

Clearly, (g, Qo) is a Harish-Chandra pair for any © C II. We want to analyze
the categories M on(Dy, Qo). First we consider standard Harish-Chandra sheaves.
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Let A € b*. Fix a Pg-orbit O in X. Let ig : O — X be the natural immersion
of O into X. The homogeneous twisted sheaf of differential operators Dy on X
defines a Po-homogeneous twisted sheaf of differential operators (D) on O. Then
the stabilizer of x in Qg is connected by 1.(v). Therefore, there exists at most one
irreducible Qe-homogeneous (D) -connection on O.

Put

P(Xo)={Aebh"|a(N) € Z for a € O}.

2.2. LEMMA. Let A € h*. Let O be a Pgo-orbit and w € ®W such that the
Bruhat cell C(w) is open in O. Then the following conditions are equivalent:
(i) wh € P(Zo); 4
(i) there exist an irreducible Qg-homogeneous (Dy)"© -connection on O.

If such connection exists, it is unique.

PrOOF. Let € C(w). Then b, is a Borel subalgebra in g in relative position
w with respect to bg. Let ¢ be a Cartan subalgebra contained in b, N by. Then,
with respect to specialization s defined by bg, n, is spanned by root subspaces g,
corresponding to o € w(XT). By 1.(v), the stabilizer of  in Qg is the connected
subgroup with the Lie algebra qo Nb,. Therefore, with respect to our specialization,
the Lie algebra of the stabilizer is spanned by qg N¢ and g, with a € 2t Nw(ZT)
and a € Yo Nw(XT). Since w € W, we see that the second set is equal to —X.
Therefore, the stabilizer of = is the semidirect product of a Borel subgroup of Sg
opposite to By N Seg with the normal subgroup Ny N N,. This implies that the
differential of the representation of the stabilizer which determines an irreducible
Qe-homogeneous (D)) -connection on O must be given by the restriction of the
specialization of an element in P(Xg). The specialization s’ defined by b, is equal
to s o w. Hence, the linear form which determines the connection is s'(A + p) =
s(wA + wp) and this implies that wA must be in P(Zg). O

This implies that for any A € h* there exists at most one standard Harish-
Chandra sheaf in M., (D, Qo) attached to the orbit O. We denote it by Z(O, \),
and its unique irreducible Harish-Chandra subsheaf we denote by £(O, ). First,
we observe that the irreducible Harish-Chandra sheaves £(O, \) are actually iso-
morphic to the irreducible modules we encountered before. More precisely, we have
the following result.

2.3. PROPOSITION. Let O be a Pgo-orbit in X and C(w) the Bruhat cell open
in O. Let wh € P(Xo). Then L(O,\) = L(w, \).

PROOF. Let j : C(w) — O be the natural immersion. Denote by 7 the unique
irreducible Qe-homogeneous (D, )?°-connection on O. Then its restriction to C(w)
is an irreducible Np-connection and therefore isomorphic to Og(,). This implies
that 7 C Roj+(OC(w)). Hence,

Z(0,A) = R%io4 (1) C R%io+(R%j1+(Oc(w))) = Rliwt (Ocqw)) = Z(w, N).
Therefore, £(O,\) C Z(w,\). Since £(O, ) is irreducible, it must be equal to
L(w, N). O

It remains to analyze Z(O, ). We use the method from V.2.
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2.4. LEMMA. Let O be a Pg-orbit in X and C(w) the Bruhat cell open in O.
Then RPi (Z(O,\)) =0 for allv € W such that C(v) € O and p € Z. If C(v) C O,
RPi\ (Z(O, ) = 0 if p # L(w) — £(v), and

Rf(w)*z(”)iL(I(O, A)) = OC(U)'

PrROOF. We use the notation from the preceding proof. Since O is affinely
imbedded in X and Zp = R% o (7), the first assertion follows from the base change.

If we denote by j, the immersion of C'(v) into O, by the base change we conclude
that

RPi, (I(0,\)) = Ry (R%io1(7)) = R j, ()
for any p € Z. On the other hand,
RPjy (1) = LP O+ (),

what is nonzero only if p —dim O + £(v) =0, i.e. if p = dim O — ¢(v) = {(w) — £(v),
since T is a connection. Moreover, since 7 is locally isomorphic to Op, L%j (1) is an
Ng-homogeneous connection on C(V') locally isomorphic to O¢(y), i.e. LOjF(r) =
OC(u)- O

By 1.8, we have {(vw) = £(w) — £(v) for v € W, hence we get
V(Z(O0,N) = Y Y dimo(R™i,(Z(0,N) 40, = Y ¢ Vv
vEW meZ veEWe
As in the proof of V.2.10 this leads to the following result.

2.5. PROPOSITION. Let O be a Pg-orbit in X and C(w) the Bruhat cell open
in O. Then
X(Z(0,0) = Y (-1 x(Z(vw, \)).

veWe

In particular, if © = II, Pg = G acts transitively on X and the big cell
is the Bruhat cell attached to the G-orbit X. Therefore, we have the following
consequence.

2.6. COROLLARY.
X(OA+p)) = Y (=) ™ x(T(wwo, A)).

weWw

Now we want to describe the highest weight modules which correspond to
standard Harish-Chandra sheaves Z(O, A) under the equivalence of categories for
regular antidominant A. The first step is to construct some objects in the category
of highest weight modules. Let

Py+(Se) = {v € P(Ze) | a’(N) € 22 ).

For any v € P, (Xg), if we use the specialization defined by bg, there exists a
unique irreducible finite-dimensional lg-module V¥ with highest weight v. The
action of sg on this module is clearly the differential of a unique algebraic Seo-
module action. Therefore, if we extend the actions to pg and Qg by assuming that
they are trivial on ng and Ng respectively, we can view V¥ as (pg, Se)-module.
For p € h* such that u — p € Py (Xe), we define the generalized Verma module

Mo (1) = U(g) Qupe) V7,



120 6. GENERALIZED VERMA MODULES

here the g-action is given by left multiplication in the first factor and Qg action is
given as the tensor product of the adjoint action on the first factor and the natural
action on the second factor. Clearly, Mg (p) is in Mf4(U(g), Qo).

2.7. LEMMA. Let p € b* such that pn — p € P11 (Xe). The module Mo(p) is
the largest quotient of the Verma module M (u) which is po-finite.
In particular, Mo (p) is a highest weight module with infinitesimal character

Xp-

PROOF. The pg-module V#77 is a quotient of the peo-module U(pe) @y (p,)
Cu—p- Therefore, Mg() is a quotient of

U(Q) Qupo) UPe) Duvy) Cu—p) = U(8) Qu(oe) Cu—p = M ().
Let N be a quotient of M (u) which is pe-finite. Then it contains a vector v which
is the image of the generator 1®1 € M (u). This vector is a weight vector of weight
1 — p and it spans the one-dimensional weight subspace in N. Let N’ be the finite-
dimensional [g-submodule generated by v. Then N’ is a direct sum of irreducible
lo-submodules, and only one of these submodules can contain the weight subspace
corresponding to the weight p — p. This implies that N’ is actually irreducible and
isomorphic to V#~*. Therefore, the projection of M(u) onto N factors through
Me(p). .

This implies that Mg (p) is in Mf4(Uy, Qo) for 6 = W - pu.

We know that x (M (N)), A € 0, is a basis of the Grothendieck group K (M (Up, Ny)).
Therefore, we should be able to express x(Mg(u)) in terms of x(M(A)), A € 6.
By Poincaré-Birkhoff-Witt theorem, the enveloping algebra U(g) is a free right
U(po)-module for right multiplication. This implies that the induction functor
V' — U(g) @u(pe) V from the category of U(pe)-modules into the category U(g)-
modules is exact. If we consider the category of highest weight modules for sg
with respect to its Borel subalgebra by N sg, we can define the natural functor to
the category of U(pe)-modules by extending the action to the center of [g by a
linear form and trivially to ng. The composition of this functor with the induction
functor defines an exact functor from the category of highest weight modules for sg
into the category of highest weight modules for g. Therefore, it defines a morphism
of the corresponding Grothendieck groups.

Next we need the following simple observation.

2.8. LEMMA. Let v € P(X) be a dominant weight and FY the irreducible finite-
dimensional g-module with highest weight v. Then, in the Grothendieck category of
highest weight modules for g we have

ch(F) = 57 (=1)X) ch(M (w(v + p))).
weWw
PrOOF. The lowest weight of F” is wor. By 6. we have
X(O(wor)) = Y (=) x(Z(wwo, wor — p)).
weWw
By the equivalence of categories and V.1.14 this implies that

ch(F") = Z (—=1)) ch(I (wv — wwop)) = Z (=) ch(M (w(v + p))).
weW weW
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2.9. PROPOSITION. Let pu € h* such that p— p € Py (3e). Then

ch(Mo(n)) = Y (=1 ch(M(vp)).

veEWeo

PROOF. The length function of (Wg, Se) is the restriction of the length func-
tion ¢ of (W,S) to Wg. Therefore, the statement follows from 6. applied to the
representation V#~* of lg and the preceding observation about the morphism of
Grothendieck groups defined by the induction functor. O

Put Jo (1) = Me(p)"-

2.10. THEOREM. Let A € b* be antidominant. Let O be a Pg-orbit in X and
w € W be such that C(w) is open in O. Assume that w\ € P(Xg), so that Z(O, \)
exists. Then:
(i) a’(wA) € Zy for a € ©;
(i) if o (wA) =0 for some a € O, we have T'(X,Z(0,\)) = 0;
(iii) if & (wA) #0 for a € ©, w\ — p € P14 (Zo) and we have

(X, Z(0,)N) = Io(w).
All modules Ig(u), with p € WX and u—p € Py (Xo), are obtained in this way.

PROOF. Since w € W, (i) holds. Since the functor I' is exact for antidominant
A, we have by 5. and V.1.14,

AT(X,TO,N) = 3 (~) O (T, Tow, ) = 3 (~1) ch(T(ww)).
veWeg veWeg
Hence, if a”(wA) = 0 for some a € O, s,(wA) = wA and ch(I'(X,Z(Q, \))) = 0.
This clearly implies (ii).

If the assumption in (ii) doesn’t hold, a”(wA — p) = o’ (wA) — 1 € Z4, hence
wA\ — p € Py (Ze). The restriction of the irreducible Qg-homogeneous (D, )%©-
connection 7 to C(w) is equal to O¢(y), so we can identify Z(O, A) with a submodule
of Z(w, ). Since T is exact for antidominant A, this implies that T'(X,Z(O, \))
is a Up-submodule of I'(X,Z(w, A)). By V.1.14, it follows that I'(X,Z(O, X)) is
a po-finite submodule of I(wA). By dualizing the statement of 7, we see that
I'(X,Z(0, \)) is a submodule of Ig(wA). Finally, by the preceding calculation and
9, we conclude that

ch(I'(X,Z(0, A))) = ch(Ie(w))),
and therefore I'(X, Z(0, \)) = Ig(w).
Let w € W- A pu—p € Pyy(Xo). This implies that o”(u) € N for a € O.

Let w € W be such that —3"(u) € Z, for all € w(X;). Then A = w1y is
antidominant, and © C —w(X1), i. e, w € ®W. O

Now we want to discuss the irreducibility of standard Harish-Chandra sheaves
Z(0, \). First we need a result about the action of the intertwining functors.

2.11. LEMMA. Let O be a Pg-orbit in X and C(w), w € ®W, the Bruhat cell
open in O. Let a € 11 be such that ws, € W, l(ws,) = £(w) + 1, and O’ the
corresponding Pg-orbit. Let w\ € P(Xg). Then

I, (Z(O,\)) = Z(O', 54 \) and L™ I, (Z(O,\)) = 0.
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PRrROOF. First we remark that (ws,)saA = wA € P(Zg), hence the standard
module Z(0', s, A\) exists by 2.

Let p,, be the projection of X onto the generalized flag variety X, of parabolic
subalgebras of type a. Let @ be a Pg-orbit in X corresponding to C' € Wg\W.
Then p,(Q) is a Po-orbit in X, corresponding to the double coset We\W /Wy in
W. Therefore, p ! (pa(Q)) consists of either:

(a) one Pg-orbit if C's, = C;
(b) two Pg-orbits if C's, # C.
By our assumption, p,!(po(0)) = O U O’ and dim O’ = dim O + 1. Hence,

dim p,(0) = dimp, *(pa(0)) — 1 = dim O.

Let ' € O. Let P, (/) be the stabilizer of p,(z'). Then the stabilizers Po N B},
and Pg N P, ;) have the same dimension, and since they are both connected, they
must be equal. This implies that p;*(pa(z)) N O consists only of 2’. Therefore,

Pa’ (Pa(2))) = {2} U (07 (pa(a’) N O),
and PoNP,_ ;) acts transitively on p; ! (pa(2’))NO’. Therefore, we finally conclude
that Po N B, acts transitively on p;!(pa(z)) N O, i.e. on the set of all Borel
subalgebras in the relative position s, with respect to b, .
Now we use the notation from L.3. Let Z;, C X x X be the variety of ordered
pairs of Borel subalgebras in relative position s,. Since

Py 1(0) = {(z,2") € XxX | 2’ € O, b, in relative position s, with respect to b, },

by the preceding remark we see that p; ' (O) is a Pg-orbit of dimension dim O + 1.
This implies that pi(p;'(O)) is also a Pg-orbit, hence pi(p;'(0)) = O'. The
stabilizer Pg N B, of the point € O’ in Pg contains the stabilizer Po N B, N B/
of (z,2') € p;*(O). Since the dimensions of orbits are the same and the stabilizers
connected, we conclude that p; induces an isomorphism of p;*(0) onto O'.

By L.3.2 and 2.3, we see that p,*(O) is affinely imbedded. Therefore, if we
denote by j the affine immersion of p; 1(0) into Z,_ and by gy the morphism of
Py 1(0) into O induced by pa, we get

p3 (Z(0,N) = p3 (R%io+ (7)) = R%js(q" (7))
by base change. This implies that
LI, (D(Z(O,N)) = Bp1+(Ts, ®o,,, D(R°j(¢7(1)))) = R(p1 0 j)+(7),

where 7’ is an irreducible Qg-equivariant connection on p; ! (O). The image of p;0j
is equal to O’, and the map is an immersion. Therefore, LI, (D(Z(O, \))) is equal
to D(V), where V is a standard D;_x-module attached to O'. By 2, this standard
module is Z(O', sa\). O

Let w € ®W. Then ¥ C —w(X*) and therefore —w=}(Xg) C S, If wA €
P(Xe), we have Yo C X,» and w™(Xe) C L. This implies that
SENEy D —w ().

2.12. THEOREM. Let O be a Pg-orbit in X and C(w) the Bruhat cell open in
O. Let wh € P(Xg). Then the following conditions are equivalent:

(i) the standard module (O, \) is irreducible;
(i) ZE NSy = —w 1(Z).
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PROOF. We prove this by induction in ¢(w). If {(w) is minimal, w = wy and
O is the closed Pg-orbit in X. In this case Z(O, ) is allways irreducible. On the
other hand, wo\ € P(Xg) is equivalent to A € P(¥g) and

TP NSy =S5NnE =58 = —wy ' (Z).

Assume now that the statement holds for ¢(w) < k. Let £(w) = k. Then, by
1.7, we can find o € IT such that w’ = ws, € ®W and £(w') = k — 1. Let O’ be the
Pg-orbit corresponding to w’. Since w's,A = wA € P(Xy), the standard module
Z(0', sq ) exists. Now, 11 implies that

I, (Z(0',500)) = Z(O, N),

and L™, (Z(O',5,\)) = 0.
Assume that (i) holds. Since ¥, = s,(Z,) U {a}, we see that

S5 NS0 = 56((SF = {a}) Ny) € —saw™ (8) = —w' ™~ (TE).

By the discussion preceding the theorem, this implies that the above inclusion is
an equality. Therefore, Z(0’, s, A) is irreducible by the induction assumption, and
a ¢ Y. This implies that I, : Mge(Ds,x) —> Mye(Da) is an equivalence of
categories and therefore Z(O, \) is also irreducible.

Assume that Z(O, A) is irreducible. If a(\) is not an integer, I5, : Mgc(Ds,n) —
Me(Dy) is an equivalence of categories and Z(0’, soA) must also be irreducible.
By the induction assumption, we have ¥}, N 2, ) = —w'il(Eg). Therefore,

SENTN = 54(55) N TN = 50 (35 N 0) = —saw’ () = —w ' (o).

w’

If a”(\) is an integer, by L.7.3 and 11 we have the exact sequence
0— U’ —1Z(0,\) — Z(O',\) — U' — 0,

where the middle arrow is nontrivial. Since the support of Z(O, A) is larger than
the support of Z(O’, \), we have a contradiction with the assumption that Z(O, \)
is irreducible. ([

This result has the following consequence.

2.13. THEOREM. Let A € P4 (Xo) be regular. Then the following conditions
are equivalent:
(i) Mo (A) is irreducible;
(i) ¥5 ={a e Tt |a’(\) € N}.

PRrOOF. Clearly, instead of Mg(\) we can consider Ig()\). Let w € ®W be
such that w™!\ is antidominant (such w exists by the proof of 10). Let O be the
Po-orbit attached to the left Wg-coset of w. Then I'(X, Z(O,w=*))) = Ie()\), and
by the equivalence of categories and 12, this module is irreducible if and only if
TS NE,-1y = —w 1(ZF). This is equivalent with

ThonE, =38,
Let B € X! . NX,. Then #°(A) € Z and —3 € w(XT), hence —w™'3 € £ and

~ ) = ~(w B (w '\ € -N.
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Therefore, 37(\) € N. If 87(\) € N for some 3 € ¥T, then —w™ 13 (w=t\) € —N,
and since w1\ is antidominant, —w~! € XF. This implies that 8 € —w(X*) and
finally 8 € Ez_l N Xy. Therefore,

stonsy={Bext|B () eNL

3. Kazhdan-Lusztig Algorithm for Generalized Verma Modules
Let © C II. In this section we assume that A = —p and denote
Zo =Z(0,—p) and Lo = L(O, —p).

Consider the Z[g, ¢~ !]-modules H introduced in V.2. For each right Wg-coset
C in W we denote by w® the longest element in this coset and by d¢ the element

of H given by
50 = Z qav)évwc'
weWeg

Let He be the Z[q, ¢~ 1]-submodule of H spanned by dc, C € We\W.

Let C € Wo\W and « € II. Then, by 1.6, we have the following three possi-
bilities: C's, = C; Cs, > C and Cs, < C. We want now to calculate the action of
T, on éc in these cases.

3.1. LEMMA. Let C € Wo\W and o € II. Then:
(i) if Csq = C, we have
To(bc) = (¢+q") dc;
(ii) Csq > C, we have
To(bc) = qdc + dcs.;
(iii) Csq < C, we have
T.(6c) =g éc + dcs, -

PRrROOF. Consider first the case (i). In this case the left multiplication by s,
permutes the elements of C'. Let

Cy ={w e C | l(wsy) =L(w) + 1}
and

C_ ={we | lwsy) =L(w)—1}.
Then Ci sy, = C_ and C_s, = C4. Therefore, if we denote by w the longest
element in C, we have

T.(0c) = > ¢"Ta(buue) = D ¢ Taloue) + D, ¢"Ta(0uue)

vEWg vw®eCy vwCeC_
ya —_
= Z qﬂ(v) (q 5vwc + (;vwcsp,) + Z q @) (q ! 5vwc + (;vwcs(, )
vwCeC vwCeC_
As we remarked before, if vw® € Cy, vw%s, € C_, and therefore vw®s, = v'w®

with
((v') = 0(w®) — L' w) = (w®) — L(vwCsy) = L(w®) — L(vw®) — 1 = {(v) — 1.
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Analogously, if vw® € C_, vw%s, € Cy and vw%s, = v'w® with

L") =L(v) + 1.

Therefore,
Z qZ(v)+1 Sowe + Z qE(v )+16U/wc + Z qf(v)*l(svwc
vwCeC v'wCeC_ vwCelC_
+ Z qZ(v )7151)’1110 = Z (q + qfl)qé(v) 51)1110 = (q + qil) JC-
v'wCeCy vEWeo
In case (ii), by 1.6, we have w®s, = w®*=. Therefore,

Z q U)T vwc Z q qévwc + 5vwc ) = qéC + 5Cs&~
veEWo veEWeg

Csa

In case (iii), by 1.6, we have w®s, = w“*~. Therefore,

C) = Z qE(U)Ta(éva) = Z qE(U)(q_l 6vwc + 5vwcsa) = q_l (SC + 6Csa-
veWeo veEWeo

O

3.2. COROLLARY. He is invariant under T, o € I1.

3.3. LEMMA. Let C € Wo\W. Then p(w®) € He and

<p(wc) =dc + Z P,c wodp.
D<C

PROOF. Let O be the Pg-orbit corresponding to w®. Then, by 2.3, we know
that L£,c = Lo. Let O’ be a Pg-orbit in O. Denote by io: the natural inclusion
of O into X. Then RPil,,(Lo) is a Po-equivariant connection on O, i.e. a sum of
copies of Op/. Assume that D € We\W corresponds to O’. Then

Moreover, for any v € Wg, C(vw®) is a smooth subvariety of O of codimension

{(v). Therefore, if we denote by j the immersion of C(vw?) into O, we see that
RPj'(0p) = 0 for p # £(v), and R“™) ' (0p) = Oc(vwry- This implies that, for any
pei,

RPi},0(Lo) = ROV R, (Lo)).
Therefore,
dime RPi!,»(Lo) = dime RPig, (Lo)
and

dime RPiL,»(Lo) = dime RP~*MiL, (Lo) = dime RP~ ™3 1 (Lo),
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for any p € Z and v € Wg. This implies that

p(w®) = (L) = v(Lo) = 3 3 dimo(R™E,(L0)) 4™ b,

weW meZ

= Z Z Z dime (R™™ o wp (L£0)) ¢™ Sywp

vEWe DEWg\W m€EZ

Z Z Zdlmo R ZwD ﬁo)) pHe(v) (5,UwD

vEWe DEW\W pEZ

= > > dimpRPiln(Lo)d"ép = Y, Pucynip.

DeWe\W pEZ DeWe\W

In the following, we put

for C € We\W.

Finally, we remark the following fact.

3.4. LEMMA. Let C € W@\W and « € II such that Cs, < C. Then
Csa Z CDQD
D<C

for some ¢, € 7.

PROOF. By 2. and 3. we know that T,,(p(Cs,)) € He, i.e.
Ta(@(csa)) = Z QDéD = Z Z Qqu(U)(sva
DeWe\W vEWe DeWe \W
with Qp € Z[q ¢~ ']. On the other hand,by 1.6 we know that w®*> = w®s, and
l(wsq) = £(w®) — 1, hence, by V.2.1, we have
Ta(p(Csa)) = Talp(wsa)) = Y cop(v).
v<w®
This implies that Qp are in Z[g]. By evaluating these expressions at 0 we get
Z @p(0)d,0 = Ta(p(Csa))(0) = Z CyOy.
DeWe\W v<w?
This shows that ¢, # 0 implies that v = w? for some D € Wg\W. Therefore,
¢(v) = p(D) and wP <w% ie. D <C. O
This leads to the following result generalization of V.2.1.

3.5. THEOREM. There exists a unique function ¢ : Wo\W — Hg, such that
the following properties are satisfied:

(i) for C € Wo\W we have

(p(C) =d0c + Z Pepdp.
D<C

where Pop € qZ[q);



3. KAZHDAN-LUSZTIG ALGORITHM FOR GENERALIZED VERMA MODULES 127

(ii) for a € I and C € We\W such that Cs, # C and {(w®s,) = {(w®) — 1,
there exist cp € Z, which depend on o and C, such that

Csoc Z CDSD

D<C

The polynomials Pop are given by the Kazhdan-Lusztig polynomials for
(W, 5) by

Pep = ch wD
for C,D e Wo\W, D <C.

PROOF. We already established the existence. It remains to prove the unique-
ness. This part of the argument is analogous to the proof of uniqueness in V.2.1.
First we can assume that © # II, since in the case © = II we have Wg = W and
the proof is trivial.

The proof is by induction in ¢(w®). The function C — ¢(w®) attains its
minimal value on we and in this case C = Wg. Clearly, (i) implies that o(Wg) =
dwe and (ii) is void in this case.

Take C € Wg\W such that £(w®) > £(we). By the induction assumption, ¢
is uniquely determined on D € Wg\W with £(w”) < ¢(w®). Then, by 1.7, we can
find a simple root a such that Cs,, < C. By 1.6, we have then ¢(ws,) = ¢(w®)—1.

By (ii) we know that
Csoc Z CDSO

D<C

and, by evaluating at ¢ = 0 and using (i),

( C’sa Z CD5D-

D<C

By the induction assumption, the left side is uniquely determined. This implies
that c¢p are uniquely determined. On the other hand, if we put C’ = C's,, we have

To(p(Csa)) = Ta(6cr + Y Porndn)

D<cC
=Tu(0c))+ Y PorpTa(0p) = gdcr +0c + Y PerpTa(dp).
D<cC’ D<C’

By the construction, £(w”) < £(wC") = £(w®) — 1. Hence, terms in the expansion
of T, (8p) can involve only 6pr with £(wP") < £(w®)—1. In particular, they cannot
involve d¢c. This implies that cc = 1. But this yields to

0(C) =Ty (p(Csq)) Z epp(D
D<C
which proves the uniqueness of ¢(C). O

3.6. THEOREM. Let Pop, C,D € Wg\W, be the polynomials of from 5. For
C € Wo /W, denote by O¢ the corresponding Pg-orbit. Then

X(Loc) = x(Zoc) + Y Pon(—=D)x(Zoy)-
D<C
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PROOF. Since Zp,, contains Lo, as the unique irreducible submodule, and all
other composition factors are Lo, for D < C, we see that x(Zo,), C € Wo\W,
form a basis of K(M.on(Dx, Po)). Hence

X(Loe) = Y Aepx(Zoy)
D<LC
with Acp € Z. Since v(—1) factors through K (M on(Dx, No)) and by 2.6, v(Zp)(—1) =
0p(—1) for D € Wo\W, what leads to
v(Loo)(=1) = > Acpv(Zo,)(=1) = Y Acpdp(—1).
D<C D<C
Hence, from definition of Pop it follows that Acc =1 and Pop(—1) = A¢p. O

This gives an effective algorithm to calculate the multiplicities of irreducible
modules in generalized Verma modules for infinitesimal character x,. We can order
the elements of Weo\W by an order relation compatible with the Bruhat order.
Then the matrix (Acp;C, D € Wg\W) is lower triangular with 1 on the diagonal.
If (uep; C, D € Wo\W) are the coefficients of its inverse matrix, we see from 6. that

X(Toc)= Y > weprpe x(Zoy)

EE€EWo\W DEWo\W

= Z [ 1%e2s) Z Ape x(og)

DeWe\W EeWe\W
= Y pep x(Loy) =Y nep x(Loy)
DeEWe\W D<C

and pco =1 for any C € Wo\W. Hence, from 2.12, 2.5 and V.1.19, we finally get
the following result.

3.7. COROLLARY. The multiplicity of irreducible module L(—vp), v € ®W, in
the generalized Verma module Me(—wp), w € W, is equal to ucp where C, D €
Wo\W are the cosets of w and v respectively.
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