\[\sin x = \sum_{k=0}^{\infty} \frac{f^{(k)}(\pi/2)}{k!} (x - \frac{\pi}{2})^k \]

\[= 1 - \frac{(x - \pi/2)^2}{2!} + \frac{(x - \pi/2)^4}{4!} - \frac{(x - \pi/2)^6}{6!} + \ldots \]

\[= \sum_{n=0}^{\infty} (-1)^n \frac{(x - \pi/2)^{2n}}{(2n)!} \]

\[\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left[\frac{|x - \pi/2|^{2n+2}}{(2n+2)!} \cdot \frac{(2n)!}{|x - \pi/2|^{2n}} \right] \]

\[= \lim_{n \to \infty} \frac{|x - \pi/2|^2}{(2n+2)(2n+1)} = 0 < 1 \quad \text{for all } x, \text{ so } R = \infty. \]
20. If \(f(x) = \sin x \), then \(f^{(n+1)}(x) = \pm \sin x \) or \(\pm \cos x \). In each case, \(|f^{(n+1)}(x)| \leq 1 \), so by Formula 9 with \(a = 0 \) and \(M = 1 \), \(|R_n(x)| \leq \frac{1}{(n + 1)!} \left| x - \frac{\pi}{2} \right|^{n+1} \). Thus, \(|R_n(x)| \to 0 \) as \(n \to \infty \) by Equation 10. So \(\lim_{n \to \infty} R_n(x) = 0 \) and, by Theorem 8, the series in Exercise 16 represents \(\sin x \) for all \(x \).
44. \(e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \) \(\Rightarrow \) \(e^x - 1 = \sum_{n=1}^{\infty} \frac{x^n}{n!} \) \(\Rightarrow \) \(\frac{e^x - 1}{x} = \sum_{n=1}^{\infty} \frac{x^{n-1}}{n!} \) \(\Rightarrow \) \(\int \frac{e^x - 1}{x} \, dx = C + \sum_{n=1}^{\infty} \frac{x^n}{n \cdot n!} \),

with \(R = \infty \).
\[
\lim_{x \to 0} \frac{1 - \cos x}{1 + x - e^x} = \lim_{x \to 0} \frac{1 - \left(1 - \frac{1}{2!} x^2 + \frac{1}{4!} x^4 - \frac{1}{6!} x^6 + \ldots\right)}{1 + x - \left(1 + x + \frac{1}{2!} x^2 + \frac{1}{3!} x^3 + \frac{1}{4!} x^4 + \frac{1}{5!} x^5 + \frac{1}{6!} x^6 + \ldots\right)}
\]

\[
= \lim_{x \to 0} \frac{\frac{1}{2!} x^2 - \frac{1}{4!} x^4 + \frac{1}{6!} x^6 - \ldots}{\frac{1}{2!} x^2 - \frac{1}{3!} x^3 - \frac{1}{4!} x^4 - \frac{1}{5!} x^5 - \frac{1}{6!} x^6 - \ldots}
\]

\[
= \lim_{x \to 0} \frac{\frac{1}{2!} - \frac{1}{4!} x^2 + \frac{1}{6!} x^4 - \ldots}{\frac{1}{2!} - \frac{1}{3!} x - \frac{1}{4!} x^2 - \frac{1}{5!} x^3 - \frac{1}{6!} x^4 - \ldots} = \frac{\frac{1}{2} - 0}{-\frac{1}{2} - 0} = -1
\]

since power series are continuous functions.
(a) \(f(x) = \begin{cases} e^{-1/x^2} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} \)

so \(f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{e^{-1/x^2}}{x} = \lim_{x \to 0} \frac{1}{e^{1/x^2}} = \lim_{x \to 0} \frac{x}{2e^{1/x^2}} = 0 \)

(using l’Hospital’s Rule and simplifying in the penultimate step). Similarly, we can use the definition of the derivative and l’Hospital’s Rule to show that \(f''(0) = 0, f^{(3)}(0) = 0, \ldots, f^{(n)}(0) = 0 \), so that the Maclaurin series for \(f \) consists entirely of zero terms. But since \(f(x) \equiv 0 \) except for \(x = 0 \), we see that \(f \) cannot equal its Maclaurin series except at \(x = 0 \).
From the graph, it seems that the function is extremely flat at the origin. In fact, it could be said to be “infinitely flat” at $x = 0$, since all of its derivatives are 0 there.
24. \(\cos x = 1 - \frac{1}{2!} x^2 + \frac{1}{4!} x^4 - \frac{1}{6!} x^6 + \cdots \). By the Alternating Series Estimation Theorem, the error is less than \(\left| -\frac{1}{6!} x^6 \right| < 0.005 \) \(\iff \)

\[x^6 < 720(0.005) \iff |x| < (3.6)^{1/6} \approx 1.238. \] The curves

\(y = 1 - \frac{1}{2} x^2 + \frac{1}{24} x^4 \) and \(y = \cos x + 0.005 \) intersect at \(x \approx 1.244 \), so the graph confirms our estimate. Since both the cosine function and the given approximation are even functions, we need to check the estimate only for \(x > 0 \). Thus, the desired range of values for \(x \) is \(-1.238 < x < 1.238 \).
The linear approximation is

$$T_1(t) = \rho(20) + \rho'(20)(t - 20) = \rho_{20}[1 + \alpha(t - 20)]$$

The quadratic approximation is

$$T_2(t) = \rho(20) + \rho'(20)(t - 20) + \frac{\rho''(20)}{2} (t - 20)^2$$

$$= \rho_{20}[1 + \alpha(t - 20) + \frac{1}{2} \alpha^2(t - 20)^2]$$

From the graph, it seems that $T_1(t)$ is within 1% of $\rho(t)$, that is, $0.99\rho(t) \leq T_1(t) \leq 1.01\rho(t)$, for $-14^\circ C \leq t \leq 58^\circ C$.