6. \(f(x, y) = x^3y + 12x^2 - 8y \Rightarrow f_x = 3x^2y + 24x, \)
\[f_y = x^3 - 8, \quad f_{xx} = 6xy + 24, \quad f_{xy} = 3x^2, \quad f_{yy} = 0. \]

Then \(f_y = 0 \) implies \(x = 2 \), and substitution into \(f_x = 0 \) gives
\[12y + 48 = 0 \Rightarrow y = -4. \]
Thus, the only critical point is \((2, -4)\).

\[D(2, -4) = (-24)(0) - 12^2 = -144 < 0, \] so \((2, -4)\) is a saddle point.
12. \(f(x, y) = y \cos x \) \(\Rightarrow \) \(f_x = -y \sin x, f_y = \cos x, f_{xx} = -y \cos x, \)
\(f_{xy} = -\sin x, f_{yy} = 0. \) Then \(f_y = 0 \) if and only if \(x = \frac{\pi}{2} + n\pi \) for \(n \) an integer. But \(\sin \left(\frac{\pi}{2} + n\pi \right) \neq 0, \) so \(f_x = 0 \) \(\Rightarrow \) \(y = 0 \) and the critical points are \(\left(\frac{\pi}{2} + n\pi, 0 \right), \) \(n \) an integer.

\(D \left(\frac{\pi}{2} + n\pi, 0 \right) = (0)(0) - (\pm1)^2 = -1 < 0, \) so each critical point is a saddle point.
28. Since \(f \) is a polynomial it is continuous on \(D \), so an absolute maximum and minimum exist. \(f_x = y - 1, f_y = x - 2 \), and setting \(f_x = f_y = 0 \) gives \((2, 1)\) as the only critical point, where \(f(2, 1) = 1 \). Along \(L_1: x = 1 \) and \(f(1, y) = 2 - y \) for \(0 \leq y \leq 4 \), a decreasing function in \(y \), so the maximum value is \(f(1, 0) = 2 \) and the minimum value is \(f(1, 4) = -2 \). Along \(L_2: y = 0 \) and \(f(x, 0) = 3 - x \) for \(1 \leq x \leq 5 \), a decreasing function in \(x \), so the maximum value is \(f(1, 0) = 2 \) and the minimum value is \(f(5, 0) = -2 \). Along \(L_3: y = 5 - x \) and

\[
f(x, 5 - x) = -x^2 + 6x - 7 = -(x - 3)^2 + 2\]

for \(1 \leq x \leq 5 \), which has a maximum at \(x = 3 \) where \(f(3, 2) = 2 \) and a minimum at both \(x = 1 \) and \(x = 5 \), where \(f(1, 4) = f(5, 0) = -2 \). Thus the absolute maximum of \(f \) on \(D \) is \(f(1, 0) = f(3, 2) = 2 \) and the absolute minimum is \(f(1, 4) = f(5, 0) = -2 \).
36. Here the distance d from a point on the plane to the point $(1, 2, 3)$ is

$$d = \sqrt{(x - 1)^2 + (y - 2)^2 + (z - 3)^2},$$

where $z = 4 - x + y$. We can minimize $d^2 = f(x, y) = (x - 1)^2 + (y - 2)^2 + (1 - x + y)^2$, so

$$f_x(x, y) = 2(x - 1) + 2(1 - x + y)(-1) = 4x - 2y - 4 \quad \text{and} \quad f_y(x, y) = 2(y - 2) + 2(1 - x + y) = 4y - 2x - 2.$$

Solving $4x - 2y - 4 = 0$ and $4y - 2x - 2 = 0$ simultaneously gives $x = \frac{5}{3}$ and $y = \frac{4}{3}$, so the only critical point is $(\frac{5}{3}, \frac{4}{3}, \frac{11}{3})$.

This point must correspond to the minimum distance, so the point on the plane closest to $(1, 2, 3)$ is $(\frac{5}{3}, \frac{4}{3}, \frac{11}{3})$.
4. \(f(x, y) = 4x + 6y, \ g(x, y) = x^2 + y^2 = 13 \Rightarrow \nabla f = (4, 6), \lambda \nabla g = (2\lambda x, 2\lambda y). \) Then \(2\lambda x = 4 \) and \(2\lambda y = 6 \) imply \(x = \frac{2}{\lambda} \) and \(y = \frac{3}{\lambda} \). But \(13 = x^2 + y^2 = \left(\frac{2}{\lambda} \right)^2 + \left(\frac{3}{\lambda} \right)^2 \Rightarrow 13 = \frac{13}{\lambda^2} \Rightarrow \lambda = \pm 1, \) so \(f \) has possible extreme values at the points \((2, 3),(2, 3)\) and \((-2, -3),(-2, -3)\). We compute \(f(2, 3) = 26 \) and \(f(-2, -3) = -26 \), so the maximum value of \(f \) on \(x^2 + y^2 = 13 \) is \(f(2, 3) = 26 \) and the minimum value is \(f(-2, -3) = -26 \).
20. (a) \(f(x, y) = 2x + 3y \), \(g(x, y) = \sqrt{x} + \sqrt{y} = 5 \) \(\Rightarrow \) \(\nabla f = (2, 3) = \lambda \nabla g = \lambda \left(\frac{1}{2 \sqrt{x}}, \frac{1}{2 \sqrt{y}} \right) \). Then

\[
2 = \frac{\lambda}{2 \sqrt{x}} \quad \text{and} \quad 3 = \frac{\lambda}{2 \sqrt{y}} \quad \text{so} \quad 4\sqrt{x} = \lambda = 6\sqrt{y} \quad \Rightarrow \quad \sqrt{y} = \frac{2}{3} \sqrt{x}.
\]

With \(\sqrt{x} + \sqrt{y} = 5 \) we have \(\sqrt{x} + \frac{2}{3} \sqrt{x} = 5 \) \(\Rightarrow \)

\(\sqrt{x} = 3 \) \(\Rightarrow \) \(x = 9 \). Substituting into \(\sqrt{y} = \frac{2}{3} \sqrt{x} \) gives \(\sqrt{y} = 2 \) or \(y = 4 \). Thus the only possible extreme value subject to the constraint is \(f(9, 4) = 30 \). (The question remains whether this is indeed the maximum of \(f \).)

(b) \(f(25, 0) = 50 \) which is larger than the result of part (a).

(c) We can see from the level curves of \(f \) that the maximum occurs at the left endpoint \((0, 25) \) of the constraint curve \(g \).

The maximum value is \(f(0, 25) = 75 \).

(d) Here \(\nabla g \) does not exist if \(x = 0 \) or \(y = 0 \), so the method will not locate any associated points. Also, the method of Lagrange multipliers identifies points where the level curves of \(f \) share a common tangent line with the constraint curve \(g \).

This normally does not occur at an endpoint, although an absolute maximum or minimum may occur there.

(e) Here \(f(9, 4) \) is the absolute \emph{minimum} of \(f \) subject to \(g \).

We can find \(\lambda \) and \((x, y) \) by solving the system of equations:

\[
\begin{align*}
2 &= \frac{\lambda}{2 \sqrt{x}} \\
3 &= \frac{\lambda}{2 \sqrt{y}} \\
\sqrt{x} + \sqrt{y} &= 5
\end{align*}
\]

This gives \(\lambda = 4 \sqrt{xy} \) and \(\sqrt{x} = 2 \), \(\sqrt{y} = 3 \) so \(x = 4 \) and \(y = 9 \) giving \(f(4, 9) = 30 \). Therefore, \(f(9, 4) = 30 \) is the absolute minimum.