Math and Zombies

\[
\sqrt{\text{Brains}^3 + x + 1} \\
i = 0 \\
\sum \text{Brains} \\
i = \infty \\
\text{BRAINS DELICIOUS}
\]
MY PATHWAY TO SCIENCE

SCIENCE OLYMPIAD

Oregon State University
COLLEGE OF AGRICULTURAL SCIENCES
Eco-Informatics Summer Institute
TODAY

Math Biology @ the U

Phoebe
Why zombies?

• I study: mathematical biology

• Mathematical model = a set of “rules” we think are true

• Zombie infections = good example!
Zombie Infection

Someone in this room = first zombie

Questions:
1. Will humans survive?
2. How quickly will zombies take over?
GAME RULES

• 1 person = zombie

• each turn: only zombie infects 2 people

• What happens?

"model"

game #1
GAME RULES

- 1 person = zombie
- *each turn*: only zombie infects 2 people

• What happens?

Results

- linear growth
- How can we make more realistic?

“model”

game #1
GAME RULES

• 1 person = zombie

• each turn: all zombies infects 2 people

• What happens?
GAME RULES

• 1 person = zombie

• each turn: all zombies infects 2 people

• What happens?

Results

• exponential growth (very fast!)

• More realistic? Realistic enough?
GAME RULES

• 1 person = secret 1st zombie

• each turn:
 • interact with 3 friends
 • each rolls a die: add up your two die
 • 2-4 = safe
 • 5-12 = dangerous (infected if with a zombie)
 • record this on your sheet!

• end of game: we’ll track zombie outbreak
GAME RESULTS

- More zombies = faster infection
- Eventually run out of humans!

![Logistic Growth Diagram](image)
Zombie Game

• Previous game: humans not able to fight back!
• How to model this? Math modeling helps!
• Need rules
INFECTION MODEL

25% of time

75% of time
Mathematicians like numbers

Mathematicians like Greek letters!

<table>
<thead>
<tr>
<th>Greek Letter</th>
<th>English Letter</th>
<th>Greek Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha</td>
<td>A</td>
<td>α</td>
</tr>
<tr>
<td>beta</td>
<td>B</td>
<td>β</td>
</tr>
<tr>
<td>gamma</td>
<td>Γ</td>
<td>γ</td>
</tr>
<tr>
<td>delta</td>
<td>Δ</td>
<td>δ</td>
</tr>
<tr>
<td>epsilon</td>
<td>Ε</td>
<td>ε</td>
</tr>
<tr>
<td>zeta</td>
<td>Ζ</td>
<td>ζ</td>
</tr>
<tr>
<td>eta</td>
<td>Η</td>
<td>η</td>
</tr>
<tr>
<td>theta</td>
<td>Θ</td>
<td>θ</td>
</tr>
<tr>
<td>iota</td>
<td>Ι</td>
<td>ι</td>
</tr>
<tr>
<td>kappa</td>
<td>Κ</td>
<td>κ</td>
</tr>
<tr>
<td>lambda</td>
<td>Λ</td>
<td>λ</td>
</tr>
<tr>
<td>mu</td>
<td>M</td>
<td>μ</td>
</tr>
<tr>
<td>nu</td>
<td>N</td>
<td>ν</td>
</tr>
<tr>
<td>xi</td>
<td>Ξ</td>
<td>ξ</td>
</tr>
<tr>
<td>omicron</td>
<td>Ο</td>
<td>ο</td>
</tr>
<tr>
<td>pi</td>
<td>Π</td>
<td>π</td>
</tr>
<tr>
<td>rho</td>
<td>Ρ</td>
<td>ρ</td>
</tr>
<tr>
<td>sigma</td>
<td>Σ</td>
<td>σ</td>
</tr>
<tr>
<td>tau</td>
<td>Τ</td>
<td>τ</td>
</tr>
<tr>
<td>upsilon</td>
<td>Υ</td>
<td>υ</td>
</tr>
<tr>
<td>phi</td>
<td>Φ</td>
<td>φ</td>
</tr>
<tr>
<td>chi</td>
<td>Χ</td>
<td>χ</td>
</tr>
<tr>
<td>psi</td>
<td>Ψ</td>
<td>ψ</td>
</tr>
<tr>
<td>omega</td>
<td>Ω</td>
<td>ω</td>
</tr>
</tbody>
</table>
INFECTION MODEL

\[(100 - \alpha)\% \quad \text{??\% of time} \quad \alpha \% \text{ of time}\]
Zombie Removal Model

85%

15%
ZOMBIE REMOVAL MODEL

\[+ \quad (100 - \beta)\% \]

\[\beta\% \]
ZOMBIE REMOVAL MODEL

- Mathematicians like to count stuff!

- \(S = \#\) of survivors

- \(Z = \#\) of zombies

- \(R = \#\) of removed zombies
ZOMBIE REMOVAL

- How can S (number of survivors) change?
 1 way:

- How can Z (number of zombies) change?
 2 ways:
ZOMBIE REMOVAL

• How can R (# removed zombies) change?

1 way:

$S = \# \text{ of survivors}$

$Z = \# \text{ of zombies}$

$R = \# \text{ of removed zombies}$
“derivative” = calculus language for how a thing can change

\[\dot{S} = -\alpha SZ \]
\[\dot{Z} = +\alpha SZ - \beta SZ \]
\[\dot{R} = +\beta SZ \]
What does the model predict?

Will humans survive?

If not, for how long?
LESSONS LEARNED

• 2 ways to survive: reduce β or increase α

• Simplified a lot from “real life” but still learned stuff

• **Zombie-ism a disease!**

• Really how epidemiologists study diseases (zika, ebola, malaria)
Mathematical Biology

• Mathematical modeling of biology

- Cancer
- Neuroscience
- Ecology