INvariance of V^∞_K UNDER K AND g

SEAN MCAFEE

We prove the following proposition:

Proposition 0.1. Let (π, V) be a representation of a real Lie group G, and let K be a compact subgroup of G. Then the space V^∞_K of smooth K-finite vectors is preserved by the actions of K and g. These two actions satisfy the conditions

1) the representation of K is a direct sum of finite-dimensional irreducible representations;

2) the differential of the action of K is equal to the restriction to \mathfrak{k} of the action of g; and

3) for $k \in K, X \in g, v \in V^\infty_K$, we have $k \cdot (X \cdot v) = (\text{Ad}(k)X) \cdot (k \cdot v)$.

Proof. First, we show that V^∞_K is invariant under the action of K. Let $v \in V^\infty_K, k \in K$. We claim that $k \cdot v \in V^\infty_K$. Indeed, $K \cdot (k \cdot v) = K \cdot v$, thus since v is K-finite, $\dim(K \cdot (k \cdot v)) = \dim(K \cdot v) < \infty$, hence $k \cdot v$ is K-finite. To see that $k \cdot v$ is also smooth, observe that for $g \in G$ we have $g \cdot (k \cdot v) = (g \cdot k) \cdot v$ is the composition of right multiplication by a fixed k and the action of G on V, both of which are smooth maps. Thus we have that V^∞_K is K-invariant.

Next, we show that V^∞_K is invariant under the action of g. Again, let $v \in V^\infty_K$. We claim that the subspace of V spanned by v under the action of \mathfrak{k} is finite dimensional. Indeed, by the definition of K-finite the subspace W of V spanned by v under the action of K is finite dimensional. We have, for $X \in g$,

$$X \cdot v = \frac{d}{dt}\pi(e^{tX})v|_{t=0}.$$

Each of the vectors $\pi(e^{tX})v$ lies in W, hence so does $X \cdot v$. Thus we have the space W is invariant under \mathfrak{k} and contains all \mathfrak{k}-translates of v, hence the span of v under \mathfrak{k} is finite dimensional. Call this span W' (actually, it can be shown that $W = W'$, but this suffices for our purposes).

Let $U \subseteq V$ be the subspace spanned by all Xw with $X \in g$ and $w \in W'$. Since g and W' are finite dimensional, so is U. We have that U is invariant under \mathfrak{g}: for $Y \in k, (X \cdot w) \in U$ we have

$$Y \cdot (X \cdot w) = [Y, X] \cdot w + X \cdot (Y \cdot w).$$

Both terms on the right lie in U, hence U is invariant under \mathfrak{g}. So, we now have a \mathfrak{g}-invariant subspace $U \subseteq V$ which is finite dimensional and contains the vector v. Since K is compact, it has finitely many connected components. We have that the map $\text{exp} : \mathfrak{k} \to K$ is surjective onto the identity component K_0 of K. Let $u \in U, k \in K_0$. Write $k = \exp(X), X \in \mathfrak{k}$. We claim that $k \cdot u \in U$. First, note that
Since U is finite dimensional we have, for any $X \in \mathfrak{k}$,
\[
\pi(\exp(X)) = \exp(d\pi(X)).
\]
Thus, we may write
\[
k \cdot u = \pi(k)u = \pi(\exp(X))u = \exp(\pi(X))u.
\]
Since U is finite dimensional, $\pi(X) \in GL_n(\mathbb{C})$. Thus, the term on the right may be written as a convergent power series in X acting on u, with the result being another vector in U. Therefore, we have shown that U is invariant under the action of K_0. Since each connected component K_i of K is isomorphic to K_0, we have that $K_i u$ is a finite dimensional subspace of V for each i. Taking the direct sum of these subspaces then gives us a finite dimensional subspace of V containing v which is invariant under K. Thus we have shown that $X \cdot v$ is K-finite.

To see that $X \cdot v$ is smooth, observe that since v is smooth, $\pi(\exp(tX))v$ is smooth for any t, thus
\[
\pi(X) = \lim_{t \to 0} \frac{\pi(e^{tX}) - I}{t} v = \pi(k)^{-1} \left(\pi(\exp(tX)k^{-1}) - I \right) v
\]
is smooth as well. We have thus shown that for an arbitrary $X \in \mathfrak{g}$, $X \cdot v \in V^\infty_K$, thus V^∞_K is \mathfrak{g}-invariant, as needed.

Part 1) of the proposition follows directly from the Peter-Weyl theorem. Any representation of a compact Lie group is a direct sum of finite-dimensional irreducible (unitary) representations.

Part 2) of the proposition is automatic; by definition, the action of K is the restriction of the action of G, thus the differential of the action of K is the restriction to \mathfrak{k} of the action of \mathfrak{g}.

To prove part 3), we show that, for $k \in K, X \in \mathfrak{g}, v \in V^\infty_K$,
\[
\pi(k)\pi(X)\pi(k)^{-1} = \pi(\text{Ad}(k)X).
\]
Observe that
\[
\lim_{t \to 0} \frac{\pi(\exp(tX)) - I}{t} \pi(k)^{-1} v = \pi(k)^{-1} \left(\frac{\pi(\exp(tX)k^{-1}) - I}{t} \right) v
\]
\[
= \pi(k)^{-1} \left(\frac{\pi(\text{Ad}(k)tX) - I}{t} \right) v.
\]
Taking the limit as $t \to 0$, we get $\pi(X)\pi(k)^{-1} v = \pi(k)^{-1} \pi(\text{Ad}(k)X)v$, hence
\[
\pi(k)\pi(X)\pi(k)^{-1} = \pi(\text{Ad}(k)X),
\]
so
\[
\pi(k)\pi(X) = \pi(\text{Ad}(k)X)\pi(k).
\]
That is,
\[
k \cdot (X \cdot v) = (\text{Ad}(k)X) \cdot (k \cdot v),
\]
and part 3) is proven. This completes the proof of the proposition.