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Generalized Statistical Methods
for Mixed Exponential Families,
Part I: Theoretical Foundations

Cécile Levasseur, Kenneth Kreutz-Delgado, and Uwe F. Mayer

Abstract—This work considers the problem of learning the underlying statistical structure of multidimensional data of mixed probability
distribution types (continuous and discrete) for the purpose of fitting a generative model and making decisions in a data-driven manner.
Using properties of exponential family distributions and generalizing classical linear statistics techniques, a unified theoretical model
called Generalized Linear Statistics (GLS) is established. The methodology exploits the split between data space and natural parameter
space for exponential family distributions and solves a nonlinear problem by using classical linear statistical tools applied to data that
have been mapped into the parameter space. The framework is equivalent to a computationally tractable, mixed data-type hierarchical
Bayes graphical model assumption with latent variables constrained to a low-dimensional parameter subspace. We demonstrate that
exponential family Principal Component Analysis, Semi-Parametric exponential family Principal Component Analysis, and Bregman
soft clustering are not separate unrelated algorithms, but different manifestations of model assumptions and parameter choices taken
within this common GLS framework. We readily extend these algorithms to deal with the important mixed data-type case. We study
in detail the extreme case corresponding to exponential family Principal Component Analysis and solve problems related to fitting the
generative model.

Index Terms—Generalized Linear Models, latent variables, exponential families, graphical models, dimensionality reduction.
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1 INTRODUCTION

THIS paper proposes a new methodology for fitting
generative models, for both continuous and discrete

data, and in both the supervised and the non-supervised
setting. The approach proposed and utilized here is
a generalization and amalgamation of techniques from
classical linear statistics, logistic regression, Principal
Component Analysis (PCA), and Generalized Linear
Models (GLMs) into a framework referred to, analo-
gously to GLMs theory, as Generalized Linear Statistics
(GLS). Generalized Linear Statistics includes techniques
drawn from latent variable analysis [1], [2] as well as
from the theory of Generalized Linear Models (GLMs)
and Generalized Linear Mixed Models (GLMMs) [3], [4],
[5], [6]. It is based on the use of exponential family dis-
tributions to model the various mixed types (continuous
or discrete) of measured object properties. Despite the
name, this is a nonlinear methodology which exploits the
distinction in exponential family distributions between
the data space (also known as the expected value space)
and the natural parameter space as soon as one leaves
the domain of purely Gaussian random variables. The
point is that although the problem at hand may be
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nonlinear, it can be attacked using classical linear and
other standard statistical tools applied to data that have
been mapped into the parameter space, which is assumed to
have a flat Euclidean space structure. For example, in the
parameter space one can perform regression (resulting
in the technique of logistic regression and other GLMs
methods [3], [7], [5], [6], [4], [8]), PCA (resulting in a
variety of “generalized PCA” methods [9], [10], [11], [12],
[13], [2]), or clustering [14], [15], [16]. This approach pro-
vides an effective way to exploit tractably parameterized
latent-variable exponential-family probability models to
address the problem of data-driven learning of model
parameters and features useful for the development
of effective classification and regression algorithms. In
addition to providing a better understanding of the data,
learning the GLS model provides a generative model of
the data, making it possible to generate synthetic data
with the same (or at least similar, depending on the
goodness of fit) statistical structure as the original data.

Building on a better understanding of previous work
that first introduced Generalized Linear Statistics (GLS)
[17], [18], [19], we now present a streamlined GLS frame-
work and focus on important and new developments.

The paper is organized as follows. Section 2 presents
the proposed Generalized Linear Statistics modeling ap-
proach in a mixed data-type hierarchical Bayes graphi-
cal model framework. We demonstrate the existence of
approximately sufficient statistics in the extreme case of
the GLS model corresponding to the exponential family
Principal Component Analysis technique proposed in
[10]. Section 3 describes the convex optimization prob-
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lem related to fitting the above mentioned extreme case
of the GLS model to a set of data. In light of the sig-
nificant numerical difficulties associated with the cyclic-
coordinate descent-like algorithm based on Bregman
distance properties proposed in [10], especially in the
mixed data-type case, this paper focuses on an algorithm
based on Iterative Reweighted Least Squares (IRLS), an
approach commonly used in the GLMs literature [4],
[20], [21]. Using an IRLS-based learning algorithm makes
it possible to tractably attack the more general problem
of model fitting in a mixed data-type environment. Ad-
ditionally, because the optimal model parameter values
in the optimization problem may be non-finite [10], a
penalty function is introduced that defines and places
a set of constraints onto the loss function via a penalty
parameter in a way so that any divergence to infinity is
avoided. A key assumption of the GLS framework is that
the parameters are restricted to a low-dimensional sub-
space. However, an orthonormality constraint is utilized
for the matrix that defines this low-dimensional parame-
ter subspace. It can be shown that otherwise the matrix is
not unique and that other equivalent representations can
be derived by orthogonal transformations of it [22]. The
imposed orthonormality constraint reduces the impact of
this identifiability problem. Section 4 presents a general
point of view that relates the exponential family Princi-
pal Component Analysis (exponential PCA) technique of
[10] to the Semi-Parametric exponential family Principal
Component Analysis (SP-PCA) technique of [15] and to
the Bregman soft clustering method presented in [16]
and extends these algorithms to deal with the important
mixed data-type case. A slight modification to the SP-
PCA algorithm to handle the mixed data type is also
introduced.

2 GENERALIZED LINEAR STATISTICS (GLS)
2.1 Theoretical framework

The problem is abstractly stated as follows. A particular
“object” of interest can be associated with a variety of
descriptor random variables. Practitioners choose mea-
surable descriptor variables that they believe are likely
to be informative about interesting properties “attached
to the object”. These descriptors can be viewed as
comprising the components of a random vector x =
[x1, . . . , xd] ∈ Rd, where the dimension d is equal to the
number of descriptors. Thus the vector x is a point in a
d-dimensional descriptor space.

Following the probabilistic Generalized Latent Vari-
able (GLV) formalism described in [1], [2], it is assumed
that training descriptor space points can be drawn from
populations having factorable class-conditional probabil-
ity density functions of the form:

p(x|θ) = p1(x1|θ) · . . . ·pd(xd|θ) = p1(x1|θ1) · . . . ·pd(xd|θd).
(1)

This is referred to as the latent variable assumption
throughout this paper. Delta-functions are admitted so

that densities are well-defined for discrete, continuous,
and mixed random variables. Note the critical assump-
tion that the components of x are independent, when
conditioned on the parameter vector θ ∈ Rd. It is further
assumed that θ can be written as

θ = aV + b (2)

with V ∈ Rq×d and b ∈ Rd deterministic, and a ∈ Rq .
While one generally assumes q < d for dimensionality re-
duction (and ideally q << d), this is strictly speaking not
required. This work both considers a Bayesian approach
for which a is treated as a random vector and a classical
approach where the vector a is deterministic. We first
assume that a is a random vector. The randomness of a
causes a to be called the random effect. The notation used
here is motivated by the discussions in [10] and [23].
The matrix V is assumed to have full row-rank so that
the relationship between a and θ is one-to-one. Then,
conditioning on the random vector θ is equivalent to
conditioning on the low-dimensional random vector a,
so that

p(x|θ) = p(x|a) = p1(x1|a) · . . . · pd(xd|a). (3)

This is precisely the condition under which a is a complete
latent variable [1]. In a probabilistic sense, all of the
information that is mutually contained in the data vector
x must be contained in the latent variable a. As noted in
[1], [24], [2], equations (1) and (2) generalize the classical
factor analysis model (as described, e.g., in [25] and
[1]) to the case when the marginal densities pi(xi|θi)
are non-Gaussian. Indeed, the subscript “i ” on pi(·|·)
serves to indicate that the marginal densities can all
be different, allowing for the possibility of x contain-
ing categorical, discrete, and continuous valued compo-
nents. As described below, it is further assumed that the
marginal densities are each one-parameter exponential
family densities, allowing the use of a rich and powerful
theory of such densities to be fruitfully exploited, and
it is commonly the case that θi is taken to be the so-
called natural parameter (or some bijective function of
the natural parameter) of the exponential family density
pi(·|·). A distribution is said to be a member of the
exponential family if it has a density function of the form

pi

(
xi|θi

)
= exp

(
xiθi −Gi(θi)

)
,

where the function Gi(·) is the cumulant generating
function, defined as

Gi(θi) = log
∫

Xi

eθixiνi(dxi),

and where νi(·) is a σ-finite measure that generates the
exponential family and Xi defines the space of the data
component xi. The gradient of the cumulant generating
function is denoted by gi(·) and is referred to as the link
function [26], [27], [28].

Because both GLMs and the Generalized Latent Vari-
able (GLV) methodologies exploit the linear structure (2),
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Fig. 1. Graphical model for the GLS approach.

they can be viewed as special cases of a GLS approach to
data analysis. In the GLMs theory, V and b are known
and a is deterministic and unknown [3], [4]. In both
the Generalized Latent Variable theory described in [1],
[24], [2] and the random- and Mixed-effects Generalized
Linear Models (MGLMs) literature [29], [30], [23], [5], [4],
[31], [20], [8], V and b are deterministic while a (and
hence θ) is treated as a random vector. The difference
between GLV and MGLMs is that in GLV, all of the
quantities V, b, and a are unknown, and hence need to
be identified, resulting in a so-called “blind” estimation
problem, whereas in MGLMs, V is a known matrix of
regressor variables and only the deterministic vector b
and the unknown realizations of the random effect vector
a (also known as latent variable) must be estimated. In
both GLV and MGLMs, it is assumed that the linear
relationship (2) holds in parameter space, and that the
tools of linear and statistical inverse theory are appli-
cable or insightful, at least conceptually. The MGLMs
theory is a generalization of the classical theory of linear
regression, while the GLV theory is a generalization
of the classical theory of statistical factor analysis and
PCA. In both cases, the generalization is based on a
move from the data/description space containing the
measurement vector x to the parameter space containing
θ via a generally nonlinear transformation known as a
link function [3], [5], [4]. It is in the latter space that the
linear relationship (2) is assumed to hold.

Graphical models, also referred to as Bayesian Net-
works when their graph is directed, are a powerful
tool to encode and exploit the underlying statistical
structure of complex data sets [32]. The GLS framework
represents a subclass of graphical model techniques
and its corresponding graphical model is presented in
Fig. 1. It is equivalent to a computationally tractable
mixed exponential families data-type hierarchical Bayes
graphical model with latent variables constrained to a
low-dimensional parameter subspace.

Since a (and hence θ) is treated as a random vector
(Bayesian approach), the (non-conditional) probability
density function p(x) requires a generally intractable
integration over the parameters,

p(x) =
∫

p(x|θ)π(θ)dθ =
∫ d∏

i=1

pi(xi|θi)π(θ)dθ, (4)

where π(θ) is the probability density function of the
parameter vector θ = aV + b. Given the observation
matrix denoted by

X =




x[1]
x[2]

...
x[n]


 =




x1[1] . . . xd[1]
x1[2] . . . xd[2]

...
. . .

...
x1[n] . . . xd[n]


 ∈ Rn×d (5)

composed of n independent and identically distributed
statistical data samples, each assumed to be stochasti-
cally equivalent to the random row vector x, x[k] =[
x1[k], . . . , xd[k]

] ∼ x, the data likelihood function is
defined as

p(X) =
n∏

k=1

p
(
x[k]

)
=

n∏

k=1

∫
p
(
x[k]|θ)

π(θ)dθ (6)

using the latent variable assumption, with θ = aV+b. For
specified exponential family densities pi(·|·), i = 1, . . . , d,
maximum likelihood identification of the model (4) cor-
responds to identifying π(θ), which, under the linear
condition θ = aV + b, corresponds to identifying the
matrix V, the vector b, and a density function, µ(a), on
the random effect a via a maximization of the likelihood
function p(X) with respect to V, b, and µ(a). This is
generally a quite difficult problem [5], [4], [20] and it
is usually attacked using approximation methods which
correspond to replacing the integrals in (4) and (6) by
sums [23]:

p(x) =
m∑

l=1

p
(
x|̄θ[l]

)
πl =

m∑

l=1

d∏

i=1

pi

(
xi |̄θi[l]

)
πl, (7)

p(X) =
n∏

k=1

m∑

l=1

p
(
x[k]|̄θ[l]

)
πl,k (8)

over a finite number of discrete support points (“atoms”)

¯
θ[l] (equivalently,

¯
a[l]) for l = 1, . . . , m, 1 ≤ m ≤ n, with

point-mass probabilities

πl , π
(
θ =

¯
θ[l]

)
= π

(
a =

¯
a[l]

)
,

πl,k , π
(
θ[k] =

¯
θ[l]

)
= π

(
a[k] =

¯
a[l]

)
= πl,

the last equality resulting from the independent and iden-
tically distributed statistical samples assumption. Note that
θ and a are (discrete) random variables while

¯
θ[l] and

¯
a[l], l = 1, . . . , m, are the m nonrandom support point
values (i.e., the values of the random variables hav-
ing nonzero probabilities). These m support points are
shared by all the data points x[k], k = 1, . . . , n. Also
recall that taking π

(
¯
θ[l]

)
= π

(
¯
a[l]

)
for

¯
θ[l] =

¯
a[l]V + b

with the matrix V having full row-rank results in the
assumption that the relationship between the discrete
values

¯
θ[l] and

¯
a[l] is one-to-one. As clearly described in

[23], this approximation is justified either as a Gaussian
quadrature approximation to the integral in (6) in the
case of a Gaussian assumption for the probability density
function π(θ) [5], [4], [20], or by appealing to the fact
that the Non-Parametric Maximum Likelihood (NPML)
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estimate [33], [34], [24] of the mixture density π(θ) yields
a solution which takes a finite number of points of
support [35], [33], [36], [37], [38], [39], [34].

With θ = aV + b, with V, b fixed and a random, the
single-sample likelihood (7) is equal to

p(x) =
m∑

l=1

p
(
x|̄θ[l]

)
πl =

m∑

l=1

p
(
x|

¯
a[l]V + b

)
πl, (9)

and the data likelihood (8) is equal to

p(X)=
n∏

k=1

m∑

l=1

p
(
x[k]|̄θ[l]

)
πl =

n∏

k=1

m∑

l=1

p
(
x[k]|

¯
a[l]V + b

)
πl.

(10)

The data likelihood is thus (approximately) the likeli-
hood of a finite mixture of exponential family densities
with unknown mixture proportions or point-mass prob-
ability estimates πl and unknown point-mass support
points

¯
a[l], with the linear predictor

¯
θ[l] =

¯
a[l]V + b

in the lth mixture component [23]. In the mixture mod-
els literature, the point-mass probabilities πl are called
mixing proportions or weights, the densities p

(
x[k]|̄θ[l]

)
are called the component densities of the mixture and
equation (9) is referred to as the m-component finite
mixture density [24]. The combined problem of Maxi-
mum Likelihood Estimation (MLE) of the parameters V,
b, the point-mass support points (atoms)

¯
a[l] and the

point-mass probability estimates πl, l = 1, . . . , m, (as ap-
proximations to the unknown, and possibly continuous
density µ(a)) is known as the Semiparametric Maximum
Likelihood mixture density Estimation (SMLE) problem
[34], [40], [24].

This problem can be attacked by using the
Expectation-Maximization (EM) algorithm [41],
[33], [36], [37], [42], [38], [23], [1], [43], [24], [44],
[15]. Then, the number m of distinct support point
values is often strictly smaller than the number of
data points n, i.e., m < n. Note that, historically,
Laird’s classic 1978 paper [33] appears to be generally
acknowledged as the first paper that proposed the
EM algorithm for NPML estimation in the mixture
density context; then, Lindsay’s classic 1983 papers
[36], [37] improved upon the theoretical foundations of
the NPML estimation approach and later Mallet’s 1986
paper [38] further explored some of the fundamental
issues raised by Lindsay. As noted above, this problem
(i.e., simultaneously identifying b,

¯
a[l], πl for all l, and

V) is the subject matter of GLV analysis [1], [24], [45],
[2]. The commonly encountered alternative problem
of estimating b,

¯
a[l] and πl, l = 1, . . . , m, for known V,

where the elements of V are comprised of measured
regressor variables, is a generalization of classical linear
regression and is the subject matter of the theory of
MGLMs [3], [29], [23], [5], [4], [31], [20], [8].

However, a classical approach to the GLS estimation
problem can also be considered and the vector a (and
hence θ) is treated as a deterministic vector. Then, to each
data point x[k], k = 1, . . . , n, corresponds a (generally
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Fig. 2. The GLS model as a Markov chain.

different) parameter point, yielding a total of n points

¯
θ[k], k = 1, . . . , n, in parameter space (and hence n points

¯
a[k], k = 1, . . . , n, in the low-dimensional parameter sub-
space) as presented in the exponential family Principal
Component Analysis technique [10]. The data likelihood
is simply equal to

p(X) =
n∏

k=1

p
(
x[k]|̄θ[k]

)
=

n∏

k=1

p
(
x[k]|

¯
a[k]V + b

)
. (11)

Contrary to the Bayesian approach, no point-mass prob-
abilities have to be estimated. For consistency of vocab-
ulary throughout this paper, the points

¯
a[k], k = 1, . . . , n,

in the low-dimensional parameter subspace are called la-
tent variables for both Bayesian and classical approaches.
Similarly, the parameter points

¯
θ[k], k = 1, . . . , n, are

called atoms in both approaches. The classical approach
can also be seen as an extreme case of the Bayesian
approach for which the probability density function π(θ)
is a delta function (one per data point) and the total
number of atoms m equals the number of data points
n, i.e., m = n. Note that while the m < n parameter
points of the Bayesian approach are shared by all the
data points, the classical approach assigns one parameter
point to each data point (hence m = n). This extreme case
is the approach followed in Section 3. Section 4 presents
a general point of view and considers and compares both
approaches (m < n and m = n).

2.2 Approximately sufficient statistics
Interestingly, in this extreme case of delta point-mass
probabilities it can be shown that the point-mass support
points or latent variables

¯
a are approximate sufficient

statistics and provide all the information needed to make
decisions on future data.

Proof: We consider the problem of classifying data
point x. The Maximum A Posteriori (MAP) estimator
for the class C is defined as follows:

ĈMAP , arg max
C

p(C|x) = arg max
C

p(C,x). (12)

Acknowledging that the GLS graphical model is similar
to the Markov chain presented in Figure 2, we have:

p(C|x)p(x) = p(C,x) =
∫

p(C,x,a)da

=
∫

p(C|x,a)p(x,a)da

and, because of the Markov chain structure,

≈
∫

p(C|a)p(a|x)p(x)da
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and, because each data point x exactly corresponds to
one support point

¯
a =

¯
a(x),

=
∫

p(C|a)δ(a−
¯
a)p(x)da

= p(C|
¯
a)p(x).

Hence, p(C|
¯
a) ≈ p(C|x) and

¯
a is an approximate suffi-

cient statistics.
The goal of the work proposed and analyzed here is

to fit an adequately faithful, class-conditional probability
model of the form (10) for a Bayesian approach or (11)
for a classical approach to labeled (when available) or
unlabeled data to develop algorithms for making deci-
sions on new measurements or future data. The family of
models provided by (10) and (11), where the component
densities are exponential family densities is very flexible
and can be used to model both labeled and unlabeled
data cases.

3 LEARNING AT ONE EXTREME OF GLS
This section focuses on the estimation procedure of
Generalized Linear Statistics framework components for
the extreme case where the number of parameter points
equals the number of data points m = n. This extreme
case is similar to the exponential family Principal Com-
ponent Analysis (exponential PCA) technique proposed
in [10]. We interpret it as a form of PCA performed
in parameter space instead of data space as in classical
PCA.

3.1 Problem description
The special Generalized Linear Statistics framework case
presented in Section 2 where the number of parameter
points equals the number of data points, i.e., m = n, is
now solely considered. Hence, the point-mass probabili-
ties do not need to be estimated and the EM algorithm is
unnecessary. To each vector x corresponds a single vector

¯
a, i.e., a single vector

¯
θ, and they all share a common

index k = 1, . . . , n.
Let X be the (n× d) matrix of observations defined in

(5). The dimension of the data space is referred to as d
and the number of points in the data set is referred to as
n. The k’th row of the matrix X is the data row vector
x[k]. The observations can also be referred to as the data
set

{
x[k]

}n

k=1
, where x[k] =

[
x1[k], x2[k], . . . , xd[k]

]
. The

proposed algorithm aims to identify the set of parame-
ters

{
¯
θ[k]

}n

k=1
, where each

¯
θ[k] is the “projection” of a

corresponding x[k] onto a lower dimensional subspace
of the parameter space. The dimension of this lower
dimensional subspace is referred to as q, where q < d,
ideally q ¿ d, and its basis is defined as {vj}q

j=1 where
vj = [vj1, vj2, . . . , vjd]. Hence, the matrix V defined by

V =




v1

v2

...
vq


 =




v11 . . . v1d

v21 . . . v2d

...
. . .

...
vq1 . . . vqd




is (q × d) and identifies the low-dimensional parameter
subspace. The latent variable matrix

¯
A is (n × q) and

represents the coordinates of each
¯
θ[k], k = 1, . . . , n, in

this lower dimensional subspace:

¯
A =




¯
a[1]

¯
a[2]

...

¯
a[n]


 =




¯
a1[1] . . .

¯
aq[1]

¯
a1[2] . . .

¯
aq[2]

...
. . .

...

¯
a1[n] . . .

¯
aq[n]


 .

Therefore, each
¯
θ[k], k = 1, . . . , n, can be represented

as a linear combination of the basis vectors plus a d-
dimensional offset or displacement vector b as follows:

¯
θ[k] =

¯
a[k]V + b =

q∑

j=1
¯
aj [k]vj + b, (13)

with b = [b1, . . . , bd]. The matrix
¯
Θ =

¯
AV + B is of

the same dimensions as the observation matrix, namely
(n× d), where the offset matrix B is (n× d) and simply
composed of n identical rows b.

Assuming a maximum likelihood estimation path as
traditionally used in the GLMs literature [3], finding the

¯
θ[k] that is “best” in parameter space for its correspond-
ing x[k] for all k means minimizing the negative log-
likelihood function, or loss function, given by:

L(
¯
A,V,b) = − log p(X|

¯
Θ), (14)

subject to the constraint
¯
Θ =

¯
AV + B.

In accordance with the GLS framework, the following
assumptions are made:

(i) the independent and identically distributed statistical
samples assumption: the samples x[k], k = 1, . . . , n,
are drawn independently and identically;

(ii) the latent variable assumption: the components xi[k],
i = 1, . . . , d, are independent when conditioned on
the random parameter vector

¯
θ[k], i.e.,

p
(
x[k]|̄θ[k]

)
= p1

(
x1[k]|̄θ1[k]

) · . . . ·pd

(
xd[k]|̄θd[k]

)
for

all k, k = 1, . . . , n;
(iii) the mixed or hybrid exponential family distributions

assumption: each density function pi

(
xi[k]|̄θi[k]

)
is

any one-parameter exponential family distribution
with

¯
θi[k] taken to be the natural parameter of the

exponential family density or some simple function
of it. This assumption allows the rich and powerful
theory of exponential family distributions to be
fruitfully utilized.

The marginal densities pi(·|·) can all be different, al-
lowing for the possibility of x[k] containing continuous
and discrete valued components. Consequently, the loss
function in equation (14) becomes:

L(
¯
A,V,b) = −

n∑

k=1

d∑

i=1

log pi

(
xi[k]|̄θi[k]

)
. (15)

By exploiting the previously stated latent variable assump-
tion, it can be shown that if pi(·|·) is the 1-dimensional
conditional distribution of the component xi[k], i =
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1, . . . , d, of the data point x[k] given the parameter com-
ponent

¯
θi[k], then the vector x[k] follows a d-dimensional

conditional exponential distribution p(·|·) given the vec-
tor parameter

¯
θ[k].

Proof: Considering the most general case, each com-
ponent xi for i = 1, . . . , d is assumed to be exponen-
tially distributed according to the distribution pi with
parameter

¯
θi, and the components are independent when

conditioned on theirs parameters. Following the defini-
tion of standard exponential families, a σ-finite measure
νi is assumed for each distribution, i = 1, . . . , d. Let
ν = (ν1, . . . , νd) with ν(dx) = ν1(dx1) · ν2(dx2) · . . . ·
νd(dxd) be the σ-finite measure in the d-dimensional data
space. The 1-dimensional distribution can be written as
pi(xi |̄θi) = exp

{
¯
θixi−Gi(¯

θi)
}

. Based on the latent variable
assumption, the distribution of the vector x can be written
as follows:

p(x|̄θ) =
d∏

i=1

pi(xi |̄θi) =
d∏

i=1

e¯
θixi−Gi(

¯
θi) = e¯θ·x−

∑d
i=1 Gi(

¯
θi),

where, by definition of an exponential family distribu-
tion and using Fubini’s theorem [46],

d∑

i=1

Gi(¯
θi)=

d∑

i=1

log
∫

Xi

e¯
θixiνi(dxi)= log

d∏

i=1

∫

Xi

e¯
θixiνi(dxi)

= log
∫

X1

· · ·
∫

Xd

e¯
θ1x1+

¯
θ2x2+···+

¯
θdxdν1(dx1) · . . . · νd(dxd)

= log
∫

X
e¯θxν(dx) = G(

¯
θ), (16)

where X = X1 × X2 × · · · × Xd defines the (product)
space of the d-dimensional vector x. As a result, G(

¯
θ) =∑d

i=1 Gi(¯
θi) is the cumulant generating function of the

multivariate exponential family distribution p(x|̄θ) =∏d
i=1 pi(xi |̄θi).

3.2 Estimation procedures for a single exponential
family
First, the case of a single common exponential family,
i.e., pi(·|·) = p(·|·) for all i = 1, . . . , d, is considered.

3.2.1 Loss function and convexity
The loss function is given by equation (15). Using the
definition of an exponential family distribution, the loss
function can be written as:

L(
¯
A,V,b) =

n∑

k=1

d∑

i=1

{
G

(
¯
θi[k]

)− xi[k]
¯
θi[k]

}

=
n∑

k=1

{
G

(
¯
a[k]V + b

)− (
¯
a[k]V + b

)
x[k]T

}
.

(17)

Alternatively, it can be shown that the negative log-
likelihood of the density of an exponential family distri-
bution p(xi[k]|̄θi[k]) can be expressed through a Bregman
distance BF (·‖·):
− log p(xi[k]|̄θi[k]) = BF

(
xi[k]

∥∥g(
¯
θi[k])

)− F
(
xi[k]

)
,

where F (·) is the Fenchel conjugate of the cumulant
generating function G(·) [28]. Then, the loss function in
(15) becomes:

L(
¯
A,V,b) =

n∑

k=1

d∑

i=1

{
BF

(
xi[k]

∥∥g(
¯
θi[k])

)− F
(
xi[k]

)}

=
n∑

k=1

d∑

i=1

{
BF

(
xi[k]

∥∥g(
¯
θi[k])

)}−
n∑

k=1

d∑

i=1

F
(
xi[k]

)
,

where
¯
θi[k] =

∑q
j=1 ¯

aj [k]vji + bi. The underlined term in
the above equation does not depend on either

¯
A, V or

b, resulting in the following minimization problem:

arg min
¯
A,V,b

L(
¯
A,V,b) = arg min

¯
A,V,b

n∑

k=1

d∑

i=1

BF

(
xi[k]

∥∥g(
¯
θi[k])

)

= arg min
¯
A,V,b

n∑

k=1

d∑

i=1

BF

(
xi[k]

∥∥g

( q∑

j=1
¯
aj [k]vji + bi

))
. (18)

It can be shown that the loss function is convex in either
of its arguments with the others fixed. Indeed, the dual
divergences property of the Bregman distance implies
that, if G

(
¯
θi[k]

)
is strictly convex, then

BF

(
xi[k]

∥∥g(
¯
θi[k])

)
= BG

(
f
(
g(

¯
θi[k])

)∥∥f
(
xi[k]

))

= BG

(
¯
θi[k]

∥∥f(xi[k])
)
, (19)

since the function f(·) is the inverse of the link function
g(·). The fact that f(·) and g(·) are inverse functions
of each other is easily shown. Using equation (19) in
equation (18), the minimization problem becomes, if
G

(
¯
θi[k]

)
is strictly convex:

arg min
¯
A,V,b

L(
¯
A,V,b) = arg min

¯
A,V,b

n∑

k=1

d∑

i=1

BG

(
¯
θi[k]

∥∥f(xi[k])
)

= arg min
¯
A,V,b

n∑

k=1

d∑

i=1

BG

( q∑

j=1
¯
aj [k]vji + bi

∥∥f(xi[k])
)
.

This is a critical step of GLS because the minimization
problem is moved from data space fully into parameter
space.

It is well-known that G
(
¯
θi[k]

)
is a convex function

on
¯
θi[k] and strictly convex if the exponential family

is minimal [27]. The convexity property of Bregman
distances states that BG(·‖·) is always convex in the first
argument, resulting in the fact that BG

(
¯
θi[k]

∥∥f(xi[k])
)

is
convex in

¯
θi[k] for all k = 1, . . . , n and i = 1, . . . , d. Then,

since
¯
θi[k] =

∑q
j=1 ¯

aj [k]vji + bi is a convex relationship
in either aj [k], j = 1, . . . , q, vji, j = 1, . . . , q, or bi with
the others fixed, for all k = 1, . . . , n and i = 1, . . . , d,
the Bregman distance BG

(∑q
j=1 ¯

aj [k]vji + bi

∥∥f(xi[k])
)

is
convex in any of the three arguments when the other
two are fixed. Therefore, as a sum of convex functions,
the loss function is convex in either of its arguments
with the others fixed, i.e., the loss function is convex in

¯
Θ =

¯
AV + B.
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Since the loss function is convex in either of its ar-
guments with the others fixed, its minimization can be
attacked by using an iterative approach. Then, the first
step, given a fixed matrix V and a fixed vector b, is
to obtain the matrix

¯
A or the set of vectors

¯
a[k] for

k = 1, . . . , n, that minimizes the loss function given by
equation (17). The second step, given a fixed matrix

¯
A

and a fixed vector b, is to obtain the matrix V or the
set of vectors vj for j = 1, . . . , q, that minimizes the loss
function. The last step, given a fixed matrix

¯
A and a

fixed matrix V, is to obtain the vector b that minimizes
the loss function.

3.2.2 Iterative minimization of the loss function
The classical Newton-Raphson method is used for the
iterative minimization of the loss function (17).

The first step in the (t+1)st iteration consists of the up-
date

¯
A(t+1) = arg min

¯
A L(

¯
A,V(t),b(t)), with

¯
A(t), V(t)

and b(t) being the updates obtained at the end of the tth

iteration. It then requires the computation of the gradient
vector ∇

¯
al

(
¯
a[k]

)
and the Hessian matrix ∇2

¯
al

(
¯
a[k]

)
of the

loss function l
(
¯
a[k]

)
with respect to the vector

¯
a[k], for

all k = 1, . . . , n, where l
(
¯
a[k]

)
= l

(
¯
a[k],V(t),b(t)

)
collects

the elements of the loss function L(
¯
A,V(t),b(t)) that

depend only on the vector
¯
a[k]:

l
(
¯
a[k]

)
=G

(
¯
a[k]V(t)+b(t)

)−(
¯
a[k]V(t)+b(t)

)
x[k]T (20)

=
d∑

i=1



G




q∑

j=1̄

aj [k]v(t)
ji +b

(t)
i


−xi[k]




q∑

j=1̄

aj [k]v(t)
ji +b

(t)
i





.

The gradient vector of the loss function l
(
¯
a[k]

)
with

respect to the vector
¯
a[k], for k = 1, . . . , n, is given by

∇
¯
al

(
¯
a[k]

)
=

∂l
(
¯
a[k]

)

∂
¯
a[k]

=V(t)
(
G′

(
¯
a[k]V(t)+ b(t)

)− x[k]T
)
,

where, for
¯
θ[k] =

¯
a[k]V(t) + b(t),

G′
(
¯
a[k]V(t) + b(t)

)
=

∂G
(
¯
θ[k]

)

∂
¯
θ[k]

and
∂
¯
θ[k]

∂
¯
a[k]

= V(t).

Here, the following convention for derivatives
with respect to a row vector is used: for

¯
a[k], a

(1 × q) vector, and l(·), a scalar function of
¯
a[k],

∂l
(
¯
a[k]

)
/∂

¯
a[k] =

[
∂l

(
¯
a[k]

)
/∂

¯
a1[k], . . . , ∂l

(
¯
a[k]

)
/∂

¯
aq[k]

]T

is a (q × 1) vector. Similarly, for
¯
θ[k], a (1 × d) vector,

and G(·), a scalar function of
¯
θ[k], ∂G

(
¯
θ[k]

)
/∂

¯
θ[k]

is a (d × 1) vector as follows: ∂G
(
¯
θ[k]

)
/∂

¯
θ[k] =[

∂G
(
¯
θ[k]

)
/∂

¯
θ1[k], . . . , ∂G

(
¯
θ[k]

)
/∂

¯
θd[k]

]T . Then,

G′
(
¯
a[k]V(t) + b(t)

)
=

[
∂G

(
¯
θ[k]

)

∂
¯
θ1[k]

, . . . ,
∂G

(
¯
θ[k]

)

∂
¯
θd[k]

]

=

[
∂

∂
¯
θ1[k]

d∑

i=1

G
(
¯
θi[k]

)
, . . . ,

∂

∂
¯
θd[k]

d∑

i=1

G
(
¯
θi[k]

)
]T

for
¯
θ[k] =

¯
a[k]V(t) + b(t) and using equation (16)

=
[
g
(
¯
θ1[k]

)
, . . . , g

(
¯
θd[k]

)]
,

where g
(
¯
θi[k]

)
= ∂G

(
¯
θi[k]

)
/∂

¯
θi[k]. The Hessian matrix of

the loss function with respect to the vector
¯
a[k] is given

by

∇2

¯
al

(
¯
a[k]

)
=

∂2l
(
¯
a[k]

)

∂
¯
a[k]2

= V(t)G′′
(
¯
a[k]V(t) + b(t)

)
V(t),T ,

where

G′′
(
¯
a[k]V(t) + b(t)

)
=




∂2G(
¯
θ[k])

∂
¯
θ1[k]2 · · · ∂2G(

¯
θ[k])

∂
¯
θd[k]∂

¯
θ1[k]

...
...

...
∂2G(

¯
θ[k])

∂
¯
θ1[k]∂

¯
θd[k] · · · ∂2G(

¯
θ[k])

∂
¯
θd[k]2


 .

Furthermore,

∂2G
(
¯
θ[k]

)

∂
¯
θr[k]∂

¯
θs[k]

=
∂2

∂
¯
θr[k]∂

¯
θs[k]

d∑

i=1

G(
¯
θi[k]) =

∂

∂
¯
θs[k]

g(
¯
θr[k]),

so that

∂2G
(
¯
θ[k]

)

∂
¯
θr[k]∂

¯
θs[k]

=

{
0 if r 6= s,

∂g(
¯
θr[k])/∂

¯
θr[k] if r = s.

As a result,

G′′
(
¯
a[k]V(t) + b(t)

)
=




∂g(
¯
θ1[k])

∂
¯
θ1[k] · · · 0
...

...
...

0 · · · ∂g(
¯
θd[k])

∂
¯
θd[k]


 ,

i.e., G′′
(
¯
a[k]V(t) + b(t)

)
is a (d× d) diagonal matrix.

The Newton-Raphson technique simply solves the
minimization problem arg min

¯
a l(

¯
a[k],V(t),b(t)) at iter-

ation (t + 1) by using the update

¯
a(t+1)[k] =

¯
a(t)[k]

− α(t+1)

¯
a

(
∇2

¯
al

(
¯
a(t)[k],V(t),b(t)

))−1

∇
¯
al

(
¯
a(t)[k],V(t),b(t)

)
,

where ∇l(·) is the gradient of the function l(·), ∇2l(·)
its Hessian matrix and α

(t+1)

¯
a the so-called step size.

It yields the following update equation for the set of
vectors

¯
a(t+1)[k] at iteration (t + 1) for k = 1, . . . , n:

¯
a(t+1)[k]T =

¯
a(t)[k]T

− α(t+1)

¯
a

(
V(t)G′′

(
¯
a(t)[k]V(t)+b(t)

)
V(t),T

)−1

·
(
V(t)

(
G′(

¯
a(t)[k]V(t)+b(t))− x[k]T

))
.

(21)

The second step in the iterative minimization
method consists of the update V(t+1) =
arg minV L(

¯
A(t+1),V,b(t)). It requires the computation

of the gradient vector ∇vl
(
vj

)
and the Hessian

matrix ∇2
vl

(
vj

)
of the loss function l

(
vj

)
with

respect to the vector vj , for all j = 1, . . . , q, where
l
(
vj

)
= l

(
¯
A(t+1), {vj}q

j=1,b
(t)

)
collects the elements of

the loss function L(
¯
A(t+1),V,b(t)) that depend only on
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the vector vj .

l(vj) =
n∑

k=1

{
G

(
q∑

r=1
¯
a(t+1)

r [k]vr + b(t)

)

−
(

q∑
r=1

¯
a(t+1)

r [k]vr + b(t)

)
x[k]T

}
,

∇vl(vj) =
∂l(vj)
∂vj

=
n∑

k=1
¯
a
(t+1)
j [k]

{
G′

(
¯
a(t+1)[k]V + b(t)

)− x[k]T
}
,

∇2
vl(vj) =

∂2l(vj)
∂v2

j

=
n∑

k=1
¯
a
(t+1)
j [k]2G′′

(
¯
a(t+1)[k]V + b(t)

)
.

Then, the update equation is given as follows for j =
1, . . . , q:

v(t+1),T
j = v(t),T

j

− α(t+1)
v

(
n∑

k=1
¯
a
(t+1)
j [k]2G′′

(
¯
a(t+1)[k]V(t) + b(t)

)
)−1

·
(

n∑

k=1
¯
a
(t+1)
j [k]

{
G′

(
¯
a(t+1)[k]V(t) + b(t)

)− x[k]T
}
)

,

(22)

where

n∑

k=1
¯
a
(t+1)
j [k]2G′′(

¯
a(t+1)[k]V(t) + b(t)) =




∑n
k=1 ¯

a
(t+1)
j [k]2 ∂g(

¯
θ1[k])

∂
¯
θ1[k] 0

...
. . .

...
0

∑n
k=1 ¯

a
(m+1)
j [k]2 ∂g(

¯
θd[k])

∂
¯
θd[k]




for
¯
θ[k] =

¯
a(t+1)[k]V(t) + b(t).

The last step in the iterative minimization method con-
sists of the update b(t+1) = arg minb L(

¯
A(t+1),V(t+1),b).

It requires the computation of the gradient vector∇bl
(
b
)

and the Hessian matrix ∇2
bl

(
b
)

of the loss function
l
(
b
)

with respect to the offset vector b, where l
(
b
)

=
l
(
¯
A(t+1),V(t+1),b

)
collects the elements of the loss func-

tion L(
¯
A(t+1),V(t+1),b) that depend only on the vector

b.

l(b) =
n∑

k=1

{
G

(
¯
a(t+1)[k]V(t+1) + b

)

− (
¯
a(t+1)[k]V(t+1)+ b

)
x[k]T

}
,

∇bl(b) =
∂l(b)
∂b

=
n∑

k=1

{
G′

(
¯
a(t+1)[k]V(t+1)+ b

)−x[k]T
}

,

∇2
bl(b) =

∂2l(b)
∂b2

=
n∑

k=1

G′′
(
¯
a(t+1)[k]V(t+1) + b

)
.

Then, the update equation is given as follows:

b(t+1),T =b(t),T− α
(t+1)
b

(
n∑

k=1

G′′
(
¯
a(t+1)[k]V(t+1)+b(t)

)
)−1

·
(

n∑

k=1

{
G′

(
¯
a(t+1)[k]V(t+1) + b(t)

)− x[k]T
}
)

,

(23)

where

G′′(
¯
a(t+1)[k]V(t+1) + b(t)) =




∂g(
¯
θ1[k])

∂
¯
θ1[k] 0
...

. . .
...

0 ∂g(
¯
θd[k])

∂
¯
θd[k]




for
¯
θ[k] =

¯
a(t+1)[k]V(t+1) + b(t).

Note that only the cumulant generating function G(·)
needs to be changed in order to get an algorithm for
a loss function involving a new exponential family.
This is pertinent since the cumulant generating function
uniquely defines the exponential family [27].

3.2.3 Penalty function approach
As noted in [10], it is possible for the atoms obtained
with the extreme GLS case corresponding to exponential
PCA to diverge since the optimum may be at infinity. To
avoid such behavior, we introduce a penalty function
that defines and places a set of constraints into the loss
function via a penalty parameter in a way that penalizes
any divergence to infinity.

The penalty function approach is used to convert
the nonlinear programming problem with equality and
inequality constraints into an unconstrained problem,
or into a problem with simple constraints [47], [48],
[49]. This transformation is accomplished by defining an
appropriate auxiliary function in terms of the problem
functions to define a new objective or loss function.

The penalty function is defined as follows for
¯
θ =

[
¯
θ1, . . . ,

¯
θd]:

ψ(
¯
θ) =

d∑

i=1

{
exp

(− βmin(
¯
θi − θmin)

)

+ exp
(
βmax(

¯
θi − θmax)

)}
,

(24)

and was designed so that ψ(
¯
θ) is close to zero for θmin ≤

¯
θi ≤ θmax, i = 1, . . . , d, and reaches infinity otherwise.
Figure 3 shows possible shapes for the penalty function
depending on the parameters βmin and βmax values.

The loss function becomes:

L̄(
¯
A,V,b)=

n∑

k=1

{
BF

(
x[k]

∥∥g(
¯
a[k]V+b)

)
+c·ψ(

¯
a[k]V+b

)}

(25)
instead of

L(
¯
A,V,b) =

n∑

k=1

BF

(
x[k]

∥∥g(
¯
a[k]V + b)

)
,

where the scalar c is called the penalty parameter.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

parameter θ

pe
na

lty
 fu

nc
tio

n 
ψ

(θ
)

β
min

 = β
max

 = 1

β
min

 = β
max

 = 10

β
min

 = β
max

 = 0.5

Fig. 3. Sketches for a possible penalty function (θmin =
−5, θmax = 5): solid line for penalty function parameters
βmin = βmax = 1, dashed line for parameters βmin =
βmax = 10 and dashdot line for βmin = βmax = 0.5.

The previously developed iterative minimization al-
gorithm is then used on L̄(

¯
A,V,b). For the first step of

the iterative minimization problem, the update equation
becomes for k = 1, . . . , n:

¯
a(t+1)[k]T =

¯
a(t)[k]T −α(t+1)

¯
a ·

{
V(t)

{
G′′

(
¯
a(t)[k]V(t)+b(t)

)

+c · ψ′′(
¯
a(t)[k]V(t)+b(t)

)}
V(t),T

}−1

·V(t)

·
{
G′

(
¯
a(t)[k]V(t)+b(t)

)−x[k]T +c · ψ′(
¯
a(t)[k]V(t)+b(t)

)}
.

Note that, for
¯
θ[k] =

¯
a[k]V(t) + b(t), the gradient of the

penalty function is given by:

ψ′
(
¯
a[k]V(t)+b(t)

)
=

∂ψ
(
¯
θ[k]

)

∂
¯
θ[k]

=

[
∂ψ

(
¯
θ[k]

)

∂
¯
θ1[k]

, . . . ,
∂ψ

(
¯
θ[k]

)

∂
¯
θd[k]

]

where, for i = 1, . . . , d and k = 1, . . . , n,

∂ψ
(
¯
θ[k]

)

∂
¯
θi[k]

=
∂

∂
¯
θi[k]

d∑
r=1

exp
(− βmin(

¯
θr[k]− θmin)

)

+
∂

∂
¯
θi[k]

d∑
r=1

exp
(
βmax(

¯
θr[k]− θmax)

)

= −βmin exp
(− βmin(

¯
θi[k]− θmin)

)

+ βmax exp
(
βmax(

¯
θi[k]− θmax)

)
.

The Hessian matrix is given by:

ψ′′
(
¯
a[k]V(t) + b(t)

)
=




∂2ψ(
¯
θ[k])

∂
¯
θ1[k]2 · · · ∂2ψ(

¯
θ[k])

∂
¯
θd[k]∂

¯
θ1[k]

...
...

...
∂2ψ(

¯
θ[k])

∂
¯
θ1[k]∂

¯
θd[k] · · · ∂2ψ(

¯
θ[k])

∂
¯
θd[k]2


 ,

with

∂2ψ(
¯
θ[k])

∂
¯
θr[k]∂

¯
θs[k]

= β2
min exp

(− βmin(
¯
θr[k]− θmin)

)

+ β2
max exp

(
βmax(

¯
θr[k]− θmax)

)

for r = s, and ∂2ψ(
¯
θ[k])

∂
¯
θr[k]∂

¯
θs[k] = 0 otherwise.

Similarly, the second step of the iterative minimization
yields the following update equation for j = 1, . . . , q:

v(t+1),T
j = v(t),T

j − α(t+1)
v

·
( n∑

k=1
¯
a
(t+1)
j [k]2

{
G′′

(
¯
a(t+1)[k]V(t) + b(t)

)

+ c · ψ′′(
¯
a(t+1)[k]V(t) + b(t)

)})−1

·
( n∑

k=1
¯
a
(t+1)
j [k]

{
G′

(
¯
a(t+1)[k]V(t) + b(t)

)− x[k]T

+ c · ψ′(
¯
a(t+1)[k]V(t) + b(t)

)})
.

Finally, the last step of the minimization problem
yields the following update equation:

b(t+1),T = b(t),T − α
(t+1)
b ·

( n∑

k=1

{
G′′

(
¯
a(t+1)[k]V(t+1) + b(t)

)

+ c · ψ′′(
¯
a(t+1)[k]V(t+1) + b(t)

))−1

·
( n∑

k=1

{
G′

(
¯
a(t+1)[k]V(t+1) + b(t)

)− x[k]T

+ c · ψ′(
¯
a(t+1)[k]V(t+1) + b(t)

)})
.

3.3 Uniqueness and identifiability

The matrix V ∈ Rq×d defines the low-dimensional
parameter subspace. It can be shown that the matrix V,
when q > 1, is not unique and that other equivalent
representations can be derived by orthogonal transfor-
mations of it [22]. In cases where q > 1, there are an
infinity of choices for V. The constraint

¯
θ[k] =

¯
a[k]V+b

for k = 1, . . . , n, is still satisfied if
¯
a[k] is replaced by

¯
a[k]M and V by MT V, where M is any orthogonal
matrix of dimension (q × q).

In order to reduce the identifiability problem of the
matrix

¯
Θ =

¯
AV + B, an orthonormality constraint is

used, i.e., the condition

VVT = Iq×q (26)

is enforced. Consider the matrix space M = Rq×d, then
V ∈M. As the iterative minimization process proposed
earlier goes on, the successive updates of the matrix
V evolve, giving rise to a curve V(t) in M, where t
describes time. The constraint VVT = Iq×q corresponds
to a hyperplane in M and an easy way to comply
with it would be to impose that the curve V(t) remains
tangential to the VVT = Iq×q hyperplane. In other
words, the progression along the curve V(t) should
remain on the tangent of the VVT = Iq×q hyperplane.
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Considering the notation V̇ = dV/dt, the tangent to the
VVT = Iq×q hyperplane can be defined by the equation

V̇VT + VV̇T

2
= 0, (27)

where the denominator is used for later convenience. Let
M = V̇ ∈M and the following operator is defined:

A(M) , MVT + VMT

2
. (28)

It is easily shown that the operator A : M → S, where
S ⊂ Rq×q , is linear. It is as well onto, i.e., R(A) = S the
range of A or N (A∗) = {0} the null space of its adjoint
operator, as shown below. Note that A(M)T = A(M), so
that S only contains symmetric matrices.

6

- ¾

6

R(A)R(A∗)

N (A∗)
= {0}

N (A)

SM A

A∗

CC

CC

Fig. 4. The operator A, its range R(A) and null space
N (A) in relation with its adjoint operator A∗, its range
R(A∗) and null space N (A∗) = {0}, with M = N (A) ∪
R(A∗) and S = N (A∗) ∪R(A).

Proof: For any M ∈ M and any W ∈ S , the adjoint
operator A∗ is defined by

〈W,A(M)〉 = 〈A∗(W),M〉 , (29)

where, using the trace operator tr,

〈W,A(M)〉 = tr WTA(M)

=
1
2

tr
(
WT MVT + WT VMT

)

=
1
2

tr
(
WT MVT + MVT W

)

=
1
2

tr
(
WT MVT + WMVT

)

using properties of the trace operator,

= tr
(

WT + W
2

)
MVT = tr WMVT

since W ∈ S is symmetric,

= tr VT WM = tr VT WT M

= tr(WV)T M = 〈WV,M〉 . (30)

Now, combining equations (29) and (30) results in

〈A∗(W),M〉 = 〈WV,M〉 .

Consequently,
A∗(W) = WV. (31)

If A∗(W) = 0, then WV = 0, meaning W = 0 since V
cannot be the 0 matrix. Therefore, N (A∗) = {0} and A
is onto.

Figure 4 shows the relationship between the range and
null space ofA and the range and null space of its adjoint
operator A∗.

Imposing that the curve V(t) remains tangential to
the VVT = Iq×q hyperplane is equivalent to imposing
A(V̇) = 0, i.e., V̇(= dV/dt ' δV) or the increment δV
in the V update equation

(
V(m+1) = V(m) − α

(m+1)
v δV,

cf. equation (22)
)

needs to be projected onto the null
space of A. The projection operator onto the null space
of A is defined as PN (A) = I−PR(A∗) = I−A+A, where
the subscript + denotes a pseudo-inverse. The goal now
is to compute A+. Since A is onto, R(A) = S , for any
M ∈M there exists a matrix W ∈ S such that

A(M) = W. (32)

Similarly, for any M ∈ M there exists a matrix Λ ∈ S
such that

M = A∗(Λ). (33)

Then, combining equations (31) and (33) gives

M = A∗(Λ) = ΛV. (34)

Now, using both equations (32) and (34) gives

A(M) = A(ΛV) = W

=
ΛVVT + VVT ΛT

2
=

Λ + ΛT

2
= Λ,

since VVT = Iq×q and Λ ∈ S is symmetric. As a result,
Λ = W. Consequently, M = WV = A+(W). The
projection operator onto the range of A∗ is defined by

PR(A∗)(M) = A+A(M) =
MVT + VMT

2
V.

It can be shown that PR(A∗) is correctly defined as a
projection operator since it is idempotent.

Proof:

P2
R(A∗)(M) = PR(A∗)

(
MVT + VMT

2
V

)

=

(
MVT +VMT

2 V
)
VT + V

(
MVT +VMT

2 V
)T

2
V

=
1
2

{(
MVT + VMT

2

)
V +

(
MVT + VMT

2

)
V

}

=
(

MVT + VMT

2

)
V = PR(A∗)(M),

since VVT = Iq×q and A(M) is symmetric.
Then, the projection operator onto the null space of A

is defined by

PN (A)(M)=
(
I−PR(A∗)

)
(M)=M−

(
MVT + VMT

2

)
V.
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It is indeed a projector onto the null space of A since

A (
PN (A)(M)

)
=

1
2

(
M−

(
MVT + VMT

2

)
V

)
VT

+
1
2
V

(
M−

(
MVT + VMT

2

)
V

)T

=
1
2

(
MVT −VMT

2

)
− 1

2

(
MVT −VMT

2

)
= 0.

Finally, the update equation for j = 1, . . . , q becomes:

v(t+1),T
j = v(t),T

j − α(t+1)
v

· PN (A)

(
n∑

k=1
¯
a
(t+1)
j [k]2G′′

(
¯
a(t+1)[k]V(t) + b(t)

)
)−1

·
(

n∑

k=1
¯
a
(t+1)
j [k]

{
G′

(
¯
a(t+1)[k]V(t) + b(t)

)− x[k]T
}
)

.

3.4 Mixed data types
The above approach was proposed assuming that the
data attributes have the same distribution. It can be
extended to the problem for which different types of
distributions can be used for different attributes. This
situation is referred to as the mixed data-type case
and is exposed below. Only two types of exponential
family distributions are considered here (for example,
the Bernoulli distribution and the Gaussian distribution).
Of course, this approach generalizes to any number of
exponential family distributions.

For simplicity of presentation, we consider that the
f first attributes are distributed according to the ex-
ponential family distribution p(1) and the (d − f) last
attributes are distributed according to the exponential
family distribution p(2). Following the previously stated
example, the bold superscript (1) would correspond
to Bernoulli distributed attributes and (2) to Gaussian
distributed attributes. Then,

X=




x1[1] . . . xf [1] xf+1[1] . . . xd[1]
x1[2] . . . xf [2] xf+1[2] . . . xd[2]

...
. . .

...
...

. . .
...

x1[n] . . . xf [n] xf+1[n] . . . xd[n]


=

(
X(1) X(2)

)
.

The loss function is expressed as follows:

L(
¯
A,V,b) = − log p(X|

¯
A,V,b) = −

n∑

k=1

log p
(
x[k]|̄θ[k]

)
,

using the iid statistical samples assumption. Then, using
the latent variable assumption,

p
(
x[k]|̄θ[k]

)
= p(1)

(
x(1)[k]|̄θ(1)[k]

) · p(2)
(
x(2)[k]|̄θ(2)[k]

)
,

(35)

where

¯
Θ=




¯
θ1[1] . . .

¯
θf [1]

¯
θf+1[1] . . .

¯
θd[1]

¯
θ1[2] . . .

¯
θf [2]

¯
θf+1[2] . . .

¯
θd[2]

...
. . .

...
...

. . .
...

¯
θ1[n] . . .

¯
θf [n]

¯
θf+1[n] . . .

¯
θd[n]


=

(
¯
Θ(1)

¯
Θ(2)

)
.

The matrix of parameters
¯
Θ =

¯
AV + B results in the

following decompositions:

V=




v11 . . . v1f v1(f+1) . . . v1d

v21 . . . v2f v2(f+1) . . . v2d

...
. . .

...
...

. . .
...

vq1 . . . vqf vq(f+1) . . . vqd


=

(
V(1) V(2)

)
,

and B =
(
B(1) B(2)

)
, B(1) = [b(1), . . . ,b(1)]T with

b(1) = [b1, . . . , bf ], and B(2) = [b(2), . . . ,b(2)]T with
b(2) = [bf+1, . . . , bd]. Then,

¯
Θ =

¯
AV + B =

(
¯
AV(1) + B(1)

¯
AV(2) + B(2)

)
.

Now, notice that

¯
AV(1)+B(1) =




¯
a1[1] . . .

¯
aq[1]

¯
a1[2] . . .

¯
aq[2]

...
. . .

...

¯
a1[n] . . .

¯
aq[n]







v11 . . . v1f

v21 . . . v2f

...
. . .

...
vq1 . . . vqf


.

The underlined term is a (n× f ) matrix whose elements
are

∑q
j=1 ¯

aj [k]vji for all k = 1, . . . , n and i = 1, . . . , f .
Consequently, the elements of the (n×f ) matrix

¯
AV(1)+

B(1) are of the form
∑q

j=1 ¯
aj [k]vji +bi for all k = 1, . . . , n

and i = 1, . . . , f . The matrix
¯
Θ(1) is also (n× f ) and its

elements take the following form:
¯
θi[k] =

∑q
j=1 ¯

aj [k]vji+
bi for all k = 1, . . . , n and i = 1, . . . , f . Besides, knowing
that

¯
θi[k] =

∑q
j=1 ¯

aj [k]vji + bi for all k = 1, . . . , n and i =
1, . . . , d, it becomes clear that

¯
Θ(1) equals

¯
AV(1) + B(1),

and
¯
Θ(2) is

¯
AV(2) +B(2). Note that, even though we are

able to separate the matrix
¯
Θ into two blocks, the matrix

¯
A is common to both

¯
Θ(1) and

¯
Θ(2). Therefore, the loss

function takes the following form:

L(
¯
A,V,b) = −

n∑

k=1

log p(1)
(
x(1)[k]|

¯
a[k],V(1),b(1)

)

−
n∑

k=1

log p(2)
(
x(2)[k]|

¯
a[k],V(2),b(2)

)
.

Since the linear combination of convex functions with
nonnegative coefficients is always convex [47], the loss
function remains convex in either of its arguments with
the others fixed. Therefore, the iterative minimization
technique proposed for the single exponential family can
be applied in the mixture of exponential families case.

The first step in the Newton-Raphson minimization
technique, given a fixed matrix V and fixed vector b,
is to obtain the matrix

¯
A, or the set of vectors

¯
a[k]

for k = 1, . . . , n, that minimizes the loss function. The
second step, given a fixed matrix

¯
A and fixed vector b, is

to obtain the matrix V that minimizes the loss function.
The last step, given a fixed matrix

¯
A and a fixed matrix

V, is to obtain the vector b. The updates are derived in a
way similar to the one used in Section 3.2. As previously,
the superscript (t) means an estimate obtained at the
end of the tth iteration of the iterative minimization
process. Note that, in order to avoid confusion, the step
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superscript is not bold whereas the mixture superscripts
(1) and (2) are.

l
(
¯
a[k]

)
= G(1)

(
¯
a[k]V(1)(t) + b(1)(t)

)

− (
¯
a[k]V(1)(t) + b(1)(t)

)
x(1)[k]T

+ G(2)
(
¯
a[k]V(2)(t) + b(2)(t)

)

− (
¯
a[k]V(2)(t) + b(2)(t)

)
x(2)[k]T .

The update equation for the set of vectors
¯
a[k] for k =

1, · · · , n is:

¯
a(t+1)[k]T =

¯
a(t)[k]T

− α(t+1)

¯
a

{
V(1)(t)G(1)′′(

¯
a(t)[k]V(1)(t) + b(1)(t)

)
V(1)(t),T

+ V(2)(t)G(2)′′(
¯
a(t)[k]V(2)(t) + b(2)(t)

)
V(2)(t),T

}−1

·
{
V(1)(t)

(
G(1)′(

¯
a(t)[k]V(1)(t) + b(1)(t)

)− x[k](1),T
)

+ V(2)(t)
(
G(2)′(

¯
a(t)[k]V(2)(t) + b(2)(t)

)− x[k](2),T
)}

.

(36)

For the second step, the two sets of row vectors{
v(1)

j

}q

j=1
and

{
v(2)

j

}q

j=1
are updated separately. For the

sake of simplicity, the update equation is written for the
set

{
vj

}q

j=1
indistinct of the mixture superscript and is

given as follows for j = 1, . . . , q:

v(t+1),T
j = v(t),T

j

− α(t+1)
v

(
n∑

k=1
¯
a
(t+1)
j [k]2G′′

(
¯
a(t+1)[k]V(t) + b(t)

)
)−1

·
(

n∑

k=1
¯
a
(t+1)
j [k]

{
G′

(
¯
a(t+1)[k]V(t) + b(t)

)− x[k]T
}
)

.

(37)

For the last step, as for
{
v(1)

j

}q

j=1
and

{
v(2)

j

}q

j=1
, the

derivations are made for the vector b indistinct of the
mixture superscript:

b(t+1),T =b(t),T −α
(t+1)
b

(
n∑

k=1

G′′
(
¯
a(t+1)[k]V(t+1)+b

)
)−1

·
(

n∑

k=1

{
G′

(
¯
a(t+1)[k]V(t+1) + b

)− x[k]T
}
)

.

(38)

Equations (37) can be used for
{
v(1)

j

}q

j=1
and

{
v(2)

j

}q

j=1
,

and equation (38) can be used for b(1) and b(2) by
changing vj to v(1)

j , respectively to v(2)
j , V to V(1),

respectively to V(2), b to b(1), respectively to b(2),
G(·), G′(·), and G′′(·) to G(1)(·), G(1)′(·), and G(1)′′(·),
respectively to G(2)(·), G(2)′(·), and G(2)′′(·).

Table 1 summarizes exponential PCA algorithm.

4 TWO OTHER GLS SPECIAL CASES AND EX-
TENSIONS TO MIXED DATA-TYPE CASES

In addition to the exponential family Principal Com-
ponent Analysis (exponential PCA) technique, the two

Algorithm: Exponential PCA [10]

Input: a set of observations
{
x[k]

}n

k=1
⊆ Rd, two exponential

family distribution p(1), p(2) defined by their cumulant gener-
ating functions G(1), G(2), a number of atoms n, q ¿ d the
dimension of the latent variable lower dimensional subspace.

Output: the ML estimator
{̂
¯
θ[k]}n

k=1 that minimizes the loss
function L(

¯
A,V,b) in (17): ̂

¯
θ[k] = ̂̄a[k]V̂ + b̂ for all k,

{̂̄a[k]}n
k=1 ∈ Rq , V̂ ∈ Rq×d and b̂ ∈ Rd.

Method:
Initialize V, b and

{
¯
a[k]

}n

k=1
;
¯
θ[k] =

¯
a[k]V +b ∈ Θ for all

k; p
(
x[k]|̄θ[k]

)
as defined in (35) for all k;

repeat
{The Newton-Raphson iterative algorithm}
for k = 1 to n do

¯
a[l] ←− penalty-modified update equation (36)

end for
for j = 1 to q do
vj ←− penalty-modified update equation (37)

end for
b ←− penalty-modified update equation (38)

until convergence;
return

{̂
¯
θ[k] = ̂̄a[k]V̂ + b̂

}n

k=1
.

TABLE 1
Exponential PCA algorithm.

other GLS special cases considered here are the Semi-
Parametric exponential family Principal Component
Analysis (SP-PCA) and the Bregman soft clustering tech-
niques. They all utilize Bregman distances and can all be
explained within a single hierarchical Bayes graphical
model framework shown in Figure 1. They are not
separate unrelated algorithms but different manifesta-
tions of model assumptions and parameter choices taken
within a common framework. Because of this insight,
these algorithms are readily extended to deal with the
important mixed data-type case.

Figure 5 considers the number of atoms as a common
characteristic for comparison purposes. The exponential
PCA technique corresponds to a classical approach to
the GLS estimation problem. The classical approach can
be seen as an extreme case of the Bayesian approach for
which the probability density function π(θ) is a delta
function (one per data point) and the total number of
distinct natural parameter values m equals the number
of data points n, i.e., m = n. While the m < n parameters
of the Bayesian approach consistent with SP-PCA and
the Bregman soft clustering techniques are shared by
all the data points, the classical approach assigns one
parameter point to each data point (hence m = n).
The Bregman soft clustering approach considers an even
smaller number of natural parameters or atoms than
SP-PCA. Since its primary goal is clustering, the atoms
play the role of cluster centers in parameter space and
their total number is generally small. Furthermore, both
exponential PCA and SP-PCA impose a low-dimensional
(unknown) latent variable subspace in their structure.
However, Bregman soft clustering does not impose this
lower dimensional constraint and hence can be seen as
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a degenerate case.

It becomes clear while looking at Table 1, Table 2
and Table 3 that both SP-PCA and Bregman soft clus-
tering utilize the EM algorithm for estimation purposes
whereas exponential PCA does not. Indeed, because
exponential PCA assumes a classical approach, no point-
mass probabilities need to be estimated.

- number
of atoms m

n0 1 2

?

exponential PCA

'

&

$

%

. . .. . .

?

exp. family PCA
Semi-Parametric

'

&

$

%

. . .

?

Bregman soft
clustering

Fig. 5. General point of view on SP-PCA, exponential
PCA and Bregman soft clustering based on the number
of NPML atoms.

4.1 Semi-parametric exponential family PCA
The Semi-Parametric exponential family Principal Com-
ponent Analysis (SP-PCA) approach presented in [15] at-
tacks the Semiparametric Maximum Likelihood mixture
density Estimation (SMLE) problem exposed in Section 2
by using the Expectation-Maximization (EM) algorithm
[41]. We directly present an SP-PCA modified approach
for mixed data types and use the mixed data-type no-
tations exposed in the previous section for exponential
PCA. Using equation (10), the log-likelihood function is

L(Q) = log
n∏

k=1

m∑

l=1

p
(
x[k]|

¯
a[l]V + b

)
πl, (39)

with Q =
{
¯
θ[l] =

¯
a[l]V + b, πl

}m

l=1
the mixing distri-

bution. The EM approach introduces a missing (unob-
served) variable zk = [zk1, . . . , zkm], for k = 1, . . . , n.
This variable is an m-dimensional binary vector whose
lth component equals 1 if the observed variable x[k] was
drawn from the lth mixture component and 0 otherwise;
its value is estimated during the E-step. Using this
information, a complete log-likelihood function is defined
as follows:

L(c)
(Q, {zk}n

k=1

)
= log

n∏

k=1

m∏

l=1

p
(
x[k]|̄θ[l]

)zklπzkl

l , (40)

with
¯
θ[l] =

¯
a[l]V + b. Because zkl equals 1 exactly for

one l if k is fixed, reflecting the assumption that each
x[k] is drawn from exactly one mixture component, the
inner sum in equation (39) has in fact for each k exactly
one non-zero term. In equation (40) it is exactly that non-
zero term which is present in the product, all others have

an exponent of zkl = 0, and hence do not contribute
to the product. The maximization of the complete log-
likelihood function (the M-step) yields parameters

¯
A, V

and b estimates. Then,

L(c)
(Q, {zk}n

k=1

)
=

n∑

k=1

m∑

l=1

zkl log πl

+
n∑

k=1

m∑

l=1

zkl log p(1)
(
x(1)[k]|̄θ(1)[l]

)·p(2)
(
x(2)[k]|̄θ(2)[l]

)
.

(41)

The E-step yields for k = 1, . . . , n and l = 1, . . . , m:

ẑkl = E {zkl|x[k], π1, . . . , πm}

=
p(1)

(
x(1)[k]|̄θ(1)[l]

)·p(2)
(
x(2)[k]|̄θ(2)[l]

))
πl∑m

r=1 p(1)
(
x(1)[k]|̄θ(1)[r]

)·p(2)
(
x(2)[k]|̄θ(2)[r]

)
πr

.

For all l and all k, each data point x[k] has an estimated
probability ẑkl of belonging to the lth mixture compo-
nent.

The M-step first yields the estimates for the point-mass
probabilities:

π
(new)
l =

∑n
k=1 ẑkl

n
,

corresponding to the number of samples x[k] drawn
from the lth mixture, divided by the number of samples
overall. The second part of the M-step, i.e., the estima-
tion of the parameters V, b, and the latent variables

¯
A =

[
¯
a[1]T , . . . ,

¯
a[m]T

]T ∈ Rm,q , is affected by the
mixed data type assumption. It consists of maximizing
the complete log-likelihood function (41) with respect to
these parameters:

arg max
¯
A,V,b

L(c)
({

¯
θ[l], π(new)

l

}m

l=1
, {ẑk}n

k=1

)

= arg max
¯
A,V,b

n∑

k=1

m∑

l=1

ẑkl

{
G(1)

(
¯
a[l]V(1)+b(1)

)−(
¯
a[l]V(1)+b(1)

)
x[k]T

}

+
n∑

k=1

m∑

l=1

ẑkl

{
G(2)

(
¯
a[l]V(2)+b(2)

)−(
¯
a[l]V(2)+b(2)

)
x[k]T

}
.

We set, for l = 1, . . . , m, x̃[l] =
∑n

k=1 ẑklx[k]/
∑n

k=1 ẑkl,
the lth mixture component center. It can be shown, using
exponential family properties, that the loss function is:

L(
¯
A,V,b)

=
m∑

l=1

π
(new)
l

{
G(1)

(
¯
a[l]V(1)+b(1)

)−(
¯
a[l]V(1)+b(1)

)
x̃[l]T

}

+
m∑

l=1

π
(new)
l

{
G(2)

(
¯
a[l]V(2)+b(2)

)−(
¯
a[l]V(2)+b(2)

)
x̃[l]T

}
,

(42)

since (1/n)
∑n

k=1 ẑkl = π
(new)
l . Note that these coef-

ficients π
(new)
l , l = 1, . . . , m, are not present in the

algorithm proposed in [15].
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The Newton-Raphson method is used for the iterative
minimization of the loss function (42) and the resulting
update equations are as follows. First at iteration (t+1),
for l = 1, . . . , m,

¯
a(t+1)[l]T =

¯
a(t)[l]T − α(t+1)

¯
a

·
{
V(1)(t)G(1)′′(

¯
a(t)[l]V(1)(t)+b(1)(t)

)
V(1)(t),T

+ V(2)(t)G(2)′′(
¯
a(t)[l]V(2)(t)+b(2)(t)

)
V(2)(t),T

}−1

·
{
V(1)(t)

(
G(1)′(

¯
a(t)[l]V(1)(t)+b(1)(t))− x̃[l]T

)

+ V(2)(t)
(
G(2)′(

¯
a(t)[l]V(2)(t)+b(2)(t))− x̃[l]T

)}
.

(43)

For the second step, the two sets of row vectors{
v(1)

j

}q

j=1
and

{
v(2)

j

}q

j=1
are updated separately. For

j = 1, . . . , q:

v(t+1),T
j = v(t),T

j

− α(t+1)
v

(
m∑

l=1

π
(new)
l ¯

a
(t+1)
j [l]2G′′

(
¯
a(t+1)[l]V(t)+b(t)

)
)−1

·
(

m∑

l=1

π
(new)
l ¯

a
(t+1)
j [l]

{
G′

(
¯
a(t+1)[l]V(t) + b(t)

)−x̃[l]T
}
)

.

(44)

And finally for the last step, the update equation is:

b(t+1),T = b(t),T

= b(t),T− α
(t+1)
b

(
m∑

l=1

π
(new)
l G′′

(
¯
a(t+1)[l]V(t+1) + b

)
)−1

·
(

m∑

l=1

π
(new)
l

{
G′

(
¯
a(t+1)[l]V(t+1) + b

)− x̃[l]T
}
)

.

(45)

Equations (44) can be used for
{
v(1)

j

}q

j=1
and

{
v(2)

j

}q

j=1
,

and equation (45) can be used for b(1) and b(2) by
changing vj to v(1)

j , respectively to v(2)
j , V to V(1),

respectively to V(2), b to b(1), respectively to b(2),
G(·), G′(·), and G′′(·) to G(1)(·), G(1)′(·), and G(1)′′(·),
respectively to G(2)(·), G(2)′(·), and G(2)′′(·).

Table 2 summarizes the SP-PCA algorithm.

4.2 Bregman soft clustering
The Bregman soft clustering approach presented in [16]
utilizes an alternative interpretation of the EM algorithm
for learning models involving mixtures of exponential
family distributions. It is a simple soft clustering algo-
rithm for all Bregman divergences, i.e., for all exponen-
tial family distributions. We choose here to present this
technique without referring to the Bregman divergence
as in [16] but by using its corresponding exponential
family probability distribution for the sake of compar-
ison with SP-PCA and exponential PCA.

Given a data set of observations
{
x[k]

}n

k=1
, Bregman

soft clustering aims at modeling the statistical structure

Algorithm: Semi-Parametric exp. family PCA [15]

Input: a set of observations
{
x[k]

}n

k=1
⊆ Rd, two exponential

family distribution p(1), p(2) defined by their cumulant gener-
ating functions G(1), G(2), a number of atoms m, q ¿ d the
dimension of the latent variable lower dimensional subspace.

Output: the NPML estimator that maximizes the complete log-
likelihood function L(c)

(Q, {zk}n
k=1

)
: Q̂ =

{̂
¯
θ[l], π̂l

}m

l=1
with

̂
¯
θ[l] = ̂̄a[l]V̂+b̂ for all l, {̂̄a[l]}m

l=1 ∈ Rq , V̂ ∈ Rq×d and b̂ ∈ Rd.

Method:
Initialize V, b and

{
¯
a[l], πl

}m

l=1
with πl ≥ 0 for all l and∑m

l=1 πl = 1;
¯
θ[l] =

¯
a[l]V + b ∈ Θ for all l; p

(
x[k]|̄θ[l]

)
as

defined in (35) for all k and l;
repeat
{The Expectation Step}
for k = 1 to n do

for l = 1 to m do
ẑkl ←− p

(
x[k]|̄θ[l]

)
πl/

∑m
r=1 p

(
x[k]|̄θ[r]

)
πr

end for
end for
{The Maximization Step}

for l = 1 to m do
πl ←−

(
1/n

) ∑n
k=1 ẑkl

end for
{The Newton-Raphson iterative algorithm}
for l = 1 to m do

¯
a[l] ←− update equation (43)

end for
for j = 1 to q do
vj ←− update equation (44)

end for
b ←− update equation (45)

until convergence;
return Q̂ =

{̂
¯
θ[l] = ̂̄a[l]V̂ + b̂, π̂l

}m

l=1
.

TABLE 2
Semi-Parametric exponential family PCA algorithm.

Algorithm: Bregman Soft Clustering [16]

Input: a set of observations
{
x[k]

}n

k=1
⊆ Rd, two exponential

family distribution p(1), p(2) defined by their cumulant gener-
ating functions G(1), G(2), a number of atoms m.

Output: the NPML estimator that maximizes the complete log-
likelihood function L(c)

(Q, {zk}n
k=1

)
: Q̂ =

{̂
¯
θ[l], π̂l

}m

l=1
.

Method:
Initialize

{
¯
θ[l], πl

}m

l=1
with πl ≥ 0 for all l and

∑m
l=1 πl = 1;

p
(
x[k]|̄θ[l]

)
as defined in (35) for all k and l;

¯
θ[l] ∈ Θ for all l;

repeat
{The Expectation Step}
for k = 1 to n do

for l = 1 to m do
ẑkl ←− p

(
x[k]|̄θ[l]

)
πl/

∑m
r=1 p

(
x[k]|̄θ[r]

)
πr

end for
end for
{The Maximization Step}
for l = 1 to m do
πl ←− (1/n)

∑n
k=1 ẑkl

¯
θ[l] ←− solve for

¯
θ[l]:

G′(
¯
θ[l]) =

∑n
k=1 ẑklx[k]/

∑n
k=1 ẑkl

end for
until convergence;

return Q̂ =
{̂
¯
θ[l], π̂l

}m

l=1
.

TABLE 3
Bregman soft clustering algorithm.

of the data as a mixture of m densities of the same
exponential family. The clusters correspond to the com-
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ponents of the mixture model and the soft membership
of a data point in each cluster is proportional to the
probability of the data point being generated by the
corresponding density function. The Bregman soft clus-
tering problem is based on a maximum likelihood esti-
mation of the cluster parameters

{
¯
θ[l], πl

}m

l=1
satisfying

the following mixture structure:

p(x) =
m∑

l=1

p
(
x|̄θ[l]

)
πl,

where p(x|·) is an exponential family distribution. The
data likelihood function takes the following form:

p(X) =
n∏

k=1

m∑

l=1

p
(
x[k]|̄θ[l]

)
πl. (46)

The data likelihood function in (46) is similar to the data
likelihood function in (8) without the linear constraint

¯
θ[l] =

¯
a[l]V + b for l = 1, . . . , m. Hence, the Bregman

soft clustering problem is similar to the SP-PCA problem
without the lower dimensional subspace constraint and
a simple EM algorithm is used to estimate the cluster
parameters. We consider again the mixed data-type case.
The E-step and the first part of the M-step yield the
same results as for SP-PCA. In the second part of the
M-step, the component parameters

¯
θ[l], l = 1, . . . , m, are

estimated in the following way:

¯
θ[l](new) = arg max

¯
θ[l]

n∑

k=1

m∑
r=1

ẑkr log p
(
x[k]|̄θ[r]

)

= arg max
¯
θ[l]

{ n∑

k=1

m∑
r=1

ẑkr log p(1)
(
x(1)[k]|̄θ(1)[r]

)

+
n∑

k=1

m∑
r=1

ẑkr log p(2)
(
x(2)[k]|̄θ(2)[r]

)}
,

with log p
(
x[k]|̄θ[r]

)
=

¯
θ[r]x[k]T − G

(
¯
θ[r]

)
. Using the

convexity properties of G(·), it is easily shown that:

G′(
¯
θ[l](new)) =

( n∑

k=1

ẑklx[k]
)/( n∑

k=1

ẑkl

)

can be solved for
¯
θ[l](new),(1) and

¯
θ[l](new),(2) by chang-

ing x to x(1), respectively to x(2), G′(·) to G(1)′(·),
respectively to G(2)′(·).

Table 3 summarizes the Bregman soft clustering algo-
rithm.

5 CONCLUSION

This paper considers the problem of learning the un-
derlying statistical structure of data of mixed types for
fitting generative models. A unified generative model,
the Generalized Linear Statistics (GLS) model, was estab-
lished using exponential family properties. Specifically,
this work considered mixed data-type records which
have both continuous (e.g., Exponential and Gaussian)
and discrete (e.g., count and binary) components. The

GLS approach allows for the data components to have
different parametric forms by using the large range
of exponential family distributions. The specific GLS
framework developed here is equivalent to a computa-
tionally tractable exponential families mixed data-type
hierarchical Bayes graphical model with latent variables
constrained to a low-dimensional parameter subspace.
The exponential family Principal Component Analysis
(exponential PCA) technique of [10], the Semi-Parametric
exponential family Principal Component Analysis (SP-
PCA) technique of [15] and the Bregman soft clustering
method presented in [14] were demonstrated not to be
separate unrelated algorithms, but rather different man-
ifestations of model assumptions and parameter choices
within the GLS framework. Because of this insight, the
three algorithms can be extended to readily derive novel
extensions that dealt with the important mixed data-type
case. As an example, the convex optimization problem
related to fitting to a set of data the extreme GLS case
corresponding to exponential family Principal Compo-
nent Analysis is described in detail.

Learning the GLS model provides a generative model
of the data, making it possible to both generate synthetic
data and perform effective detection or prediction on
data of mixed types in parameter space. This data-
driven decision making aspect of GLS is presented in
a forthcoming Part II paper [50].
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