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ABSTRACT

We consider the problem of both supervised and unsuper-
vised classification for multidimensional data that are non-
gaussian and of mixed types (continuous and/or discrete).
An important subclass of graphical model techniques called
Generalized Linear Statistics (GLS) is used to capture the
underlying statistical structure of these complex data. GLS
exploits the properties of exponential family distributions,
which are assumed to describe the data components, and
constrains latent variables to a lower dimensional parame-
ter subspace. Based on the latent variable information, clas-
sification is performed in the natural parameter subspace
with classical statistical techniques. The benefits of deci-
sion making in parameter space is illustrated with exam-
ples of categorical data text categorization and mixed-type
data classification. As a text document preprocessing tool,
an extension from binary to categorical data of the condi-
tional mutual information maximization based feature se-
lection algorithm is presented.

1. INTRODUCTION

The complexity of data generally comes from the possible
existence of an extremely large number of components and
from the fact that the components are often of mixed types,
i.e., some components might be continuous (with different
underlying distributions) and some components might be
discrete (categorical, count or Boolean). This is typically
the case in drug discovery, health care, or fraud detection.

Graphical models, also referred to as Bayesian Networks
when their graph is directed, are a powerful tool to encode
and exploit the underlying statistical structure of complex
data sets [5]. The Generalized Linear Statistics (GLS) frame-
work represents a subclass of graphical model techniques
and includes as special cases multivariate probabilistic sys-
tems such as Principal Component Analysis (PCA), Gen-
eralized Linear Models (GLMs) and factor analysis [7]. It
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is equivalent to a computationally tractable mixed exponen-
tial families data-type hierarchical Bayes graphical model
with latent variables constrained to a low-dimensional pa-
rameter subspace. The use of exponential family distribu-
tions allows the data components to have different paramet-
ric forms and exploits the division between data space and
parameter space specific to exponential families. In addition
to giving a generative model that can be fit to the data, it of-
fers the advantage that problems can be attacked in a latent
variable parameter subspace that is a continuous, Euclidean
space, even when data are categorical or of mixed types.

Although a variety of techniques exists for performing
inference on graphical models, it is, in general, very difficult
to learn the parameters which constitute the model, even if
it is assumed that the graph structure is known. The main
goal of this paper is to demonstrate our ability to learn a
generative GLS graphical model that captures the statistical
structure of the data, to then use this knowledge to gain in-
sight into the problem domain, and perform effective classi-
fication. The text categorization and classification problems
shown in the paper serve this purpose as examples illus-
trating the benefits of making decisions in parameter space
rather than in data space as done with more classical ap-
proaches. Support Vector Machines as well make decisions
in a non-data space. However, although often promising the
highest accuracy, this technique will not generally provide
any better understanding of the data. An advantage of learn-
ing a generative model of the data as done with GLS is that
generating synthetic data for the purposes of developing and
training classifiers with the same statistical structure as the
original data becomes possible. This is particularly useful
in cases where data are very difficult or expensive to obtain,
and when the original data are proprietary and cannot be
directly used for publication purposes in open literature.

In this paper, we first review the GLS framework and
show how natural it is for non-gaussian data of mixed types.
Then we demonstrate the utility of this approach with exper-
iments on real data sets, where classification in parameter
space outperforms classification in data space.



2. GENERALIZED LINEAR STATISTICS

The Generalized Linear Statistics framework is based on the
hierarchical Bayes graphical model for hidden or latent vari-
ables shown in Figure 1 [7].
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Fig. 1. Graphical model for the GLS framework.

The row vectorx = [x1, . . . ,xd] ∈ Rd consists of ob-
served features of mixed data instances in ad-dimensional
space. It is assumed that instances can be drawn from pop-
ulations having class-conditional probability density func-
tions

p(x|θ) = p1(x1|θ1) · . . . · pd(xd|θd), (1)

where, when conditioned on the random parameter vector
θ = [θ1, . . . ,θd] ∈ Rd, the components ofx are indepen-
dent. The subscripti on pi(·|·) serves to indicate that the
marginal densities can all be different, allowing for the pos-
sibility of x containing categorical, discrete, and continuous
valued components. Also, the marginal densities are each
assumed to be one-parameter exponential family densities,
andθi is taken to be the natural parameter (or some simple
bijective function of it) of the exponential family density
pi. Each component densitypi(xi|θi) in (1) for xi ∈ Xi,
i = 1, . . . ,d, is of the form

p(xi|θi) = exp
(
θixi −G(θi)

)
,

whereG(·) is the cumulant generating function defined as

G(θi) = log
∫

Xi

exp
(
θixi

)
ν(dxi),

with ν(·) a σ-finite measure that generates the exponential
family. It can be shown thatG(θ) =

∑d
i=1 G(θi) [7].

It is further assumed thatθ can be written as

θ = aV +b (2)

with the hidden or latent variablea = [a1, . . . ,aq] ∈ Rq

random and unknown withq < d (and ideallyq¿ d), V ∈
Rq×d andb ∈ Rd deterministic and unknown. The latent
variablea in some way explains part (or all) of the random
behavior of the observed variables.

The maximum likelihood identification of the blind ran-
dom effect model

p(x) =
∫

p(x|θ)π(θ)dθ =
∫ d∏

i=1

pi(xi|θi)π(θ)dθ, (3)

with π(θ) the probability density function ofθ, is quite a
difficult problem. It corresponds to identifyingπ(θ), which,
under the conditionθ = aV + b, corresponds to identify-
ing the matrixV, the vectorb, and a density function on
the random effecta via a maximization of the likelihood
functionp(X) with respect toV, b, and the random effect
density function, where

p(X) =
n∏

k=1

p
(
x[k]

)
=

n∏

k=1

∫
p
(
x[k]|θ)

π(θ)dθ, (4)

andX is the (n× d) observation matrix

X =




x[1]
x[2]

...
x[n]


 =




x1[1] . . . xd[1]
x1[2] . . . xd[2]

...
.. .

...
x1[n] . . . xd[n]


 .

This difficulty can be avoided by Non-Parametric Max-
imum Likelihood (NPML) estimation of the random effect
distribution, concurrently with the structural model parame-
ters. The NPML estimate is known to be a discrete distrib-
ution on a finite number of support points [6, 8]. As shown
in [7], the NPML approach yields unknown point-mass sup-
port points

¯
a[l], point-mass probability estimatesπl, and the

linear predictor
¯
θ[l] =

¯
a[l]V + b for l = 1, . . . ,m,m ≤ n.

The single-sample likelihood (3) then becomes

p(x) =
m∑

l=1

p
(
x|̄θ[l]

)
πl =

m∑

l=1

p
(
x|

¯
a[l]V +b

)
πl

and the data likelihood (4) is equal to

p(X)=
n∏

k=1

m∑

l=1

p
(
x[k]|̄θ[l]

)
πl=

n∏

k=1

m∑

l=1

p
(
x[k]|

¯
a[l]V+b

)
πl.

The data likelihood is thus approximately the likelihood
of a finite mixture of exponential family densities with un-
known mixture proportions or point-mass probability esti-
matesπl and unknown point-mass support points

¯
a[l], with

the linear predictor
¯
θ[l] in the lth mixture component. The

combined problem of maximum likelihood estimation of
the parametersV, b, the point-mass support points

¯
a[l] and

the point-mass probability estimatesπl, l = 1, . . . ,m, can
be attacked by either using the Expectation-Maximization
algorithm [3, 6, 8, 1], as done in particular in the Semi-
Parametric Principal Component Analysis technique [11],
or by simply considering the special case of uniform point-
mass probabilities, i.e.,πl = 1/m ∀l, for which the num-
ber of support points equals the number of data samples. It
was demonstrated in [7] that this special uniform case cor-
responds to the exponential Principal Component Analysis
technique [2]. We are using this special case in this paper.



3. CLASSIFYING IN PARAMETER SPACE: REAL
DATA EXPERIMENTAL RESULTS

The data sets used in this work are from the UC Irvine ma-
chine learning repository [14]. For each data set we do as
follows. For text categorization examples, data preprocess-
ing is needed, including a dictionary learning step. Then, for
each data set, a low-dimensional latent variable subspace is
identified in parameter space using GLS. In data space, clas-
sical Principal Component Analysis selects a lower dimen-
sional subspace. Finally, classification is performed on both
subspaces and performances are compared.

3.1. Text Categorization

The Twenty Newsgroups and the Reuters-21578 data sets
account for most of the experimental work in text catego-
rization, one example of information retrieval tasks. Text
categorization is the activity of labeling natural language
texts with thematic categories from a predefined set [13].

It has been acknowledged by the text categorization com-
munity that words seem to work well as features of a doc-
ument for many classification tasks. In addition, it is usu-
ally assumed that the ordering of the words in a document
does not matter. Hence, a document can be represented as a
vector for which each distinct word is a feature [9]. There
are two ways to characterize the value of each feature that
are commonly used in the literature: Boolean andtf×idf
weighting schemes. In Boolean weighting, the weight of a
word is1 if the word appears in the document and0 other-
wise. We choose to characterize the value of each feature by
using thetf×idf scheme as recently more commonly used
for document representation [12, 13]. Thetf×idf weight
is a statistical measure used to evaluate how important a
word (or term) is to a corpus. The importance increases
proportionally to the number of times a word appears in the
document but is offset by the frequency of the word in the
corpus. Theterm frequency tfis the number of times a spe-
cific word occurs in a specific document. Thedocument fre-
quency dfis the number of documents in which the specific
word occurs at least once. Theinverse document frequency
idf is calculated from the document frequency, yielding the
tf×idf weightwi for featurei:

wi = tfi · idfi = tfi · log ((total # of documents)/dfi) .

3.1.1. Twenty Newsgroups data set

The Twenty Newsgroups data set consists of Usenet articles
collected from twenty different newsgroups. Each news-
group contains 1000 articles. We consider the three fol-
lowing newsgroups: sci.med, comp.sys.mac.hardware and
comp.sys.ibm.pc.hardware. We decide on a text categoriza-
tion problem with two distinct classes, the first class con-

sisting of the newsgroup sci.med and the second class con-
sisting of the two other newsgroups.

Following the text document representation preprocess-
ing steps described in Figure 2, we first choose to discard all
header fields such as Cc, Bcc, Message-ID, as well as the
Subject field (this step is called parsing). Case-folding is
performed by converting all the characters into lower-case.
We use a stop list, i.e., a list of words that will not be taken
into account. Indeed, there are words such as pronouns,
prepositions and conjunctions which are encountered very
frequently but carry no useful information about the content
of the document. We used a stop list commonly used in the
literature, ftp://ftp.cs.cornell.edu/pub/smart/english.stop. It
consists of 571 stop-words and yields a drastic reduction
in the number of features. Then, some simple stemming
is performed, such as removing the third person and plural
“s”. In addition to removing very frequent words with the
stop list, we remove words appearing less than 10 times in
the corpus. Thetf×idf weighting scheme is then used and
we choose to bin the weights and work with integer valued
weights (5 bins are selected), i.e., categorical features.

Modified dictionary learning: Last, we construct a dic-
tionary, and hence reduce the dimensionality of the feature
space. There are various methods commonly applied for di-
mensionality reduction in document categorization [9]. We
choose a conditional mutual information based approach to
select a dictionary ofd = 150 words. We modify the bi-
nary feature selection with conditional mutual information
algorithm proposed in [4] to fit a categorical feature. The
feature selection algorithm proposed in [4] is based on the
conditional mutual information maximization criterion and
selects features that maximize both the information about
the class and the independence between features. The mod-
ification from binary to categorical is simple: following the
definition of entropy and mutual information shown in [4],
the summations are changed from summing over two values
to summing over the total number of bins values.

We use this data set leaving out a randomly selected
40% of the instances of each class to use as a test set. The
training set then consists of 1764 instances and the test set
1236. The dictionary is learned using the training set only.

Classification effectiveness is often measured in terms
of precisionand recall in the text categorization commu-
nity [13]. Precision with respect to a classCi (πi) is defined
as the probability that, if a random document is classified
underCi, this decision is correct. Recall with respect to a
classCi (ρi) is defined as the probability that, if a random
document ought to be classified underCi, this decision is
taken. These probabilities are estimated in terms of the con-
tingency table forCi on a given test set as follows:

π̂i =
TPi

TPi + FPi
and ρ̂i =

TPi

TPi + FNi
,

whereTPi, FPi andFNi refer to the sets oftrue positives
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Fig. 2. Preprocessing and document representation for text categorization.

with respect toCi (documents correctly deemed to belong
to classCi), false positives with respect toCi (documents in-
correctly deemed to belong to classCi), andfalse negatives
with respect toCi (documents incorrectly deemed not to be-
long to classCi). Then, theF1 measure combines precision
and recall, attributing equal importance toπ andρ:

F1 =
2 · πρ

π + ρ
.

When effectiveness is computed for several classes, the
results for individual classes can be averaged in two ways:
microaveraging, whereπ andρ are obtained by summing
over all individual classes (the subscript “µ” indicates mi-
croaveraging), andmacroaveraging, whereπ andρ are first
evaluated “locally” for each class and then “globally” by av-
eraging over the results of the different classes (the subscript
“M ” indicates macroaveraging) [13].

Supervised text categorization: Table 1 compares clas-
sification performances on (a) theq-dimensional latent vari-
able subspace learned with GLS using a Binomial distribu-
tion assumption and (b) theq-dimensional classical PCA
subspace learned in data space in terms of precision, recall
andF1 measure, for several values ofq. The classifier is a
simple linear discriminant. The classification performances
are often very similar, at times at the advantage of GLS (q =
4 and 10), at other times at the advantage of classical PCA.

Unsupervised text categorization: The K-means algo-
rithm is used to cluster the training documents into two dis-
tinct classes. Based on this clustering information, a linear
discriminant is learned on the training documents and used
to classify the test documents. Figure 3 presents the cor-
responding ROC curve for this unsupervised approach per-
formed on both the GLS parameter subspace and the clas-
sical PCA data subspace (q = 2). The performance is best
when the unsupervised approach is used on the GLS sub-
space rather than on the classical PCA subspace. In this
example, even though it is of interest, we did not further in-
vestigate the impact of the value forq on the performance.

3.1.2. Reuters-21578 data set

The Reuters-21578 text categorization test collection Dis-
tribution 1.0 is considered as the standard benchmark for
automatic document organization systems and consists of
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Fig. 3. Twenty Newsgroups data set: ROC curve for the pro-
posed unsupervised text categorization technique performed
on the low-dimensional subspace learned by (a) GLS (solid
line) and (b) classical PCA (dashed line) (q = 2).

documents that appeared on the Reuters newswire in 1987.
This corpus contains 21578 documents assigned to 135 dif-
ferent economic subject categories calledtopics. The topics
are not disjoint. For the training test division of the data,
the “Modified Apte” (ModApte) split is used. We reduce
the size of the training test sets by only considering the ten
topics that have the highest number of training documents
as commonly done in the literature [13]. These topics are
given in Table 2 and yield a training set of 6490 documents
and a test set of 2545 documents. They cover almost all of
the data, hence, researchers are able to restrict their work to
them and still capture the essence of the data set.

The data are preprocessed as done for the previous data
set: parsing, case-folding, elimination of stopwords, stem-
ming by using Porter’s stemming algorithm commonly used
for word stemming in English [10], elimination of words
that appear less than 20 times in the corpus,tf×idf weight-
ing. Then, we choose to bin the weights and work with
integer valued weights (5 bins are selected), i.e., categori-
cal features. A dictionary ofd = 50 words is learned using
the following approach. The dictionary is learned on the
training set only and built independently for each of the ten
classes. Feature selection was incremental. First we do a
backward selection to 300 features with linear regression.
From these 300 features, we use a logistic regression with
a number of iterations reduced down to 5 for convergence,
and do a backward selection down to 100 features. Finally,
we do a standard full-convergence logistic regression from



Table 2. The ten topics with the highest number of training
documents in the Reuters-21578 data set with the number
of their documents in the training and test sets.

topics training set test set

earn 2877 1087
acq 1650 719

money-fx 538 179
grain 433 149
crude 389 189
trade 369 118

interest 347 131
wheat 212 71
ship 197 89
corn 181 56

those 100 features down to 50 features.
Table 3 compares classification performances micro- and

macroaveraged over the top ten categories of the Reuters-
21578 data set using a linear discriminant classifier on (a)
the latentq-dimensional variable subspace learned with GLS
using a Binomial distribution assumption and (b) the classi-
cal PCAq-dimensional subspace learned in data space. Mi-
croaveraging and macroaveraging methods give quite differ-
ent results: the linear discriminant classifier performs better
based on the GLS information than on classical PCA in-
formation when the macroaveraging method is used, while
microaveraging emphasizes how similar the two results are.
It is known that the ability of a classifier to behave well
on categories with few positive training instances will be
highlighted by macroaveraging compared to microaverag-
ing [13]. The linear discriminant classifier based on GLS in-
formation performs very well for the categories with fewer
positive training instances yielding a better macroaveraged
performance than the microaveraged one, cf. Table 2.

3.2. Abalone data set

The task is to predict the age of an abalone based on physi-
cal measurements. The Abalone data set consists of 4177
instances with 8 attributes. The problem can be seen as
a classification problem aiming to distinguish three classes
(number of rings = 1 to 8, number of rings = 9 to 10, number
of rings = 11 and higher). We use this data set leaving out a
randomly selected 40% of the instances to use as a test set
(2506 training points and 1671 test points). Attribute 1 (sex,
defined as infant, male or female) is the only noncontinuous
attribute. We choose to model this attribute with a Binomial
distribution, hence choosing a Gaussian-Binomial mixed-
data assumption. Table 4 compares micro- and macroaver-
aged classification performances using a linear discriminant
classifier on (a) the latentq-dimensional variable subspace
learned with GLS using a mixed Gaussian-Binomial distri-

bution assumption and (b) the classical PCAq-dimensional
subspace learned in data space. Performances are best when
classification is performed on the GLS parameter subspace.

4. CONCLUSION

As with Bayesian Networks in general, the strength of the
Generalized Linear Statistics framework is that it offers im-
portant insight into the underlying statistical structure of
complex data, both creating a generative model of the data
and making effective classification decisions possible. The
benefits of making decisions in parameter space rather than
in data space as done with more classical approaches have
been illustrated with examples of Binomial data supervised
and unsupervised text categorization and Gaussian-Binomial
mixed-data supervised classification. However, one notice-
able weakness of the framework is its running time. In ad-
dition, for the text categorization situation, the conditional
mutual information maximization based feature selection
algorithm was modified to fit categorical data.
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Table 1. Twenty Newsgroups data set: linear discriminant classification performances on theq-dimensional latent variable
space learned with classical PCA and GLS with a Binomial distribution (1236 test instances).

PCA - Precision PCA - Recall PCA -F1 GLS - Precision GLS - Recall GLS -F1

q = 1 0.5045 0.8149 0.6232 0.3677 0.6603 0.4744
q = 2 0.7843 0.9351 0.8531 0.7844 0.8918 0.8346
q = 3 0.9388 0.8846 0.9109 0.8641 0.8558 0.8599
q = 4 0.9389 0.8870 0.9122 0.8830 0.9615 0.9206
q = 5 0.9038 0.9712 0.9363 0.8931 0.9639 0.9272
q = 6 0.9038 0.9712 0.9363 0.8914 0.9663 0.9273
q = 8 0.9040 0.9736 0.9375 0.8813 0.9639 0.9208
q = 10 0.8904 0.9760 0.9312 0.9691 0.9038 0.9353

Table 3. Reuters-21578 data set: linear discriminant classification performances (microaveraged in (a) and macroaveraged in
(b)) on theq-dimensional latent variable space learned with classical PCA and GLS with a Binomial distribution.

(a) Microaveraged performances

PCA - Precisionµ PCA - Recallµ PCA -Fµ
1 GLS - Precisionµ GLS - Recallµ GLS -Fµ

1

q = 1 0.2408 0.7306 0.3622 0.2845 0.5653 0.3785
q = 2 0.3704 0.8303 0.5123 0.4087 0.7665 0.5331
q = 3 0.4553 0.8296 0.5880 0.4239 0.8099 0.5565
q = 4 0.4709 0.8260 0.5998 0.4743 0.8128 0.5990
q = 5 0.6178 0.8275 0.7075 0.6233 0.7895 0.6966
q = 6 0.6265 0.8364 0.7164 0.6484 0.8056 0.7185

(b) Macroaveraged performances

PCA - PrecisionM PCA - RecallM PCA -FM
1 GLS - PrecisionM GLS - RecallM GLS -FM

1

q = 1 0.2200 0.6403 0.2905 0.3040 0.6274 0.3751
q = 2 0.3763 0.7717 0.4475 0.4006 0.7174 0.4757
q = 3 0.4342 0.7842 0.5184 0.4662 0.7552 0.5267
q = 4 0.4594 0.7820 0.5423 0.5138 0.7611 0.5804
q = 5 0.4988 0.7673 0.5870 0.5307 0.7386 0.6007
q = 6 0.5306 0.7809 0.6150 0.5471 0.7373 0.6134

Table 4. Abalone data set: linear discriminant classification performances (microaveraged in (a) and macroaveraged in (b))
on theq-dimensional latent variable space learned with classical PCA and GLS with a Gaussian-Binomial mixed distribution.

(a) Microaveraged performances

PCA - Precisionµ PCA - Recallµ PCA -Fµ
1 GLS - Precisionµ GLS - Recallµ GLS -Fµ

1

q = 1 0.5036 0.7120 0.5899 0.5043 0.7409 0.6001
q = 2 0.5085 0.7337 0.6007 0.5178 0.7385 0.6088

(b) Macroaveraged performances

PCA - PrecisionM PCA - RecallM PCA -FM
1 GLS - PrecisionM GLS - RecallM GLS -FM

1

q = 1 0.5204 0.7126 0.5952 0.5208 0.7415 0.6058
q = 2 0.5242 0.7335 0.6062 0.5337 0.7380 0.6141


