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ABSTRACT is equivalent to a computationally tractable mixed exponen-

We consider the problem of both supervised and unsuper_tial families data-type hierarchical Bayes graphical model

vised classification for multidimensional data that are non- with latent variables constrained to a low-dimensional pa-

gaussian and of mixed types (continuous and/or discrete){_"’"”nete"r subtshpagei The use oftextpohnenng_lﬁfamni/ d'St”but_
An important subclass of graphical model techniques called lons allows the data components 1o have ditferent paramet-

Generalized Linear Statistics (GLS) is used to capture the'C forms and exploits the division between data space and

underlying statistical structure of these complex data. GLS pargmeter space sp ecific to exponential fgmilies. n adgiition
exploits the properties of exponential family distributions, to giving a generative model that can be fit to the data, it of-

which are assumed to describe the data components, angers_ the advantage that problems can be afctacked ina !atent
constrains latent variables to a lower dimensional parame-Varlalble parameter subspace that is a continuous, Euclidean

ter subspace. Based on the latent variable information, clasSPace, even when_data are catggorlcal or of mixed type_s.
Although a variety of techniques exists for performing

sification is performed in the natural parameter subspace, ; A o
inference on graphical models, itis, in general, very difficult

with classical statistical techniques. The benefits of deci- N i ,
to learn the parameters which constitute the model, even if

sion making in parameter space is illustrated with exam- - 4 that th h i< k h .
ples of categorical data text categorization and mixed-typeIt IS assume t at'g e graph structure Is noyyn. The main
goal of this paper is to demonstrate our ability to learn a

data classification. As a text document preprocessing tool, , ) -
an extension from binary to categorical data of the condi- generative GLS graphical model that captures the statistical
structure of the data, to then use this knowledge to gain in-

tional mutual information maximization based feature se- """ : , )
lection algorithm is presented. S.Igh.t into the problem domal_rl, and perfonfn. effgcnve classi-
fication. The text categorization and classification problems
shown in the paper serve this purpose as examples illus-
trating the benefits of making decisions in parameter space

Th mplexity of dat nerall mes from th iol rather than in data space as done with more classical ap-
€ complexity ot data generally comes 1ro € POSSIDIE 1 haches. Support Vector Machines as well make decisions
existence of an extremely large number of components antf

from the fact that the components are often of mixed types nanon-data space. However, although often promising the
. P . nixed typ "highest accuracy, this technique will not generally provide
i.e., some components might be continuous (with different

derlving distributi q ts miaht b any better understanding of the data. An advantage of learn-
uncerlying distribu lons) and some components mig € ing a generative model of the data as done with GLS is that
discrete (categorical, count or Boolean). This is typically

the case in drug discovery, health care, or fraud detection. generating synthetic data for the purposes of developing and

. ; training classifiers with the same statistical structure as the
Graphical models, also referred to as Bayesian Networks 9

when their araph is directed. are a powerful 1ol to encode original data becomes possible. This is particularly useful
' grap . careap in cases where data are very difficult or expensive to obtain,
and exploit the underlying statistical structure of complex

? . -~ and when the original data are proprietary and cannot be
data sets [5]. The Generalized Linear Statistics (GLS) frame-directly used for publication purposes in open literature.

Work_ represents a Su_bclass of gra_phlc_:al model t??h.”'q“es In this paper, we first review the GLS framework and
and includes as special cases multivariate probabilistic sys-

s such as Prnipl Component Anaiss (RO, G 7 2" 2019 S o er gavsion St o e ypes
eralized Linear Models (GLMs) and factor analysis [7]. It y pp P

iments on real data sets, where classification in parameter
This research was partially supported by NSF grant No. CCF-0830612. space outperforms classification in data space.

1. INTRODUCTION




2. GENERALIZED LINEAR STATISTICS with 7(6) the probability density function of, is quite a

difficult problem. It corresponds to identifying @), which,
The Generalized Linear Statistics framework is based on theunder the conditio® = aV + b, corresponds to identify-

hierarchical Bayes graphical model for hidden or latent vari- ing the matrixV, the vectorb, and a density function on
ables shown in Figure 1 [7]. the random effech via a maximization of the likelihood
function p(X) with respect toV, b, and the random effect
density function, where

p(X) = [ olxlt]) = [T [ pxlblio)x(o)06, @)
k=1 k=1

andX is the @ x d) observation matrix

x|[1] x1[1] ... xg[l]
Fig. 1. Graphical model for the GLS framework. X — x[2] _ z1[2] .. w2
The row vectorx = [z1,...,z24) € R? consists of ob- x[n] z1[n] ... zaln]

served features of mixed data instances iirdimensional

space. Itis assumed that instances can be drawn from pop-  This difficulty can be avoided by Non-Parametric Max-
ulations having class-conditional probability density func- jmum Likelihood (NPML) estimation of the random effect

tions distribution, concurrently with the structural model parame-

p(x|60) = p1(z1]61) - ... - pa(zalba), (1) ters. The NPML estimate is known to be a discrete distrib-
where, when conditioned on the random parameter vectorution on a finite number of support points [6, 8]. As shown
0 = [61,...,04) € RY, the components of are indepen-  in [7], the NPML approach yields unknown point-mass sup-

dent. The subscript on p;(-|-) serves to indicate that the port pointsa[l], point-mass probability estimates and the
marginal densities can all be different, allowing for the pos- linear predicto@[l] = a[l]V +bfori=1,...,m,m <n.
sibility of x containing categorical, discrete, and continuous The single-sample likelihood (3) then becomes

valued components. Also, the marginal densities are each
assumed to be one-parameter exponential family densities, B B
andd; is taken to be the natural parameter (or some simple px) = Zp(xm[l])m o Zp(x|§[l]v + b)m

m m

bijective function of it) of the exponential family density =t =
pi- Each component densify (z;|0;) in (1) forz; € X5, and the data likelihood (4) is equal to
1=1,...,d,is of the form
p(w;]6;) = exp (0iz; — G(6;)), pX)=]]>_p(xklem)m=]]>_ p(x[Kllal]V+b)m.
whereG(-) is the cumulant generating function defined as k=11=1 k=11=1
G(6;) = log/ exp (0;z:)v(dzy), Thg datg likelihood is thus gpprox?mately Fhe Iikglihood
X, of a finite mixture of exponential family densities with un-

with v/(-) a o-finite measure that generates the exponential KOWn mixture proportions or point-mass probability esti-

. T —d . matesr; and unknown point-mass support poiafg], with
famlly. It can be shown tha(6) = Zi:.l G(6:) [7] the linear predictog|(] in thelth mixture component. The
Itis further assumed th#&t can be written as

combined problem of maximum likelihood estimation of

6 =aV+b (2) the parameter¥, b, the point-mass support poird§] and
with the hidden or latent variable = [a;,...,a,] € R?  the point-mass probability estimates/ = 1,...,m, can
random and unknown with < d (and ideallyg < d), V € be attacked by either using the Expectation-Maximization

R7*¢ andb € R? deterministic and unknown. The latent &lgorithm [3, 6, 8, 1], as done in particular in the Semi-
variablea in some way explains part (or all) of the random Parametric Principal Component Analysis technique [11],

behavior of the observed variables. or by simply considering the special case of uniform point-
The maximum likelihood identification of the blind ran- Mass probabilities, i.ez; = 1/m Vi, for which the num-
dom effect model ber of support points equals the number of data samples. It

was demonstrated in [7] that this special uniform case cor-

d . . . .
_ 0)r(0)d0 — (2:]0:)7(0)d0, (3 responds to the exponential Principal Component Analysis
P(x) /p(x| Jm(®) /I[lp (i[6:)m(8) ® technique [2]. We are using this special case in this paper.



3. CLASSIFYING IN PARAMETER SPACE: REAL sisting of the newsgroup sci.med and the second class con-
DATA EXPERIMENTAL RESULTS sisting of the two other newsgroups.

Following the text document representation preprocess-

The data sets used in this work are from the UC Irvine ma- ing steps described in Figure 2, we first choose to discard all

chine learning repository [14]. For each data set we do asheader fields such as Cc, Bcc, Message-ID, as well as the
follows. For text categorization examples, data preprocess-Subject field (this step is called parsing). Case-folding is
ing is needed, including a dictionary learning step. Then, for performed by converting all the characters into lower-case.
each data set, a low-dimensional latent variable subspace is\e use a stop list, i.e., a list of words that will not be taken

identified in parameter space using GLS. In data space, clasinto account. Indeed, there are words such as pronouns,

sical Principal Component Analysis selects a lower dimen- prepositions and conjunctions which are encountered very
sional subspace. Finally, classification is performed on bothfrequently but carry no useful information about the content

subspaces and performances are compared. of the document. We used a stop list commonly used in the
literature, ftp://ftp.cs.cornell.edu/pub/smart/english.stop. It
3.1. Text Categorization consists of 571 stop-words and yields a drastic reduction

in the number of features. Then, some simple stemming
The Twenty Newsgroups and the Reuters-21578 data set§g nerformed, such as removing the third person and plural

account for most of the experimental work in text catego- “s”_ In addition to removing very frequent words with the

rization, one example of information retrieval tasks. Text stop list, we remove words appearing less than 10 times in

categorization is_the activi_ty of labeling na_tural language the corpus. Thef xidf weighting scheme is then used and
texts with thematic categories from a predefined set [13]. we choose to bin the weights and work with integer valued

Ithas been acknowledged by the text categorization Comy,aiqhis (5 bins are selected), i.e., categorical features.
munity that words seem to work well as features of a doc- Modified dictionary learningLast, we construct a dic-

ulrlnent for mgn?]/ claﬁmﬂcgthn taiki' In a(;dlt_lon, c'jt IS USU- tionary, and hence reduce the dimensionality of the feature
ally assumed that the ordering of the words In a OCume”t::ﬁ)ace. There are various methods commonly applied for di-
does not matter. Hence, a document can be represented as, ensionality reduction in document categorization [9]. We

vector for which each distinct word is a feature [9]. There .,,qe 5 conditional mutual information based approach to
are two ways to characterize the value of each feature tha%elect a dictionary off = 150 words. We modify the bi-

are commonly used in the literature: Boolean ahdidf

ahi h | it h iaht of nary feature selection with conditional mutual information
weighting schemes. In Boolean weighting, the weight of & ,45rithm proposed in [4] to fit a categorical feature. The

Wf“d is1 if the word appears In the document amdther- feature selection algorithm proposed in [4] is based on the
WISE. We chc_)ose to characterize the value of each feature b360nditional mutual information maximization criterion and
using thetf xidf scheme as recently more commonly used gqjocts features that maximize both the information about
for document representation [12, 13]. Ttecidf weight o cjass and the independence between features. The mod-
is a statistical measure used to eval_uate how |mp0rtant Sfication from binary to categorical is simple: following the
word (or term) is to a corpus. The importance INCreases yefinjtion of entropy and mutual information shown in [4],

proportionally t_o the number of times a word appears_in the e summations are changed from summing over two values
document but is offset by the frequency of the word in the to summing over the total number of bins values.

corpus. Theerm frequency tfs the number of times a spe- We use this data set leaving out a randomly selected

cific word occurs in a specific document. Téecumentfre- 404 of the instances of each class to use as a test set. The

quency dfis the number of documents in which the SPecific y4ining set then consists of 1764 instances and the test set
word occurs at least once. Thwerse document frequency 1236. The dictionary is learned using the training set only.

idf is calculated from the document frequency, yielding the ¢ |5sgification effectiveness is often measured in terms

tf xidf weightw; for featurei: of precisionandrecall in the text categorization commu-
nity [13]. Precision with respect to a cla8s(r;) is defined
as the probability that, if a random document is classified
underC;, this decision is correct. Recall with respect to a
3.1.1. Twenty Newsgroups data set classC; (p;) is defined as the probability that, if a random

) ~document ought to be classified undgr this decision is
The Twenty Newsgroups data set consists of Usenet articlegaken. These probabilities are estimated in terms of the con-

collected from twenty different newsgroups. Each news- tingency table foc; on a given test set as follows:
group contains 1000 articles. We consider the three fol- TP TP

lowing newsgroups: sci.med, comp.sys.mac.hardware and = ! and p; = — ",
comp.sys.ibm.pc.hardware. We decide on a text categoriza- TP, + FP TP, + FN;
tion problem with two distinct classes, the first class con- whereT P;, F' P; and F'N; refer to the sets dfue positives

w; = tf; -idf; = tf; - log ((total # of documentg)if;) .



text : ; removing : term dictionary encoded
44 parsmgH case—foldlnq_. stemming o R
document stopwords - weighing learning vector

Fig. 2. Preprocessing and document representation for text categorization.

with respect taC; (documents correctly deemed to belong
to clas<’;), false positives with respect & (documents in-
correctly deemed to belong to clagg, andfalse negatives
with respect t&; (documents incorrectly deemed not to be-
long to clas<’;). Then, theF; measure combines precision
and recall, attributing equal importancest@ndp:
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When effectiveness is computed for several classes, the : : : :
results for individual classes can be averaged in two ways: ° % prcbaviyotfasedam, P, !
microaveraging wherew and p are obtained by summing
over all individual classes (the subscript™indicates mi- Fig. 3. Twenty Newsgroups data set: ROC curve for the pro-
Croa\/eraging), and’]acroaveragingwhereﬂ— andp are first posed unsupervised text Categorization technique performed
evaluated “locally” for each class and then “globally” by av- ©n the low-dimensional subspace learned by (a) GLS (solid
eraging over the results of the different classes (the subscriptine) and (b) classical PCA (dashed ling) 2).

“M" indicates macroaveraging) [13].

Supervised text categorizatioffable 1 compares clas- documents that appeared on the Reuters newswire in 1987.
sification performances on (a) thedimensional latent vari-  This corpus contains 21578 documents assigned to 135 dif-
able subspace learned with GLS using a Binomial distribu- férent economic subject categories caliepics The topics
tion assumption and (b) the-dimensional classical PCA ~ are not disjoint. For the training test division of the data,
subspace learned in data space in terms of precision, recafihe “Modified Apte” (ModApte) split is used. We reduce
and F, measure, for several values @f The classifier is a the size of the training test sets by only considering the ten
simple linear discriminant. The classification performances topics that have the highest number of training documents
are often very similar, at times at the advantage of GL.S (@S commonly done in the literature [13]. These topics are

4 and 10), at other times at the advantage of classical PCA.given in Table 2 and yield a training set of 6490 documents
Unsupervised text categorizatiohe K -means algo- ~ and a test set of 2545 documents. They cover almost all of

rithm is used to cluster the training documents into two dis- the data, hence, researchers are able to restrict their work to

tinct classes. Based on this clustering information, a linear them and still capture the essence of the data set.
discriminant is learned on the training documents and used The data are preprocessed as done for the previous data
to classify the test documents. Figure 3 presents the corset: parsing, case-folding, elimination of stopwords, stem-
responding ROC curve for this unsupervised approach per-ming by using Porter’'s stemming algorithm commonly used
formed on both the GLS parameter subspace and the clasfor word stemming in English [10], elimination of words
sical PCA data subspace € 2). The performance is best that appear less than 20 times in the corpisidf weight-
when the unsupervised approach is used on the GLS subing. Then, we choose to bin the weights and work with
space rather than on the classical PCA subspace. In thisnteger valued weights (5 bins are selected), i.e., categori-
example, even though it is of interest, we did not further in- cal features. A dictionary of = 50 words is learned using
vestigate the impact of the value fgon the performance. the following approach. The dictionary is learned on the
training set only and built independently for each of the ten
classes. Feature selection was incremental. First we do a
3.1.2. Reuters-21578 data set backward selection to 300 features With I_inear regr_essio_n.
From these 300 features, we use a logistic regression with
The Reuters-21578 text categorization test collection Dis- a number of iterations reduced down to 5 for convergence,
tribution 1.0 is considered as the standard benchmark forand do a backward selection down to 100 features. Finally,
automatic document organization systems and consists ofve do a standard full-convergence logistic regression from

o




Table 2. The ten topics with the highest number of training

bution assumption and (b) the classical PEAimensional

documents in the Reuters-21578 data set with the numbesubspace learned in data space. Performances are best when

of their documents in the training and test sets.

topics H training set‘ test set‘
earn 2877 1087
acq 1650 719
money-fx 538 179
grain 433 149
crude 389 189
trade 369 118
interest 347 131
wheat 212 71
ship 197 89
corn 181 56

those 100 features down to 50 features.

classification is performed on the GLS parameter subspace.

4. CONCLUSION

As with Bayesian Networks in general, the strength of the
Generalized Linear Statistics framework is that it offers im-
portant insight into the underlying statistical structure of
complex data, both creating a generative model of the data
and making effective classification decisions possible. The
benefits of making decisions in parameter space rather than
in data space as done with more classical approaches have
been illustrated with examples of Binomial data supervised
and unsupervised text categorization and Gaussian-Binomial
mixed-data supervised classification. However, one notice-
able weakness of the framework is its running time. In ad-
dition, for the text categorization situation, the conditional

Table 3 compares classification performances micro- andmutual information maximization based feature selection
macroaveraged over the top ten categories of the Reutersalgorithm was modified to fit categorical data.

21578 data set using a linear discriminant classifier on (a)
the lateny-dimensional variable subspace learned with GLS
using a Binomial distribution assumption and (b) the classi-
cal PCAg-dimensional subspace learned in data space. Mi-
croaveraging and macroaveraging methods give quite differ-
ent results: the linear discriminant classifier performs better
based on the GLS information than on classical PCA in-
formation when the macroaveraging method is used, while
microaveraging emphasizes how similar the two results are.
It is known that the ability of a classifier to behave well
on categories with few positive training instances will be
highlighted by macroaveraging compared to microaverag-
ing [13]. The linear discriminant classifier based on GLS in-
formation performs very well for the categories with fewer
positive training instances yielding a better macroaveraged
performance than the microaveraged one, cf. Table 2.

3.2. Abalone data set
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Table 1. Twenty Newsgroups data set: linear discriminant classification performances glithensional latent variable

space learned with classical PCA and GLS with a Binomial distribution (1236 test instances).

PCA - Precision| PCA - Recall| PCA-F; || GLS - Precision| GLS - Recall| GLS - F}
g=1 0.5045 0.8149 0.6232 0.3677 0.6603 0.4744
qg=2 0.7843 0.9351 0.8531 0.7844 0.8918 0.8346
q=3 0.9388 0.8846 0.9109 0.8641 0.8558 0.8599
qg=4 0.9389 0.8870 0.9122 0.8830 0.9615 0.9206
q=>5 0.9038 0.9712 0.9363 0.8931 0.9639 0.9272
q==6 0.9038 0.9712 0.9363 0.8914 0.9663 0.9273
q=28 0.9040 0.9736 0.9375 0.8813 0.9639 0.9208
qg=10 0.8904 0.9760 0.9312 0.9691 0.9038 0.9353

Table 3. Reuters-21578 data set: linear discriminant classification performances (microaveraged in (a) and macroaveraged in

(b)) on theg-dimensional latent variable space learned with classical PCA and GLS with a Binomial distribution.

(a) Microaveraged performances

PCA - Precisioti | PCA - Recalt | PCA - F} || GLS - Precisiofi | GLS - Recalt | GLS - F}'
qg=1 0.2408 0.7306 0.3622 0.2845 0.5653 0.3785
q=2 0.3704 0.8303 0.5123 0.4087 0.7665 0.5331
q=3 0.4553 0.8296 0.5880 0.4239 0.8099 0.5565
qg=14 0.4709 0.8260 0.5998 0.4743 0.8128 0.5990
q= 0.6178 0.8275 0.7075 0.6233 0.7895 0.6966
q= 0.6265 0.8364 0.7164 0.6484 0.8056 0.7185
(b) Macroaveraged performances
PCA - Precisiof! | PCA - Recalt | PCA-FM || GLS - Precisiof | GLS - Recalt! | GLS - FM
qg=1 0.2200 0.6403 0.2905 0.3040 0.6274 0.3751
q=2 0.3763 0.7717 0.4475 0.4006 0.7174 0.4757
q=3 0.4342 0.7842 0.5184 0.4662 0.7552 0.5267
q=4 0.4594 0.7820 0.5423 0.5138 0.7611 0.5804
q=>5 0.4988 0.7673 0.5870 0.5307 0.7386 0.6007
q==6 0.5306 0.7809 0.6150 0.5471 0.7373 0.6134

Table 4. Abalone data set: linear discriminant classification performances (microaveraged in (a) and macroaveraged in (b))
on theg-dimensional latent variable space learned with classical PCA and GLS with a Gaussian-Binomial mixed distribution.

(a) Microaveraged performances

PCA - Precisioti | PCA - Recalt | PCA-F}" | GLS - Precisioti | GLS - Recalt | GLS - F¥'
qg=1 0.5036 0.7120 0.5899 0.5043 0.7409 0.6001
q=2 0.5085 0.7337 0.6007 0.5178 0.7385 0.6088
(b) Macroaveraged performances
PCA - Precisiof! | PCA - Recalt! | PCA-FM || GLS - Precisiof | GLS - Recalt! | GLS - FM
qg=1 0.5204 0.7126 0.5952 0.5208 0.7415 0.6058
q=2 0.5242 0.7335 0.6062 0.5337 0.7380 0.6141




