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Abstract—Many important analytic applications de-
pend on the ability to accurately detect or predict the
occurrence of key events given a data set of observations.
We concentrate on multidimensional data that are highly
nongaussian (continuous and/or discrete), noisy and non-
linearly related. We investigate the feasibility of data-
pattern discovery and event detection in such domains
by applying generalized principal component analysis
(GPCA) techniques for pattern extraction based on an
exponential family probability distribution assumption.
We develop theoretical extensions of the GPCA model by
exploiting results from the theory of generalized linear
models and nonparametric mixture density estimation.

I. INTRODUCTION

Many important risk assessment system applica-
tions depend on the ability to accurately predict the
probabilities of key events given a large data set
of observations. For example this problem arises in
medicine (“Do the epidemiological data suggest that
the trace elements in the local water supply cause
cancer?”); health care (“Do the descriptors associated
with the professional behavior of a medical doctor
suggest that he/she is an outlier in the category he/she
was assigned to0?””); and drug discovery (“Do the mole-
cular descriptors associated with known drugs suggest
that a new, candidate drug will have low toxicity
and high effectiveness?””). In many of these domains,
there is little or no a priori knowledge regarding the
true sources of any causal relationships which may
exist between variables of interest. In these situations,
meaningful information regarding the occurrences of
key events must be extracted from the data itself, a
problem which can be viewed as an important appli-
cation of data-driven pattern recognition or prediction.
The problem of unsupervised data-driven detection or
prediction is one of relating descriptors of a large
unlabeled database of “objects” to measured properties
of these objects, and then using these empirically
determined relationships to infer or detect the prop-
erties of new objects. This work considers measured
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object properties that are nongaussian (and comprised
of continuous and discrete data), very noisy, and highly
nonlinearly related. Data comprised of measurements
of such disparate properties are said to be hybrid or of
mixed type. As a consequence, the resulting detection
problem is very difficult. The difficulties are further
compounded because the descriptor space of objects
is of high dimension.

This work is specifically concerned with efficient
statistical modeling of unlabeled, nongaussian, high-
dimensional, mixed continuous and discrete data for
the practical purposes of: 1) creating statistically
faithful synthetic data for statistical testing of pro-
posed anomaly detection algorithms; and 2) devel-
oping unsupervised learning-based anomaly detection
algorithms. This paper describes a first examination
of the theoretical development of a promising gener-
alized principal component analysis (GPCA) technique
recently presented in [6]. This approach is based on the
use of exponential families of distributions to model
the various types (continuous and discrete) of data
measurements which consist of the components of a
single vector observation, x, of relevant variables, x;,
encompassing measured properties of an “object” of
interest. For this model, we need to determine both
the type of distribution used for each data feature, x;,
and the natural parameter 6; appropriate for this distri-
bution. The constraint is then imposed that the vector
of natural parameters @ lies in a lower dimensional
subspace.

This approach exploits the well-known distinction
which exists between the data space and the para-
meter space for exponential family distributions [9].
When a new data vector is observed, the data is
first transformed to the parameter space using a link
function which is obtained from the model, and then its
image in the parameter space is projected into a lower
dimensional subspace. This process is a generalization



of the classical principal component analysis (PCA)
and is effectively a way of projecting the data onto
principal components in the natural parameter space .
These principal components do not lie in the data
space as in conventional projection, but instead lie in a
hyperplane of the parameter space, and provide a novel
way to extract features from data of mixed type.

For anomaly detection, the Euclidean distance of the
new projected point is compared to the sample mean of
the projected points obtained from the training set. The
receiver operating characteristics (ROC) curve of the
detector shows its performance as a trade off between
selectivity and sensitivity. The curve presents the prob-
ability of detection as a function of the probability of
false alarm and is obtained by varying the sensitivity or
threshold parameter. A noteworthy additional benefit
of this approach is that having fit an exponential family
model to the data will allow to generate synthetic data
Monte Carlo-based assessments of the model and the
performance of proposed detection algorithms.

Theoretical extensions of the model are developed
by exploiting results from the theory of generalized
linear models [9] and nonparametric mixture density
estimation [1].

II. BREGMAN DIVERGENCE AND EXPONENTIAL
FAMILIES

A distribution is said to be a member of the expo-
nential family if it has a density function of the form

p(z;0) = exp(xf — G(0))po(w),

where po(x) represents any factor of the density which
does not depend on 6. Equivalently, one can write

logp(z;0) = logpo(x)+ x6 — G(0).

Given a function G(6) and its gradient g(6), the “dual”
function F'(x) and its gradient f(x) are given by
F(g(0)) +G(O) =
flx) = F'(z)
Let F': A — R be a differentiable and strictly convex
function defined on a closed, convex set A C R. The
Bregman divergence [3] associated with F' is defined
for ¢, 1» € A to be
Bp(ellp) = Flp) = F@) - f(¥)(¢ — ),

where f(x) = F'(z). The negative log-likelihood
function of a scalar exponentially distributed random
variable x can be expressed in terms of the Bregman
divergence as

—logp(x;0) =

The Bregman divergence can be defined between vec-
tors or matrices as well.

—logpo(x) — F(x) + Br (x| g(6))-

III. THE GENERALIZED LINEAR MODEL

Here the standard linear model is first generalized
to accommodate nongaussian outcome variables [9].
An alternate theoretical derivation for the generalized
PCA method given in [6] is then developed.

A. The standard Gaussian linear model

Consider the probability density function p(x|0) to
be a Gaussian distribution with mean g and known
covariance matrix. Note that, in the special case of
a Gaussian assumption, the mean vector p is equal
to the parameter @ of the distribution. The standard
Gaussian linear model expresses the mean vector g in
a linear structure as follows:

p=2Ex0)]=0=b+Va. )

The matrix V is assumed to be deterministic and
known, and the vectors a and b deterministic and
unknown.

B. The generalized linear model (GLM)

The probability density function p(x|@) is now as-
sumed to be a member of the exponential family of dis-
tributions, with parameter vector 6. Since the Gaussian
distribution belongs to the exponential family, allow-
ing p(x|@) to be any member of the family means
generalizing the standard Gaussian linear model. The
mean vector p is linked to the natural parameter 6
by using the so called “canonical link” function f(-).
Then, as done previously for the standard Gaussian
linear model, the parameter 6 is expressed in a linear
structure as follows:

pw=Ex|0 and f(u)=0=b+Va. (2

Again, the matrix V is assumed to be deterministic
and known, and the vectors b and a deterministic
and unknown. The link function provides a bijective
relationship between the data space and the parameter
space.

C. The random effect generalized linear model (RE-
GLM)

The model is the same as that described for the
generalized linear model, i.e.,

f(u)=0=b+Va, 3)

except that now the vector a is assumed to be random
and unknown.

D. The blind random effect generalized linear model
(BRE-GLM)

The blind random effect generalized linear model
differs from the RE-GLM in that the matrix V is
additionally assumed to be deterministic and unknown.
The generalized PCA method described in [6] belongs
to the large class of BRE-GLM'’s, and this is the model
considered in this paper.



IV. UNDERLYING STATISTICAL STRUCTURE
DISCOVERY METHOD

A. Theoretical framework

A particular “object” of interest can be associated
with a variety of descriptor random variables. These
descriptors can be viewed as comprising the compo-
nents of a random vector x = (1, ,xd)T € R4,
where the dimension d is equal to the number of
descriptors. A given set of n observed d-dimensional

points {x[k]};_, = {(z1[k], -~ zi[k], -+ zalk])"}
is considered.
The following assumptions are made:

o the samples x[k], kK = 1,--- ,n are drawn inde-

pendently;

o the components z;, i = 1,--- ,d are independent
when conditioned on the random parameter vec-
tor @ = (61,---,04)7 € RY, ie., p(x|0) =
p1(z1]61) -+ - pa(walba);

o pi(x;|0;) is any one-parameter exponential fam-
ily distribution with 6; taken to be the natural
parameter of the exponential family density p;.

The marginal densities p;(-|-) can all be different,
allowing for the possibility of x containing continuous
and discrete valued components.

Let X be the n x d matrix of observations or descrip-
tors whose k*" row is x[k]. Let © be a n x d matrix
of corresponding parameters whose k" row is [k].
Following the probabilistic generalized latent variable
formalism described in [4], collected data points are
assumed to have been generated from populations
having class-conditional probability density functions '
satisfying the previously stated assumptions, and the
corresponding log-likelihood function takes the fol-
lowing form:

H sz(l’z[k”ez [K]).- “4)
k=11i=1

Following the BRE-GLM
vious section,

model described in the pre-

o[k] =

with V € R4*? and b € R? deterministic, a[k] € RY
random where ¢ < d (and ideally ¢ < d). Following
the BRE-GLM model, all of the quantities V, b,
and a are assumed to be unknown, and hence need
to be identified>. This estimation is performed by
maximizing the log-likelihood function (4), i.e., by
minimizing the negative log-likelihood function. As
explained in Section II, this is identical to minimizing

b+ Valk] (5)

IDelta-functions are admitted so that densities are well-defined
for discrete, continuous, and mixed random variables.

2Resulting in a so-called “blind” estimation problem.

the corresponding Bregman divergence. Hence, [6]
exploits the properties of a Bregman divergence to
create an iterative minimization algorithm to solve
the estimation problem. Learning the matrix V and
the vector b implies identifying a lower dimensional
subspace in the parameter space.

B. Nomparametric maximum likelihood estimation

Given the n iid random variables X = [x1;- -+ ; Xy,
the (nonconditional) density p(X) requires a generally
difficult integration over the parameters:

) = [ [ selbliole)eoiasl o)
k:l .
=TI/ I piCeilblilulym(etdel
k=17 =1
where 7(6[k]) is the probability density function of
0[k] = b + Va[k|. For specified exponential family

densities p;(-|-), ¢ = 1,---,d, maximum likelihood
identification of the model (6) corresponds to identi-
fying (@), which, under the condition & = b + V a,
corresponds to identifying the matrix V, the vector
b, and a density function, p(a), on the vector a
via a maximization of the likelihood function p(X)
with respect to 'V, b, and p(a). This is generally a
quite difficult problem [9] and is usually solved using
approximation methods which correspond to replacing
the integral in (6) by a sum [2].

p(X) = HZp K]16,)7; 1 (7)
k=1 j=1
n m d
= H ZHPZ |913 Tj.k
=1j=11i=1

over a finite number of support points 8; (equivalently,
a;) for j =1,--- ,m with point mass probabilities?

7Tj éw(@sz):W(a:aj),
Tk = w(0[k] = ;) = w(alk] = a;) = 7.

In particular, 7;; is actually independent of k. As
clearly described in [2], this approximation is justified
either as a Gaussian quadrature approximation to the
integral in (6) [9] or by appealing to the fact that the
nonparametric maximum likelihood estimate (NMLE)
of the mixture density 7(0) yields a solution which
takes a finite number of points of support [8]. With

3Note that 6, a, [k], and a[k] are (discrete) random variables
while 8; and a;, j = 1,---,m are the m nonrandom support
point values, i.e., the values of the random variables having nonzero
probabilities. Also note that taking 7(6;) = w(a;) for 8; = Va,;+
b means that we are assuming that the relationship between the
discrete values @; and a; is one-to-one.
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0 = Va + b, with V, b fixed and a random, the
likelihood (7) is equal to
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The generalized PCA method described in [6] does not
perform the estimation of the point-mass probability
estimates and instead assumes that there are m = n
points of supports 6, with 7; = 1/n for all j =
1,---,m.

V. SYNTHETIC DATA EXPERIMENTS

This paper presents anomaly detection simulation
results obtained by using synthetic data generated from
the BRE-GLM model (4)-(5), comparing the detection
performance of the generalized PCA to the detection
performance of the classical PCA. It is shown that
in certain environments the classical PCA provides
poor detection performance while the generalized PCA
performs well.

The data vectors lie in a 3-dimensional space and
are either drawn from a “bad” class or a “good” class,
each class generated according to a density of the
form (4). For each “bad” data vector sample, there
are 100 “good” data vectors, and a total of 10,000
records were generated. The data are equally divided
into a training data set and a test data set. Since the
“bad” data is a small proportion of the data set, by
learning the underlying structure of the whole training
data the underlying structure of the “good” data is
approximately learned.

Once the classical PCA and the generalized PCA
have learned a feature space projection, for each
algorithm the sample mean of the features obtained by
projecting the training data is computed. The sample
mean then is taken as an approximation to the cluster
mean in feature space of the good data class. A new
data vector, or test vector, is randomly generated from
either class, then projected to a feature vector using the
learned projection. The distance between this projected
point and the previously computed sample mean is
compared to a threshold value A. The new point is
declared to be “bad” (i.e., an outlier) if the distance is
higher than A, otherwise it is declared to be “good”.
This procedure is done for all of the test set data, and
the detection performance is assessed by plotting ROC
curves found from varying the value of A\. The ROC
curve shows the probability of detection Pp versus the
probability of false alarm Pp 4 as A varies.

Data for which the classical PCA will fail to pro-
vide accurate detection are easily created, using the
knowledge that the classical PCA defines the direction

of projection as the direction of maximum variance
in data space. The classical PCA will therefore give
poor performance on data for which the direction
of maximum variance is inappropriate for separating
“bad” from “good” data. The exponential distribution
p(z;0) = Aexp(—Az),0 = — )\ is used as an example
in the simulations. Because the link function for this
distribution is f(x) = —1/xz, the direction of maximum
variance in data space is actually the direction of min-
imum variance in feature space, and for this situation
the classical PCA should perform poorly. To test this
expectation, two different experiments are performed:

o data latent structure is 1-dimensional (¢ = 1)
o data latent structure is 2-dimensional (g = 2)

Fig. 1.  Parameter Space Feature-subspaces: the 1-dimensional
feature subspace spanned by the “good” data is given by the
solid line on the left. The subspace spanned by the “bad” data is
the dashed line on the right. The unlabeled training data feature
subspace learned by the generalized PCA is the dash-point line in
the middle.

For the first experiment, Figure (1) shows the
two 1-dimensional “good” and “bad” data-generating
subspaces, and the feature manifold learned by the
generalized PCA algorithm when run on the mixed,
unlabeled training data set. For the second experi-
ment, Figure (2) shows the two 2-dimensional data
generating subspaces, where each 2-dimensional space
is represented by 2 independent vectors lying in the
subspace. The 2-dimensional subspace learned by the
generalized PCA algorithm when run on the mixed,
unlabeled training data-set is close to the “good”
subspace, and is not shown on the figure.

The relative detection performances of the gen-
eralized PCA and the classical PCA are compared
for the two experiments on new data. Figure (3)
shows the resulting ROC curves for the 1-dimensional
case. Figure (4) presents the obtained ROC curves
for the 2-dimensional case. In the 1-dimensional case,
the generalized PCA performs uniformly better than
the classical PCA. For the 2-dimensional case, the
generalized PCA performs significantly better than the
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Fig. 2. Parameter Space Feature-subspaces: the 2-dimensional
feature subspace spanned by the “good” data contains the two “star-
pointed” heavy lines on the left. The subspace spanned by the “bad”
data contains the two “square-pointed” thin lines on the right.
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Fig. 3. ROC Curve: comparison of the performance of the classical
PCA versus the generalized PCA for the 1-dimensional projection.
Note the poor performance of the classical PCA algorithm.
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Fig. 4. ROC Curve: comparison of the performance of the classical
PCA versus the generalized PCA for the 2-dimensional projection

classical PCA in the low probability of false alarm
regime.

VI. CONCLUSION

This paper focused on the problem of anomaly
detection in an unsupervised learning context, utilizing
and extending an approach appropriate for exponential
family distributions, which has been proposed in [6].
The use of exponential family distributions allows to
work with hybrid, or mixed, data having continuous
and discrete-valued attributes. Some initial compar-
isons of the detection performance of the classical
principal component analysis (PCA) to the detection
performance of the generalized PCA algorithm have
been provided. In particular, the probabilistic under-
standing of the algorithms has been utilized to create
a statistical environment for which the classical PCA
yields inadequate behavior while the generalized PCA
algorithm, specifically designed to fit nongaussian
data, provided good detection performance.

Exploiting insights from the RE-GLM literature,
[9], [1] the basic model proposed in [6] has been
generalized to a nonparametric mixture-prior form of
the type analyzed in [1]. The possibility of using this
richer class of model for learning true class-prior and
class-conditional probabilities is being investigated. If
this can be done, then, at least in principle, true Bayes-
optimal classifiers can be constructed, yielding supe-
rior performance to the anomaly detection described
above [7]. Furthermore, the use of other algorithms to
perform the required Bregman divergence minimiza-
tions is being examined, particularly along the lines
proposed in [5].
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