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ABSTRACT 
Data mining techniques are routinely used by fundraisers to select 
those prospects from a large pool of candidates who are most 
likely to make a financial contribution. These techniques often 
rely on statistical models based on trial performance data. This 
trial performance data is typically obtained by soliciting a smaller 
sample of the possible prospect pool. Collecting this trial data 
involves a cost; therefore the fundraiser is interested in keeping 
the trial size small while still collecting enough data to build a 
reliable statistical model that will be used to evaluate the remain-
der of the prospects. 

We describe an experimental design approach to optimally choose 
the trial prospects from an existing large pool of prospects. Pros-
pects are clustered to render the problem practically tractable. We 
modify the standard D-optimality algorithm to prevent repeated 
selection of the same prospect cluster, since each prospect can 
only be solicited at most once. 

We assess the benefits of this approach on the KDD-98 data set 
by comparing the performance of the model based on the optimal 
trial data set with that of a model based on a randomly selected 
trial data set of equal size. 

Categories and Subject Descriptors 
G.3 [Probability and Statistics]: Experimental Design. 

General Terms 
Design, Experimentation, Performance. 

Keywords 
Experimental Design, solicitation campaign, data collection. 

1. INTRODUCTION 
Experimental design is a paradigm to systematically find out 
about the impact of individual characteristics on a system, where 

the system could be anything ranging from a semi-conductor 
manufacturing machine to a solicitation campaign, and the char-
acteristics could be anything influencing the system, such as tem-
perature for a manufacturing process, or household income for a 
solicitation campaign. Usually the collection of data from which 
one may determine the relationship between characteristics and 
system behavior involves a cost, and hence there is a trade-off 
between more data and thus better description (lower variance) of 
the system and associated cost. For an excellent introduction to 
the subject, see [1]. 

In this paper, we focus on the task of deriving a statistical model 
for a solicitation campaign. The model shall be used to select 
those prospects from a relatively large pool of candidates who are 
most likely to make a financial contribution. We assume that, 
although no outcome data is available to us at the start of our 
modeling effort, we do have some prior business knowledge of the 
problem from which we can derive some insight. The task at hand 
is thus to gauge the available characteristics of the prospecting 
universe (i.e. the list of possible donors) and, based on a judicious 
choice of the relevant characteristics, to make a selection of whom 
to solicit in a first round. The aim of this first round of solicita-
tions is of course to obtain sufficient data to fit the model with 
which the remainder of the prospecting universe will be evaluated. 

The question of how to select the best learning exemplars for the 
model (i.e., whom to solicit in the first round) is at the heart of 
this paper. We wish to build a linear model that predicts the prob-
ability of a given prospect to donate, and we also wish to build a 
second model that predicts how much any given prospect will 
donate, under the assumption that a donation will be made. This 
problem setting falls squarely into the domain of Experimental 
Design, where one wants to choose the points at which to collect 
data in order to minimize, for example, the combined variation of 
the unknown coefficients of the linear model one postulates. 

A key feature of Experimental Design is that the variance at a 
given data collection point can be reduced by measuring the out-
come at that point more than once. While this feature is certainly 
applicable to a physical experiment, it is not practical in a solicita-
tion campaign setting, where each prospect is usually solicited at 
most once. Hence standard Experimental Design algorithms need 
to be modified to exclude duplicate point selection. 

Furthermore, in the context of a physical experiment, for which 
Experimental Design was initially developed, any combinations of 
the various relevant characteristics can be investigated. In a solici-
tation campaign, the possible combinations of characteristics are 
limited by the pool of existing prospects. 
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This restriction leads naturally to the consideration of optimal 
designs that rely on a given (fixed) list of candidate combinations. 
One such design is a D-optimal design. In essence, the D-
optimality criterion minimizes the combined variance of the un-
known coefficients of a postulated linear model. We used a Java 
implementation of the Fedorov exchange algorithm [2], which we 
modified so that points in the design can be selected at most once. 

The application of Experimental Design to build a response model 
has the following complicating factor. In a solicitation campaign 
the outcome is binary, and we are interested in the probability of 
response, not just whether a prospect responded or not. To this 
aim, we cluster similar prospects (using a K-means algorithm with 
Euclidian distance) and then estimate the probability of response 
by computing the response rate for the cluster. If the Experimental 
Design dictates that a certain combination of characteristics be 
tested, it in effect selects a group of similar prospects which will 
all be solicited so that the response can be evaluated. This cluster-
ing approach also has the important side-benefit of making the 
problem size tractable with respect to the D-optimality search. 

A related consideration is that we have modeled this probability 
of response with a maximum likelihood logistic regression. How-
ever, our Experimental Design criterion assumes a linear regres-
sion, which implies a least square error estimate of the coeffi-
cients. In practice, the data collection process of the Experimental 
Design benefits the logistic regression as well. 

To evaluate our approach, we relied on a solicitation campaign 
data set made publicly available by a national veteran’s organiza-
tion in the context of the KDD-Cup 98. For KDD-Cup 98, half of 
the prospecting universe was randomly selected to build a model, 
which was to be used to determine the best prospects in the re-
maining half. Soliciting half of all prospects involves a significant 
upfront cost and with it, a considerable financial risk exposure, 
which one might want to reduce. One could of course simply se-
lect less than half of the data for learning, and by selecting the 
right balance between learning set size and model performance; 
one can optimize the total net profit achieved. As we will show in 
the remainder of this paper, using Experimental Design, one can 
limit upfront exposure and still obtain comparable or superior 
profits to what can be obtained with a random selection of learn-
ing sets of larger size, and thus with corresponding larger initial 
upfront exposure. 

2. POSTULATED MODEL 
2.1 Model type 
As previously mentioned, we modeled the probability of response 
of a prospect by using a logistic regression (response model), and, 
assuming response, we modeled the forecasted amount donated 
using a linear regression model (donation amount model). For a 
given prospect x, with an estimated probability of response p(x) 
and estimated donation amount a(x), the revenue to be expected 
from this prospect is thus r(x) = p(x) · a(x), with an associated cost 
c(x). One would therefore choose to solicit a prospect x if the 
expected revenue r(x) exceeds the cost c(x). For the KDD Cup 98, 
the cost was assumed to be a fixed $0.68 per solicitation. 

2.2 Selection of prospect characteristics 
This is an important step in the application of Experimental De-
sign, and arguably one of the more difficult ones (the other one 
being the selection of the learning sample size). In general, one 

can distinguish between two main approaches to the selection of 
the most relevant characteristics of the model. The first is purely 
data-driven and relies purely on statistical methods such as clus-
tering, principal component analysis, etc. The second is to use 
prior knowledge of the problem obtained from experienced fund-
raisers or from previous campaigns. The latter carries a larger risk 
as important characteristics could easily be missed, resulting in a 
poor model. Since we assumed that no data were available to us, 
we have relied exclusively on the second approach to select the 
model characteristics. We chose 12 characteristics, listed in Table 
1. They were chosen for both the response and donation amount 
model. Therefore the selection consists of variables that are be-
lieved to be predictive either of probability of response or of do-
nation amount, or both. 
 

Table 1. Characteristics in the KDD Cup 98 data set 

Name Description 

INCOME Household income 

PEPSTRFL PEP star donator flag 

NUMPROM Number promotions/solicitations send to prospect 

RAMNTALL Total received amount from all solicitations 

NGIFTALL Number of gifts received from all solicitations 

LASTGIFT Amount of last gift 

LASTDATE 
Date of last gift (transformed into how many 
months ago) 

FISTDATE 
Date of first gift (transformed into how many 
months ago) 

AVGGIFT Average gift received 

PGIFT Percentage of solicitations that resulted in a gift 

RFA_2A Amount of giving in most recent period 

RFA_2F Frequency of giving in most recent period 

 

3. Clustering 
Clustering is a basic component of our approach, not only because 
it reduces the problem size and complexity, but also because we 
are measuring the binary response instead of a continuous out-
come. By grouping similar prospects, it becomes possible to esti-
mate the probability of response by computing the response rate 
for the cluster. The size of the clusters should be constant to en-
sure uniform variance across clusters and commensurate with the 
response rate to ensure a minimum number of respondents in 
average per clusters. 

All input characteristics were standardized to a mean of 0 and a 
standard deviation of 1 to ensure a uniform scale across character-
istics. This approach is easily justified for continuous characteris-
tics by assuming that they follow a Gaussian distribution. In the 
case of the binary characteristic PEPSTRFL, this scaling corre-
sponds to a linear scale transformation that maps its two possible 
values to a scale comparable to that of the other characteristics. 
This step is necessary for the Experimental Design algorithm as 
well as for the K-means algorithm because it prevents large-
valued variables from exerting an undue influence on the model. 



The K-means algorithm does not naturally result in clusters of 
equal size. Since a probability of response is estimated from each 
cluster, a minimum cluster size needs to be imposed to maintain 
reasonable accuracy. We chose 50 prospects as this minimum, 
which seems reasonable since we expect a response rate for the 
KDD Cup 98 data set of a few percent, and thus each cluster 
should on average contain at least one respondent. To guaranty 
this minimum size, cluster seeds with a corresponding size lower 
then 50 were removed during the K-means iterations. At the end, 
larger clusters were randomly split into clusters of 50, and the 
remaining prospects discarded from the Experimental Design. To 
illustrate, a cluster with 277 prospects would give 5 clusters of 50 
prospects each, and 27 prospects would be discarded. We kept the 
same centers for all of the sub-clusters. 

4. EXPERIMENTAL DESIGN 
4.1 D-optimal designs 
An optimal design is a design that maximizes (or minimizes) some 
optimality criterion, where one commonly restricts the candidates 
for the design to a fixed list and chooses the design points with 
the help of a computer. The theory of computer-generated designs 
traces back to the work by Kiefer and Wolfowitz in the late 1950s 
[9, 10]. We have chosen one of the most well known optimality 
criterion known as the D-optimality criterion, which measures the 
volume of the combined confidence region of the unknown linear 
regression coefficients. Note that we are not yet concerned with 
the accuracy of the fit. At this stage, our objective is to minimize 
the uncertainty of the regression coefficients themselves. The 
Fedorov exchange algorithm [2] usually finds a near-optimal de-
sign by attempting to minimize the D-optimality criterion through 
selective swapping of points in and out of the design. We modi-
fied this algorithm so that any point can be incorporated at most 
once into the design. 

It is important to keep in mind that a D-optimal design is optimal 
only with respect to a pre-determined parametric linear model. In 
other words, an optimal design always requires an associated 
choice of a model class, which also includes the pre-selection of 
all characteristics in the model. Note that the model is assumed to 
be linear in the regression coefficient but there is no such restric-
tion on the characteristics themselves. For instance, a model could 
very well include a linear dependency on the square of a measured 
temperature. This underlying assumption of a model class repre-
sents one of the main weaknesses of the Experimental Design 
paradigm. If the postulated model class is incorrect, then the op-
timal collection of regression data for this (incorrect) model class 
does not necessarily lead to an optimal model (i.e., with minimum 
variance on the regression coefficients), and random selection of 
learning data might produce superior results, since no bias was 
introduced into the choice of regression data. This explains why 
Experimental Design usually performs better when the number of 
regression data samples is restricted, but not necessarily for larger 
counts. In the absence of any prior knowledge to guide the selec-
tion of a model class, the usual approach is to perform a series of 
screening experiments, that is to use Experimental Design itera-
tively by collecting data in stages and adjusting the model class 
between iterations if needed, thus allowing for the judicious in-
troduction of higher order terms. Note that in practice, in the ab-
sence of prior knowledge, a linear model often performs fairly 
well since a linear approximation is usually sufficient to capture 
the main relationships between characteristics and outcome. For 

the sake of simplicity, in this work we have assumed some prior 
knowledge to guide us in the choice of model class. 

4.2  Clustering effects 
We have already discussed the reason for forming clusters (it 
allows us to estimate a probability of response). However, there is 
another reason for this approach. Finding an optimum design in 
which several thousands of design points are to be selected from 
an even larger list of candidates implies a significant amount of 
computer runtime (several days). Clustering brings this runtime 
down to minutes. 

In consequence, the Experimental Design algorithm is tasked with 
picking the desired number of design clusters from a list of all 
available clusters. However, at completion, our model is not based 
on the cluster centers, but on the actual individual records belong-
ing to the selected clusters.  

Recall that all clusters were brought to a constant size (50 re-
cords) by randomly splitting them into smaller clusters with iden-
tical centers and discarding remaining records. This in effect in-
troduces a certain degree of variability into our designs, since for 
the Experimental Design algorithm all clusters corresponding to a 
given center (i.e., originating from the same large cluster) are 
considered identical, while in effect this may not be the case. This 
variability is obviously small for relatively uniform clusters. 

5. MODEL FITTING 
5.1 Feature selection 
If this were a real campaign rather then a simulation, we would 
have mailed out solicitations and collected what we believe to be 
an optimal data set to be used for fitting both our response and 
donation models. In our context, this simply amounts to setting 
aside the data to be used to fit our statistical models. 

As previously mentioned, we have used logistic regression for the 
former and a linear regression for the latter. We limited the possi-
ble model features (i.e., characteristics) to those previously se-
lected for the Experimental Design. We performed a forward 
stepwise selection regression for both models. This resulted in 
two different sets of variables for the response model and the 
donation model. Note that this feature selection also involves a 
certain degree of variability. 

Using a sample size of 10,000 records with a p-value of 0.2, the 
following characteristics were selected for the response model: 
INCOME, PEPSTRFL, NUMPROM, RAMNTALL, NGIFTALL, 
LASTGIFT, LASTDATE, PGIFT, RFA_2A, and RFA_2F. How-
ever, for the donation amount model and with the same p-value, 
only five characteristics were selected: PEPSTRFL, LASTGIFT, 
AVGGIFT, RFA_2A, and RFA_2F. The characteristic FIST-
DATE was not selected for either model. Had we have known this 
beforehand, we could have produced a more efficient design. 

5.2 Sample size 
How much data should we collect? This is one of the perennial 
questions in statistical modeling. Attempting to determine the 
optimal amount of data to be collected is beyond the scope of this 
work, but some practical considerations are worth mentioning. 
One such consideration is the degree of financial risk exposure. 
The process of data collection implies a cost that can sometimes 
be significant. An institution may not be willing to take such 
chances and will set an arbitrary limit to the upfront investment. 



On the other hand, setting this cost unreasonably low would result 
in a poor model that would seriously limit the campaign effective-
ness. 

We used the following rule of thumb. We require a minimum of 
10 records per regression coefficients. Our model has at most 12 
characteristics and hence 13 regression coefficients to be esti-
mated. Therefore, we need a minimum of 130 data points. Fur-
thermore, for the donation amount model we can only use the 
actual responses (not just the solicitations). We expect a response 
rate of about 5% from past experiences. Therefore, a minimum 
sample size of about 2,600 prospects would be required. In our 
simulations, we chose a basis of 2,500 prospects to get round 
multiples. 

6. MODEL EVALUATION 
Since we used the KDD Cup 98 data set to evaluate our approach, 
we begin by providing more details about it. The data contains 
demographics and donation history related to a fund-raising cam-
paign by a national veteran’s organization. In this campaign, so-
licitations requesting a donation were mailed to prospects who 
had previously donated money to the organization, but not in the 
previous twelve months. 

For the competition, the data set was split into two parts: a learn-
ing data set and a validation data set. Both sets were made avail-
able to the KDD Cup 98 contestants. However, the target fields 
(response and donation amount) of the validation data set were 
withheld, and revealed only after the contest was over. The learn-
ing set described 95,412 prospects, of which 4,843 were respond-
ers, and the validation set described 96,367 prospects, of with 
4,873 responders. This amounts to a response rate of about five 
percent. Note, that this data set was also the subject of a KDD’99 
knowledge discovery contest, where participants were invited to 
apply a range of knowledge discovery techniques to extract un-
specified findings of commercial value. 

The largest revenue can be obtained by mailing a solicitation re-
quest to all prospects in the validation set. This strategy would 
produce a total of $76,089.64 for the validation set. However, this 
is also the most costly strategy: Subtracting $0.68 per mailing for 
96,367 pieces of mail results in a net profit of only $76,089.64 - 
$65,529.56 = $10,560.08 for the validation set. Note that no 
model was required. The best theoretical result, given that the 
learning set has already been collected, can be achieved by solicit-
ing only those prospects in the validation set who will respond. 
This results in a net profit of $76,089.64 - $0.68 * 4,873 = 
$72,776.00 for the validation set. The worst theoretical result can 
be achieved by soliciting only those prospects in the validation set 
who will not respond, resulting in a total loss of (96,367-4,873) * 
$0.68= $62,215.92 for the validation set. All published models 
fell somewhere in between. 

In this paper, we have set the problem differently. We did not 
assume that about half of the data have already been collected (i.e. 
tagged) for learning purposes. Instead, we wish to decide how 
much and what data need to be collected in order to fit a model. 
This decision implies an upfront cost and therefore financial risk 
exposure. Of course, since the data collection phase also involves 
soliciting prospects, some revenue will likely be derived as well. 
As stated, the learning set for the KDD Cup 98 had 95,412 re-
cords, implying an up-front cost of 95,412 * $0.68 = $64,880.16. 
This first round of the solicitation campaign had 4,843 responders 

who donated a total of $75,668.70, so that the coincidental profit 
achieved in the data collection phase was $75,668.70 - 
$64,880.16 = $10,788.54. This is a significant portion of the total 
campaign profit, since the best published result achieves a profit 
of about $15,000 in the second round of solicitations, giving a 
total profit of about $25,800. Other results are itemized in Table 
2. 

Table 2. Selected results on the KDD Cup 98 data set 

Company/ 
Group 

Net profit in 
2nd round of 
solicitation 

Total profit of 
both rounds of 
solicitation 

Comments/ 
Reference 

Amdocs Ltd $15,040.00 $25,828.54 
KDD Cup 99 
[3] 

SAS Institute $14,877.77 $25.666.31 
KDD Cup 99 
[4] 

Zadrozny & 
Elkan, UCSD 

$14,741.00 $25,529.54 
Research 
article [5] 

GainSmarts $14,712.24 $25,500.78 
KDD Cup 98 
Winner [6] 

SAS Institute $14,662.43 $25,450.97 
KDD Cup 98 
2nd place [7] 

Quadstone $13,954.47 $24,743.01 
KDD Cup 98 
3rd place [8] 

ARIAI/ 
CARRL 

$13,824.77 $24,613.31 
KDD Cup 98 
4th place 

Amdocs Ltd $ 13,793.24 $24,581.78 
KDD Cup 98 
5th place 

 $10,560.08 $21,348.62 
Solicit every-
body 

 –$53.68 $10734.86 
KDD Cup 98 
last place 

 

It is important to put the differences in achieved net profit for the 
various models into perspective with regards to statistical signifi-
cance. Rosset and Inger from Amdocs Ltd. write in their KDD 
Cup 99 article [3] that a significant difference in model perform-
ance should definitely exceed $500. Along the same line, Georges 
and Milley from the SAS institute state in their KDD Cup 99 arti-
cle [4] that, assuming a two-stage model and a net profit of 
$16,000 [for the second round of solicitations], the 95% confi-
dence prediction interval ranges from $13,600 to $18,400. They 
conclude that the wide interval suggests that there is little statisti-
cal difference between [ their model]  and last year's winning 
models (and even less between last year's top finishers). 

To assess the merits of an approach based on Experimental De-
sign, we have compared the total profit generated with that of a 
Random Design, which is based purely on a random selection of 
an identical size of learning data. However, both approaches are 
not entirely deterministic. In the Random Design case, the source 
of variability originates from the random choice of the learning 
data. In the Experimental Design case, there are two sources of 
variability. The first originates from the Fedorov exchange algo-
rithm itself, which is an iterative approximate algorithm involving 
a random selection order. In practice, those fluctuations were 
found to be negligible. The second and more significant source of 
variability in the experimental design arises from our clustering 
method. As previously described, we used a K-means clustering 
approach with a constrained minimum cluster size of 50, and we 
randomly broke larger clusters into smaller clusters of 50 pros-



pects each. Note that these clusters are all identical from the per-
spective of the Experimental Design algorithm (they all share the 
same cluster center). 

We have addressed the issue of statistical confidence by repeating 
50 experiments for each given learning set size (i.e., first round of 
solicitation). In the Random Design case, one experiment con-
sisted simply in picking the desired number of prospects randomly 
(from a combined data set of what was originally split into the 
learning and the validation sets) and fitting and evaluating a 
model. In the Experimental Design case, an experiment consisted 
in performing the random splitting of large clusters, computing a 
near D-optimal design, and fitting and evaluating a model. 

 

Figure 1. Total net profit of solicitation campaign. 

 

In Figure 1, we report the various total profits achieved over both 
rounds of solicitation using Experimental Designs (dashed error 
bars) and Random Designs (solid error bars). We have excluded 
the top and bottom ten percentiles on account of outliers.  

It should be stressed here that the downward trend displayed in 
Figure 1 should not be interpreted as model error, which is ex-
pected to decrease with larger learning data size. Rather, it shows 
that for both cases, an optimal learning data size exists. This op-
timum corresponds to the ideal compromise between model accu-
racy and cost of data collection. Clearly, the Experimental Design 
approach yields better results and produces smaller variability for 

smaller learning set sizes. The crossover point for the KDD Cup 
98 data set is at about 10,000 records for the learning set, which 
of course could not be known prior to the data collection phase. 
Past this crossover point, the total profit achieved by models 
based on Experimental Design drops faster than that of the Ran-
dom Design.  

The fact that the approach based on Experimental Design per-
forms worse than a Random design for larger learning data sets 
can be explained as follows. By choosing a linear model, we have 
assumed an exact linear relationship between characteristics and 
outcome. The Experimental Design algorithm tends to pick points 
with the greatest leverage, and thus near the edges of the prospect-
ing universe, to maximize the goodness of fit. In reality, this rela-
tionship is rarely exactly linear. Therefore, a Random Design 
becomes preferable because it covers more evenly the prospecting 
universe. 

Finally, as Table 3 shows, the merits of an Experimental Design 
approach become greater when financial exposure during the first 
round of a solicitation campaign is of greater concern. Note that 
reported numbers for entries involving randomness correspond to 
the average of the various profits achieved over 50 experiments. 

 

Table 3. Total profits for the KDD Cup 98 data set 

Method 
Training 
sample size 

Upfront cost 
of first round  

Total profit of 
both rounds of 
solicitation 

Amdocs Ltd 
KDD Cup 99 

95,412 $64,880.16 $25,828.54 

Experimental 
Design 

10,000 $6,800 $28,471.73 

Random 10,000 $6,800 $28,686.71 

Experimental 
Design 

7,500 $5,100 $28,911.64 

Random 7,500 $5,100 $28,329.03 

Experimental 
Design 

5,000 $3,400 $28,814.58 

Random 5,000 $3,400 $27,757.05 

Experimental 
Design 

2,500 $1,700 $27,457.80 

Random 2,500 $1,700 $26,880.56 

 

7. DISCUSSION 
Overall, Experimental Design is clearly beneficial to the modeling 
of solicitation campaigns. As we have shown, it can allow fund-
raising institutions to limit upfront financial exposure during the 
data collection phase, while still allowing for the derivation of 
well-performing statistical models. But it is important to note that 
the boost Experimental Design provides occurs mostly when the 
learning sample size is relatively small. For small learning set 
samples however, the highly desirable combination of better per-
formance of models than with random data collection, smaller 
variance (higher confidence in the model performance), and sig-
nificantly reduced upfront financial exposure can be achieved. 

On the other hand, the drawbacks inherent in the method are 
clear: A significant amount of prior domain knowledge is required 
to adequately select the relevant characteristics beforehand. Also, 



since the crossover in performance between Experimental Design 
and Random Design cannot be determined in advance, special 
care has to be taken in selecting the size of the learning data sam-
ple. For large data set, a Random Design will likely be superior to 
an Experimental Design. 

A crucial parameter in our argument is the cost of collecting data 
points. In the case we used for this simulation, this cost, while not 
negligible, is not overly high. In other applications however, such 
as a vehicle crash test campaign, this cost would be much higher 
and the advantages of Experimental Design would be even 
greater. 

On a final note, in this paper we also did not address other typical 
applications of Experimental Design, such as when one can freely 
choose certain parameters (e.g. credit card offer parameters), or 
where one already has collected some data and wishes to selec-
tively collect additional data. 
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