Self-intersections for the Willmore flow

Uwe F. Mayer and Gieri Simonett

Abstract

We prove that the Willmore flow can drive embedded surfaces to self-intersections in finite time.

1 Introduction

In this paper we consider the Willmore flow in three space dimensions. We prove that embedded surfaces can be driven to a self-intersection in finite time. This situation is in strict contrast to the behavior of hypersurfaces under the mean curvature flow, where the maximum principle prevents self-intersections, but very much analogous to the surface diffusion flow.

The Willmore flow is a geometric evolution law in which the normal velocity of a moving surface equals the Laplace-Beltrami of the mean curvature plus some lower order terms. More precisely, we assume in the following that Γ_0 is a closed compact immersed and orientable surface in \mathbb{R}^3 . Then the Willmore flow is governed by the law

$$V(t) = \Delta_{\Gamma(t)} H_{\Gamma(t)} + 2H_{\Gamma(t)} (H_{\Gamma(t)}^2 - K_{\Gamma(t)}), \qquad \Gamma(0) = \Gamma_0.$$
(1.1)

Here $\Gamma = {\Gamma(t) ; t \ge 0}$ is a family of smooth immersed orientable surfaces, V(t) denotes the velocity of Γ in the normal direction at time t, while $\Delta_{\Gamma(t)}$, $H_{\Gamma(t)}$, and $K_{\Gamma(t)}$ stand for the Laplace-Beltrami operator, the mean curvature, and the Gauß curvature of $\Gamma(t)$, respectively.

The evolution law (1.1) does not depend on the local choice of the orientation. However, if $\Gamma(t)$ is embedded and encloses a region $\Omega(t)$ we always choose the outer normal, so that V(t) is positive if $\Omega(t)$ grows, and so that $H_{\Gamma(t)}$ is positive if $\Gamma(t)$ is convex with respect to $\Omega(t)$.

Any equilibrium of (1.1), that is, any closed smooth surface that satisfies the equation

$$\Delta H + 2H(H^2 - K) = 0 \tag{1.2}$$

is called a Willmore surface [18, p. 282]. There has been much interest over the last years in characterizing Willmore surfaces, see for instance [15, 18] and the references cited therein. Willmore surfaces arise as the critical points of the functional

$$W(f) := \int_{f(M)} H^2 \, dS,$$
 (1.3)

see [18, Section 7.4]. Here, M denotes a smooth closed orientable surface and $f: M \to \mathbb{R}^3$ is a smooth immersion of M into \mathbb{R}^3 . Associated with this functional is a variational problem: Given a smooth closed orientable surface M_g of genus g determine the infimum $W(M_g)$ of W(f) over all immersions $f: M_g \to \mathbb{R}^3$ and classify all manifolds $f(M_g)$ which minimize W. We refer to [4, 8, 14, 15, 17, 18] and the references therein for more details and interesting results.

The Willmore flow is the L^2 -gradient flow for the functional (1.3) on the moving boundary, see for example [7], and also [10] for related work on gradient flows. Thus the Willmore flow has the distinctive property that it evolves surfaces in such a way as to reduce the total quadratic curvature. To be more precise, we show that the flow decreases the total quadratic curvature for any $C^{2+\beta}$ initial surface Γ_0 .

Proposition 1. Let $0 < \beta < 1$ and let Γ_0 be a closed compact immersed orientable surface that is $C^{2+\beta}$ -smooth. Then

$$\int_{\Gamma(t)} H^2(t) \, d\mu \le \int_{\Gamma_0} H^2(0) \, d\mu, \qquad 0 \le t \le T,$$

where [0,T] denotes the interval of existence guaranteed in the existence theorem of [16], and where H(t) denotes the mean curvature of $\Gamma(t)$.

To the best of our knowledge, the result of Proposition 1 is new (under the given assumptions).

Next we show that the flow can force $\Gamma(t)$ to lose embeddedness in order to decrease the total quadratic curvature.

Theorem 2. Let $0 < \beta < 1$ be fixed.

There exist a closed embedded surface $\Sigma_0 \in C^{2+\beta}$, a constant $T_0 > 0$, numbers $t_0, t_1 \in (0, T_0]$ with $t_0 < t_1$, and a $C^{2+\beta}$ -neighborhood U_0 of Σ_0 such that

- (a) the Willmore flow (1.1) has a unique classical solution $\Gamma = \{\Gamma(t); t \in [0, T_0]\}$ for all $\Gamma_0 \in U_0$,
- **(b)** $\Gamma(t)$ ceases to be embedded for every $t \in (t_0, t_1)$ and every $\Gamma_0 \in U_0$.
- (c) each surface $\Gamma(t)$ is of class C^{∞} for $t \in (0, T_0]$ and smooth in $t \in (0, T_0)$.

It should be noted that the neighborhood U_0 of Theorem 2 also contains C^{∞} surfaces that will be driven to a self-intersection in finite time. Our approach
relies on results and techniques in [6, 12, 16], and we follow closely the original
argument in [12].

Lastly we mention that numerical simulations [13] seem to indicate that the Willmore flow can drive immersed surfaces to topological changes in finite time.

2 The mathematical setting

We first introduce some notations. Given an open set $U \subset \mathbb{R}^3$, let $h^s(U)$ denote the little Hölder spaces of order s > 0, that is, the closure of $BUC^{\infty}(U)$ in $BUC^s(U)$, the latter space being the Banach space of all bounded and uniformly Hölder continuous functions of order s. If Σ is a (sufficiently) smooth submanifold of \mathbb{R}^3 then the spaces $h^s(\Sigma)$ are defined by means of a smooth atlas for Σ . It is known that $BUC^t(\Sigma)$ is continuously embedded in $h^s(\Sigma)$ whenever t > s. In the following, we assume that Σ is a smooth compact closed immersed oriented surface in \mathbb{R}^3 . Let ν be the unit normal field on Σ commensurable with the chosen orientation. Then we can find a > 0 and an open covering $\{U_l; l = 1, \ldots, m\}$ of Σ such that

$$X_l: U_l \times (-a, a) \to \mathbb{R}^3$$
, $X_l(s, r) := s + r\nu(s)$,

is a smooth diffeomorphism onto its image $\mathcal{R}_l := \operatorname{im}(X_l)$, that is,

$$X_l \in \text{Diff}^{\infty}(U_l \times (-a, a), \mathcal{R}_l), \qquad 1 \le l \le m.$$

This can be done by selecting the open sets $U_l \subset \Sigma$ in such a way that they are embedded in \mathbb{R}^3 instead of only immersed, and then taking a > 0 sufficiently small so that each of the U_l has a tubular neighborhood of radius a. It follows that $\mathcal{R} := \bigcup \mathcal{R}_l$ consists of those points in \mathbb{R}^3 with distance less than a to Σ . Let $\beta \in (0, 1)$ be fixed. Then we choose numbers α , $\beta_1 \in (0, 1)$ with $\alpha < \beta_1 < \beta$. Let

$$W := \{ \rho \in h^{2+\beta_1}(\Sigma) \; ; \; \|\rho\|_{\infty} < a \} \; . \tag{2.1}$$

Given any $\rho \in W$ we obtain a compact oriented immersed manifold Γ_{ρ} of class $h^{2+\beta_1}$ by means of the following construction:

$$\Gamma_{\rho} := \bigcup_{l=1}^{m} \operatorname{Im} \left(X_{l} : U_{l} \to \mathbb{R}^{3}, \ [s \mapsto X_{l}(s, \rho(s))] \right).$$

$$(2.2)$$

Thus Γ_{ρ} is a graph in normal direction over Σ and ρ is the signed distance between Σ and Γ_{ρ} . On the other hand, every compact immersed oriented manifold Γ that is a smooth graph over Σ and that is contained in \mathcal{R} can be obtained in this way. For convenience we introduce the mapping

$$\theta_{\rho} : \Sigma \to \Gamma_{\rho}, \qquad \theta_{\rho}(s) := X_l(s, \rho(s)) \text{ for } s \in U_l, \quad \rho \in W.$$

It follows that θ_{ρ} is a well-defined global $(2 + \beta_1)$ -diffeomorphism from Σ onto Γ_{ρ} . The Willmore flow (1.1) can now be expressed as an evolution equation for the distance function ρ over the fixed reference manifold Σ ,

$$\partial_t \rho = G(\rho), \qquad \rho(0) = \rho_0.$$
 (2.3)

Here $G(\rho) := L_{\rho} \theta_{\rho}^* (\Delta_{\Gamma_{\rho}} H_{\Gamma_{\rho}} + 2H_{\Gamma_{\rho}} (H_{\Gamma_{\rho}}^2 - K_{\Gamma_{\rho}}))$ for $\rho \in h^{4+\alpha}(\Sigma) \cap W$, while $\Delta_{\Gamma_{\rho}}$, $H_{\Gamma_{\rho}}$, and $K_{\Gamma_{\rho}}$ are the Laplace-Beltrami operator, the mean curvature, and

the Gauss curvature of Γ_{ρ} , respectively, and $L(\rho)$ is a factor that comes in by calculating the normal velocity in terms of ρ , see [6] for more details. We are now ready to state the following existence result for solutions of (2.3).

Proposition 2.1. Let $\sigma \in W$ be given.

(a) There exist a positive constant $T_0 > 0$ and a neighborhood $W_0 \subset W$ of σ in $h^{2+\beta_1}(\Sigma)$ such that (2.3) has a unique solution

$$\rho(\cdot,\rho_0) \in C([0,T_0],W) \cap C^{\infty}((0,T_0) \times \Sigma)$$
 for every $\rho_0 \in W_0$

- (b) The map $[(t, \rho_0) \mapsto \rho(t, \rho_0)]$ defines a smooth local semiflow on W_0 .
- (c) $\rho(\cdot, \rho_0) \in C([0, T_0], h^{4+\alpha}(\Sigma)) \cap C^1([0, T_0], h^{\alpha}(\Sigma))$ for all $\rho_0 \in h^{4+\alpha}(\Sigma) \cap W_0$.

Proof. (a) and (b) follow from [16, Proposition 2.2]. Moreover, [16, Lemma 2.1] shows that the mapping $[\rho \mapsto G(\rho)] : h^{4+\alpha}(\Sigma) \cap W \to h^{\alpha}(\Sigma)$ is smooth and that the derivative is given by $G'(\rho) = P(\rho) + B(\rho)$, where

$$P(\rho) \in L(h^{4+\alpha}(\Sigma), h^{\alpha}(\Sigma)), \quad B(\rho) \in L(h^{2+\alpha}(\Sigma), h^{\alpha}(\Sigma)), \quad \rho \in h^{4+\alpha}(\Sigma) \cap W.$$

In the following we fix $\rho \in h^{4+\alpha}(\Sigma) \cap W$. [16, Lemma 2.1] also shows that $P(\rho)$ generates a strongly continuous analytic semigroup on $h^{\alpha}(\Sigma)$. A well-known perturbation result, see [1, Theorem I.1.3.1], then implies $G'(\rho) \in L(h^{4+\alpha}(\Sigma), h^{\alpha}(\Sigma))$ also generates a strongly continuous analytic semigroup on $h^{\alpha}(\Sigma)$. It is known that the little Hölder spaces are stable under the continuous interpolation method [1, 2, 5, 9]. Therefore, the spaces $(h^{4+\alpha}(\Sigma), h^{\alpha}(\Sigma))$ form a pair of maximal regularity for $G'(\rho)$, see [1, Theorem III.3.4.1] or [2, 5, 9]. Part (c) follows now from maximal regularity results, for instance [2, Theorem 2.7]. \Box

3 The proof of Proposition 1

We first note that any function in $C^{2+\beta}$ is also in $h^{2+\beta_1}$ for $\beta_1 \in (0,\beta)$. Let Γ_0 be a given surface in \mathbb{R}^3 that satisfies the assumptions of Proposition 1. We can find a smooth surface Σ as in Section 2 and a function $\rho_0 \in W$ such that $\Gamma_0 = \Gamma_{\rho_0}$, where Γ_{ρ_0} is defined in (2.2). According to Proposition 2.1(a) there exists a number $T = T(\rho_0) > 0$ such that equation (2.3) has a unique solution $\rho(\cdot, \rho_0)$ with the smoothness properties stated in the proposition. It follows from the construction in Section 2 that the family $\Gamma := {\Gamma(t) ; 0 \leq t \leq T}$, where $\Gamma(t) := \Gamma_{\rho(t)}$ for $0 \leq t \leq T$, is the unique classical solution for the Willmore flow (1.1). In particular, we conclude that

$$[t \mapsto \int_{\Gamma(t)} H^2(t) \, d\mu] \in C^{\infty}((0,T), \mathbb{R}).$$

Given $x \in \Gamma(t)$, let $\{z(\tau, x) \in \mathbb{R}^3 ; \tau \in (-\varepsilon, \varepsilon)\}$ be an orthogonal flow line through x, that is, $z(\cdot, x)$ satisfies

$$z(\tau, x) \in \Gamma(t+\tau) \text{ for } \tau \in (-\varepsilon, \varepsilon),$$

$$\dot{z}(\tau) = (VN)(t+\tau, z(\tau)) \text{ for } \tau \in (-\varepsilon, \varepsilon), \ z(0) = x,$$

where $N(t, \cdot)$ denotes the unit normal field on $\Gamma(t)$, and $V(t, \cdot)$ is the normal velocity of $\Gamma(t)$. A proof for the existence of a unique trajectory $\{z(\tau, x) \in \mathbb{R}^3; \tau \in (-\varepsilon, \varepsilon)\}$ with the above properties can for instance be found in [11, Lemma 2.1]. For further use we introduce the manifold $\mathcal{M} := \bigcup_{t \in (0,T)} \{t\} \times \Gamma(t)$. Given any

smooth function u on \mathcal{M} we define

$$\left. \frac{d}{dt} u(t,x) := \left. \frac{d}{d\tau} u(t+\tau, z(\tau,x)) \right|_{\tau=0}, \quad (t,x) \in \mathcal{M}.$$

The following differentiation rule is well-known in differential geometry,

$$\frac{d}{dt} \int_{\Gamma(t)} u(t,x) \, d\mu(x) = \int_{\Gamma(t)} \frac{d}{dt} u(t,x) \, d\mu(x) + 2 \int_{\Gamma(t)} (uHV)(t,x) \, d\mu(x).$$
(3.1)

Let $(t, x) \in \mathcal{M}$ be fixed and let $\{z(\tau, x) ; \tau \in (-\varepsilon, \varepsilon)\}$ be a flow line trough x. Then one can show that

$$\left. \frac{d}{d\tau} H^2(t+\tau, z(\tau, x)) \right|_{\tau=0} = -H[\Delta_{\Gamma(t)}V + (4H^2 - 2K)V](t, x), \qquad (3.2)$$

see for instance [18, Section 7.4]. If follows from (3.1)–(3.2), from the divergence theorem, and from (1.1) that

$$\frac{d}{dt} \int_{\Gamma(t)} H^2(t) \, d\mu = -\int_{\Gamma(t)} [\Delta H + 2H(H^2 - K)] V \, d\mu \le 0.$$
(3.3)

This is true for any $t \in (0, T)$. The mean value theorem now implies that

$$\int_{\Gamma(t)} H^2(t) \, d\mu - \int_{\Gamma(\tau)} H^2(\tau) \, d\mu \le 0 \qquad \text{for } 0 < \tau \le t < T.$$

Taking the limit as $\tau \to 0$ and using that $[\tau \mapsto \int_{\Gamma(\tau)} H^2(\tau) d\mu] \in C([0,T], \mathbb{R})$, see Proposition 2.1(b), yields the assertion of Proposition 1. \Box

4 The proof of Theorem 2

In order to provide a proof of Theorem 2 we now choose Σ to be any smooth compact closed immersed orientable surface in \mathbb{R}^3 such that its image contains the flat 2-dimensional disk $U := \{(s, 0) \in \mathbb{R}^2 \times \mathbb{R} ; |s| \leq 1\}$ twice, and with opposite

orientations. To be precise, let $i:\Sigma\to\mathbb{R}^3$ be the immersion under consideration, then we ask that

$$i^{-1}(U) = U^+ \cup U^-$$

with $U^+ \cap U^- = \emptyset$ and both U^+ and U^- are flat 2-dimensional disks of radius 1. Additionally we ask that $\Sigma \setminus (U^+ \cup U^-)$ is embedded in \mathbb{R}^3 . Identifying U^+ for the moment with its image U we ask that the normal on U^+ points upwards, that is, $\nu(\cdot)|_{U^+} = e_3$, the 3rd basis vector of \mathbb{R}^3 . It follows that $\nu(\cdot)|_{U^-} = -e_3$.

Fig. 1 This is a possible choice of Σ , cut in halves.

Let W be as in (2.1) and let $\sigma \in h^{4+\alpha} \cap W$ locally be radially symmetric with regards to the centers of U^{\pm} . This implies $\partial_j \sigma(0) = 0$ for j = 1, 2. Observe that $\theta_{\sigma}(s) = (s, \pm \sigma(s))$ (these are coordinates in \mathbb{R}^3) for $s \in U^{\pm}$ and that $\theta_{\sigma} : U^{\pm} \to \theta_{\sigma}(U^{\pm})$ is an $h^{4+\alpha}$ -diffeomorphism. It is straightforward to compute

$$G(\sigma)|_{U^{\pm}} := L(\sigma)\theta_{\sigma}^* \left(\Delta_{\Gamma_{\sigma}} H_{\Gamma_{\sigma}} + 2H_{\Gamma_{\sigma}} (H_{\Gamma_{\sigma}}^2 - K_{\Gamma_{\sigma}}) \right)|_{U^{\pm}}$$

in local coordinates, yielding

$$2G(\sigma)|_{U^{\pm}}(0) = -\Delta^{2}\sigma(0) + \sum_{j,k=1}^{2} (\partial_{j}\partial_{k}\sigma(0))^{2}\Delta\sigma(0)$$
$$+2\sum_{j,k,l=1}^{2} \partial_{j}\partial_{k}\sigma(0)\partial_{j}\partial_{l}\sigma(0)\partial_{k}\partial_{l}\sigma(0),$$

where Δ is the Laplacian in Euclidean coordinates of \mathbb{R}^2 (see [6, Section 2] for more details). Because of the radial symmetry of σ we have $H_{\Gamma_{\sigma}}^2 = K_{\Gamma_{\sigma}}$ at the center of the disks U^{\pm} , so that lower order term $\theta_{\sigma}^*(2H_{\Gamma_{\sigma}}(H_{\Gamma_{\sigma}}^2 - K_{\Gamma_{\sigma}}))$ vanishes at the center of U^{\pm} . We will now specify one more property of σ . We choose r > 0small and we require that $\sigma(s) = |s|^4$ for $s \in U_r^{\pm} = \{s \in U^{\pm} ; |s| < r\}$. If r is small enough then this is compatible with $\sigma \in h^{4+\alpha}(\Sigma) \cap W$. We conclude that

$$G(\sigma)|_{U^{\pm}}(0) = -16 < 0.$$
(4.1)

It follows from Proposition 2.1 that the evolution equation (2.3) with initial value $\rho(0) = \sigma$ has a unique solution

$$\rho(\cdot, \sigma) \in C([0, T_0], h^{4+\alpha}(\Sigma)) \cap C^1([0, T_0], h^{\alpha}(\Sigma)).$$
(4.2)

Next we consider the restriction $\rho^{\pm}(t,\sigma)$ on U^{\pm} of the function $\rho(t,\sigma)$, that is, $\rho^{\pm}(t,\sigma) := \rho(t,\sigma)|_{U^{\pm}}$ for $0 \le t \le T_0$, and we set $d^{\pm}(t) := \rho^{\pm}(t,\sigma)(0)$, to track the position of the center. It follows from (4.2) that $d^{\pm} \in C^1([0,T_0])$. Moreover, using the local character of G, we conclude that d^{\pm} satisfies the equation

$$(d^{\pm})'(t) = G(\rho(t,\sigma))|_{U^{\pm}}(0) \quad \text{for} \quad 0 \le t \le T_0, \qquad d^{\pm}(0) = 0.$$
 (4.3)

Equations (4.1)-(4.3) and the mean value theorem yield

$$d^{\pm}(t) = -Mt + \left(\int_0^1 \left((d^{\pm})'(\tau t) - (d^{\pm})'(0) \right) d\tau \right) t, \qquad (4.4)$$

where M := 16. It follows from (4.4) that there exists a positive constant $\mu > 0$ and an interval $(t_0, t_1) \subset (0, T_0]$ such that $\rho^{\pm}(t, \sigma)(0) = d^{\pm}(t) \leq -\mu$ for $t \in (t_0, t_1)$. By Proposition 2.1(b) we can find a function $\sigma_0 \in W_0$ such that $\Sigma_0 := \Gamma_{\sigma_0}$ is embedded and such that $\Gamma(t) := \Gamma_{\rho(t,\sigma_0)}$ is immersed for at least $t \in (t_0, t_1)$. By employing Proposition 2.1(b) once more we conclude there is a neighborhood $W(\sigma_0) \subset W_0$ of σ_0 in $h^{2+\beta_1}(\Sigma)$ such that Γ_{ρ_0} is still embedded, whereas $\Gamma_{\rho(t,\rho_0)}$ is immersed for $t \in (t_0, t_1)$ and all $\rho_0 \in W(\sigma_0)$. We note that $C^{2+\beta}(\Sigma)$ is contained in $h^{2+\beta_1}(\Sigma)$ with continuous injection $j : C^{2+\beta}(\Sigma) \to h^{2+\beta_1}(\Sigma)$. Hence $U_0 := j^{-1}(W(\sigma_0))$ is a $C^{2+\beta}$ -neighborhood of σ_0 and Theorem 2 follows by choosing $\Sigma_0 := \Gamma_{\sigma_0}$ and $\Gamma_0 := \Gamma_{\rho_0}$ for $\rho_0 \in U_0$. \Box

Fig. 2 This is half of Γ_0 , a surface that loses embeddedness and becomes immersed. The gap might have to be much smaller than depicted.

Remark 4.2. The following is the essence of the construction: Γ_{σ} is an immersed surface such that its image contains two opposing fourth-order paraboloids touching only at the vertex. The global symmetry of Γ_{σ} is irrelevant, we only need the local symmetry at the center. Locally we can compute the initial velocity of Γ_{σ} ,

and it is such as to create an overlapping of the fourth-order paraboloids. A continuity argument then guarantees the same behavior for nearby embedded surfaces, which do exist by construction of Γ_{σ} . We have chosen a fourth-order paraboloid in order to facilitate the computation of $G(\sigma)|_{U^{\pm}}$. Any other configuration that produces the same sign as in (4.1) will work as well.

References

- H. Amann, Linear and quasilinear parabolic problems. Vol. I, Birkhäuser, Basel, 1995.
- [2] S.B. Angenent, Nonlinear analytic semiflows, Proc. Roy. Soc. Edinburgh Sect. A 115 (1990), 91–107.
- [3] R. Bryant, A duality theorem for Willmore surfaces, J. Diff. Geom. 20 (1984), 23–53.
- [4] B.-Y. Chen, On a variational problem on hypersurfaces, J. London Math. Soc. 2 (1973), 321–325.
- [5] G. DaPrato and P. Grisvard, Equations d'évolution abstraites nonlinéaires de type parabolique, Ann. Mat. Pura Appl. (4) 120 (1979), 329–396.
- [6] J. Escher, U.F. Mayer, and G. Simonett, The surface diffusion flow for immersed hypersurfaces, SIAM J. Math. Anal. 29 (1998), 1419–1433.
- [7] E. Kuwert and R. Schätzle, Gradient flow for the Willmore functional, Comm. Anal. Geom. 10 (2002), 307–339.
- [8] R. Kusner, Estimates for the biharmonic energy on unbounded planar domains, and the existence of surfaces of every genus that minimize the squaredmean-curvature integral in *Elliptic and parabolic methods in geometry* (Minneapolis, MN, 1994), A K Peters, Wellesley, MA, 1996, 67–72.
- [9] A. Lunardi, Analytic semigroups and optimal regularity in parabolic problems, Birkhäuser, Basel, 1995.
- [10] U.F. Mayer, A numerical scheme for free boundary problems that are gradient flows for the area functional, *Europ. J. Appl. Math.* **11** (2000), 61–80.
- [11] U.F. Mayer and G. Simonett, Classical solutions for diffusion-induced grainboundary motion, J.Math. Anal. Appl. 234 (1999), 660–674.
- [12] U.F. Mayer and G. Simonett, Self-intersections for the surface diffusion and the volume preserving mean curvature flow, *Differential Integral Equations* 13 (2000), 1189–1199.

- [13] U.F. Mayer and G. Simonett, A numerical scheme for axisymmetric solutions of curvature driven free boundary problems, with applications to the Willmore flow, *Interfaces and Free Boundaries* 4 (2002), 1–22.
- [14] U. Pinkall, Hopf tori in S³, Invent. Math. 81 (1985), 379–386.
- [15] U. Pinkall and I. Sterling, Willmore surfaces, Math. Intelligencer 9 (1987), 38–43.
- [16] G. Simonett, The Willmore flow near spheres, *Differential Integral Equations* 14 (2001), 1005–1014.
- [17] L. Simon, Existence of surfaces minimizing the Willmore functional, Comm. Anal. Geom. 1 (1993), 281–326.
- [18] T.J. Willmore, Riemannian Geometry, Claredon Press, Oxford, 1993.

387 Trailview Road, Encinitas, CA 92024, U.S.A. mayer@math.utah.edu

Department of Mathematics, Vanderbilt University, Nashville, TN 37240, U.S.A. simonett@math.vanderbilt.edu