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One-sided Mullins-Sekerka Flow Does Not

Preserve Convexity ∗

Uwe F. Mayer

Abstract

The Mullins-Sekerka model is a nonlocal evolution model for hyper-
surfaces, which arises as a singular limit for the Cahn-Hilliard equation.
Assuming the existence of sufficiently smooth solutions we will show that
the one-sided Mullins-Sekerka flow does not preserve convexity.

Introduction

The Mullins-Sekerka flow is a nonlocal generalization of the mean curvature
flow arising from physics [10, 11]. Similar to Stefan-type problems there is a
one-sided and a two-sided version. Recently it has been shown rigorously that
the two-sided model arises as a singular limit of the Cahn-Hilliard equation [1].
This has been known formally since the work of Pego [11]. In the literature
the Mullins-Sekerka model has been often called Hele-Shaw model. However,
there are two different problems which are called Hele-Shaw problems, compare
for example [1, 2] with [4]. The problem studied in this paper is the same as
the one-sided version of the Hele-Shaw problem as formulated in [1, 2]. To
avoid this confusion one should probably call the Hele-Shaw flow of [1, 2] the
Mullins-Sekerka flow.

One can ask whether the properties of the mean curvature flow can be gener-
alized to the Mullins-Sekerka flow. Not all results can be expected to generalize,
due to the nonlocal character of the Mullins-Sekerka problem, in particular not
those that rest on a local argument for the mean curvature flow. There has been
some progress made towards the question of existence, see [5] for the one-sided
version and [2] for the two-sided version. Recently Luckhaus has announced fur-
ther results concerning existence, however, no details are know by the author. It
is known that the mean curvature flow preserves convexity [6, 9]. It is therefore
a natural question to ask whether this is also true for the Mullins-Sekerka flow.
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Under the assumption of short-term existence of sufficiently smooth solutions
this question is answered negatively in this paper for the one-sided case.

The 2-dimensional case

We look at a curve Γ0 and the free boundary problem governed by the evolution
law given by 

∆u = 0 inside of Γt ,
u = κ on Γt ,
v = − ∂u∂n .

(1)

Here n is the outer unit normal to Γt, v and κ are the normal velocity and the
curvature of Γt, respectively. The signs are chosen in such a way that a circle
has positive curvature, and a shrinking curve has negative velocity.

The principal idea is to look at a shape given by a straight tube with two
circular end caps. By the strong maximum principle ∂u

∂n > 0 on the circular
parts of Γ0. Let us restrict our attention to the right part of the figure. ∂u

∂n > 0
implies ux > 0 on the circular path. On the straight part we have ux ≡ 0, as
u is identically zero there. We also have ux ≡ 0 on the y-axis by symmetry for
u. Ignoring for the moment the discontinuity of ux we conclude ux > 0 in the
interior of the right half by the maximum principle.

As ux ≡ 0 on the (upper) straight line, we must have ∂ux
∂n = uxy < 0 on

the right half of it by another application of the maximum principle. Even
another application of the maximum principle for the function u tells us that
∂u
∂n = uy < 0 on the upper straight line. Therefore on the right half of the upper
line |uy| decreases towards the center. By symmetry we get the distribution of
the initial speed sketched in Figure 1.
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Figure 1: Distribution of initial velocity
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Therefore the center will move out slower than the rest of the straight line,
the figure will evolve into a nonconvex shape.

This example has one fatal flaw. While the straight lines want to move
out, the circular parts want to move in. This of course will break up the curve
instantaneously, and (1) cannot possibly be satisfied with an initial configuration
like this. The solution to the dilemma is obviously to smoothen out the corners.

For the sequel we will assume that the one-sided Mullins-Sekerka flow allows
a smooth solution provided the initial configuration Γ0 is C∞.

The difficulty for a smooth domain lies now in showing that ux still has the
sign we want. On the parts of Γ0 where u ≡ 0 or u ≡ 1 we get the correct sign
by the maximum principle as before. However, the maximum principle does not
help on the transition parts.

The following discussion is restricted to the right lower quarter of Γ0. Let γ
be the transition path from the straight line to the circular part, and κ : [0, L] 7→
[0, 1] be the curvature on γ, parametrized by arc length. We choose κ to be a
monotonous function.

Then γ is given by x(s) =
∫ s

0
cos
(∫ σ

0
κ(t) dt

)
dσ + x0 ,

y(s) =
∫ s

0
sin
(∫ σ

0
κ(t) dt

)
dσ + y0 .

Let γ be the curve in 3-space over γ parametrized by (x(s), y(s), κ(s)), and let
β be the projection of γ onto the y-u-plane.

Proposition 1 For a suitable choice of κ the curve β is concave down.

One can choose, for example,

κ(s) =
1
C

∫ s/L

0

e
1

t(t−1) dt , s ∈ [0, L] ,

where C is chosen to have κ(L) = 1. The curve β is described by

y(u) =
∫ κ−1(u)

0

sin
(∫ σ

0

κ(t) dt
)
dσ + y0 .

Concavity can be checked with methods from elementary calculus, the rather
technical details will be omitted here.

We show now how the proposition can be used to construct upper barriers
for u. Pick any point Q on γ, and let B be the projection of Q onto the y-u-
plane. Let u = my + c be the equation of the tangent line of β at B, where m
and c depend on Q. This equation defines a plane in 3-space. If Γ0 denotes the
curve in 3-space over the curve Γ0 given by (x, y, κ), then this plane touches Γ0
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Figure 2: The graphs of Γ0, β, and of u = my + c

in exactly two points, namely in Q and in the symmetric image of Q in left half
of Γ0.

A nonvertical plane of course is the graph of an harmonic function. By
construction this plane has zero x-derivative everywhere. From comparison we
see that ux > 0 at Q. From here on we conclude the argument as before.
Therefore we have proved the following

Theorem 1 Assume that (1) allows a smooth solution provided the initial con-
figuration is C∞. Then there are convex smooth initial configurations consisting
of a straight tube with two end caps that will evolve into nonconvex curves. The
flat tube can be arbitrarily short. In particular these initial curves can be chosen
to be arbitrarily close in the C1-norm to a circle.

The k-dimensional case, k ≥ 3

We look at a hypersurface Γ0 and the free boundary problem governed by the
evolution law given by

∆u = 0 inside of Γt ,
u = H on Γt ,
v = − ∂u∂n .

(2)

Here n is the outer unit normal to Γt, v and H are the normal velocity and the
mean curvature of Γt, respectively. The signs are chosen in such a way that a
sphere has positive curvature, and a shrinking surface has negative velocity.

We use the curve from the 2-dimensional case and rotate about the x-axis.
The resulting hypersurface in Rk is given by

Γ0 =
{

(x(s), y(s)ω) : s ∈ [0, L], ω ∈ Sk−2 ⊂ Rk−1
}
.
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Proposition 2 The principal curvatures of Γ0 are given by

κ1 = κ , κi = −x
′

y
, i = 2, . . . , k − 1 .

The proof involves only routine computations of the first and second fundamen-
tal forms in local coordinates and will be omitted here.

The mean curvature is

H =
k−1∑
i=1

κi = κ− (k − 2)
x′

y
.

Let Γ0 = {(x, u) ∈ Rk+1 : x ∈ Γ0, u = H(x)}. As before we project along the
x1-axis onto the hyperplane in Rk+1 perpendicular to the x1-axis. The resulting
manifold β is the graph of u = H(x2, . . . , xk).

Proposition 3 For a suitable choice of κ the graph β is concave down.

The first step for the proof is to note that this graph is rotationally symmetric
with respect to (x2, . . . , xk) by construction. Hence it is enough to look at a
radial section, say, in the x2-u-plane. In the sequel we will use y instead of x2.
We have already seen that u = κ(y) is concave down. The same is true for
u = κi(y), i = 2, . . . , k − 1. These curves are given by

y(s) =
∫ s

0
sin
(∫ σ

0
κ(t) dt

)
dσ + y0

κi(s) =
cos
(∫ s

0
κ(t) dt

)
y(s)

where the curvature κ is chosen to be the same as in the 2-dimensional case. As
y(s) is increasing one can express κi as a function of y and then use methods
from calculus to show concavity. Therefore H is concave down.

From here on we proceed exactly as in the 2-dimensional case. For a given
point Q ∈ Γ0 we look at the tangent hyperplane to its projection B ∈ β in x2-
. . .-xk-u-space, and use the equation u = a2x2 + . . .+akxk+c of this hyperplane
as the definition of an affine function on Rk. This gives us a supersolution u to
the harmonic function u of (2) connected with Γ0. We get the same conclusion
on the sign of ux1 in the same way as in the 2-dimensional case. To proceed we
need the additional information that u be symmetric about the x1-axis. This
is true because of the symmetry of the domain, the symmetry of the boundary
data, and the invariance of the Laplacian under rotations. Therefore it is enough
to look at a section, say, in the x1-x2-plane. There we have already seen how
the information on the sign of ux1 implies that |ux2 | = | ∂u∂n | decreases towards
the middle.
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Theorem 2 Assume that (2) allows a smooth solution provided the initial con-
figuration is C∞. Then there are convex smooth initial configurations in Rk

consisting of a cylinder with two end caps that will evolve into nonconvex hy-
persurfaces. The cylinder can be arbitrarily short. In particular these initial
hypersurfaces can be chosen to be arbitrarily close in the C1-norm to a sphere.

Remark. The proof of the proposition shows that in fact more is true. The
only properties of H we used are that the arithmetic mean preserves concavity,
and, for positive arguments, is positive and increases in each argument. One can
therefore replace H by any suitably smooth function that has these properties
and get the same results. In particular one can use r

√
Hr, where Hr is the r-th

symmetric function of the principal curvatures [7].
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