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BYTEmark

This is release 2 of BYTE Magazine's BYTEmark benchmark program
(previously known as BYTE's Native Mode Benchmarks). This document
covers the Native Mode (a.k.a. Algorithm Level) tests; benchmarks
designed to expose the capabilities of a system's CPU, F PU, and
memory system.

The Tests

The Native Mode portion of the BYTEmark consists of a number of well-
known algorithms; some BYTE has used before in earlier versions of the
benchmark, others are new. The complete suite consists of 10 tests:

Numeric sort - Sorts an array of 32-bit integers.

String sort - Sorts an array of strings of arbitrary length.

Bitfield - Executes a variety of bit manipulation functions.

Emulated floating-point - A small software floating-point package.

Fourier coefficients - A numerical analysis routine for calculating
series approximations of waveforms.

Assignment algorithm - A well-known task allocation algorithm.

Huffman compression - A well-known text and graphics compression
algorithm.

IDEA encryption - A relatively new block cipher algorithm.

Neural Net - A small but functional back-propagation network
simulator.

LU Decomposition - A robust algorithm for solving linear equations.

A more complete description of each test can be found in later sections
of this document.

BYTE built the BYTEmark with the multiplatform world foremost in
mind. There were, of course, other considerations that we kept high on
the list:

Real-world algorithms . The algorithms should actually do
something. Previous benchmarks often moved gobs of bytes from one
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point to another, added or subtracted piles and piles of numbers, or (in
some cases) actually executed NOP instructions. We should not belittle
those tests of yesterday, they had their place. However, we think it
better that tests be based on activities that are more complex in
nature.

Easy to port . All the benchmarks are written in "vanilla" ANSI C. This
provides us with the best chance of moving them quickly and accurately
to new processors and operating systems as they appear. It also
simplifies mai ntenance.

This means that as new 64-bit (and, perhaps, 128-bit) processors
appear, the benchmarks can test them as soon as a compiler is
available.

Comprehensive . The algorithms were derived from a variety of
sources. Some are routines that BYTE had been using for some time.
Others are routines derived from well-known texts in the computer
science world. Furthermore, the algorithms differ in structure. Some
simply "walk" sequentially through one-dimensional arrays. Others build
and manipulate two-dimensional arrays. Finally, some benchmarks are
"integer" tests, while others exercise the floating-point coprocessor (if
one is available).

Scalable . We wanted these benchmarks to be useful across as wide a
variety of systems as possible. We also wanted to give them a lifetime
beyond the next wave of new processors.

To that end, we incorporated "dynamic workload adjustment." A
complete description of this appears in a later section. In a nutshell,
this allows the tests to "expand or contract" depending on the
capabilities of the system under test, all the while providing consistent
results so that fair and accurate comparisons are possible.

Honesty In Advertising

We'd be lying if we said that the BYTEmark was all the benchmarking
that anyone would ever need to run on a system. It would be equally
inaccurate to suggest that the tests are completely free of
inadequacies. There are many things the tests do not do, there are
shortcomings, and there are problems.

BYTE will continue to improve the BYTEmark. The source code is freely
available, and we encourage vendors and users to examine the routines
and provide us with their feedback. In this way, we assure fairness,
comprehensiveness, and accuracy.

Still, as we mentioned, there are some shortcomings. Here are those
we consider the most significant. Keep them in mind as you examine
the results of the be nchmarks now and in the future.

At the mercy of C compilers . Being written in ANSI C, the
benchmark program is highly portable. This is a reflection of the "world
we live in." If this were a one-processor world, we might stand a
chance at hand-crafting a benchmark in assembly language. (At one
time, that's exactly what BYTE did.) Not today, no way.

The upshot is that the benchmarks must be compiled. For broadest
coverage, we selected ANSI C. And when they're compiled, the
resulting executable's performance can be highly dependent on the
capabilities of the C compiler. Today's benchmark results can be blown
out of the water tomorrow if someone new enters the scene with an
optimizing strategy that outperforms existing competition.

This concern is not easily waved off. It will require you to keep careful
track of compiler version and optimization switches. As BYTE builds its
database of benchmark results, version number and switch setting will
bec ome an integral part of that data. This will be true for published
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information as well, so that you can make comparisons fairly and
accurately. BYTE will control the distribution of test results so that all
relevant compiler information is attached to the data.

As a faint justification -- for those who think this situation results in
"polluted" tests -- we should point out that we are in the same boat as
all the other developers (at least, all those using C compilers -- and
that's quite a sizeable group). If the only C compilers for a given
system happen to be poor ones, everyone suffers. It's a fact that a
given platform's ultimate potential depends as much on the
development software available as on the technical achievements of the
hardware design.

It's just CPU and FPU . It's very tempting to try to capture the
performance of a machine in a single number. That has never been
possible -- though it's been tried a lot -- and the gap between that i
deal and reality will forever widen.

These benchmarks are meant to expose the theoretical upper limit of
the CPU, FPU, and memory architecture of a system. They cannot
measure video, disk, or network throughput (those are the domains of
a different set of benchmarks). You should, therefore, use the results of
these tests as part, not all, of any evaluation of a system.

Single threaded . Currently, each benchmark test uses only a single
execution thread. It's unlikely that you'll find any modern operating
system that does not have some multitasking component. How a
system "scales" as more tasks are run simultaneously is an effect that
the current benchmarks cannot explore.

BYTE is working on a future version of the tests that will solve this
problem.

The tests are synthetic . This quite reasonable argument is based on
the fact that people don't run benchmarks for a living, they run
applications. Consequently, the only true measure of a system is how
well it performs whatever applications you will be running. This, in fact,
is the philosophy behind the BAPCo benchmarks.

This is not a point with which we would disagree. BYTE regularly makes
use of a variety of application benchmarks. None of this suggests,
however, that the BYTEmark benchmarks serve no purpose.

BYTEmark's results should be used as predictors. They can be moved to
a new platform long before native applications will be ported. The
BYTEmark benchmarks will therefore provide an early look at the
potential of the machine. Additionally, the BYTEmark permits you to
"home in" on an aspect of the overall architecture. How well does the
system perform when executing floating-point computations? Does its
memory architecture help or hinder the management of memory
buffers that may fall on arbitrary address boundaries? How does the
cache work with a program whose memory access favors moving
randomly through memory as opposed to moving sequentially through
memory?

The answers to these questions can give you a good idea of how well a
system would support a particular class of applications. Only a synthetic
benchmark can give the narrow view necessary to find the answers.

Dynamic Workloads

Our long history of benchmarking has taught us one thing above all
others: Tomorrow's system will go faster than today's by an amount
exceeding your wildest guess -- and then some. Dealing with this can
become an unending race.

It goes like this: You design a benchmark algorithm, you specify its
parameters (how big the array is, how many loops, etc.), you run it on
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today's latest super-microcomputer, collect your data, and go home. A
new machine arrives the next day, you run your benchmark, and
discover that the test executes so quickly that the resolution of the
clock routine you're using can't keep up with it (i.e., the test is over and
done before the system clock even has a chance to tic k).

If you modify your routine, the figures you collected yesterday are no
good. If you create a better clock routine by sneaking down into the
system hardware, you can kiss portability goodbye.

The BYTEmark benchmarks solve this problem by a process we'll refer
to as "dynamic workload adjustment." In principle, it simply means that
if the test runs so fast that the system clock can't time it, the
benchmark increases the test workload -- and keeps increasing it --
until enough time is consumed to gather reliable test results.

Here's an example.

The BYTEmark benchmarks perform timing using a "stopwatch"
paradigm. The routine StartStopwatch() begins timing; StopStopwatch() ends
timing and reports the elapsed time in clock ticks. Now, "clock ticks" is
a value that varies from system to system. We'll presume that our test
system provides 1000 clock ticks per second. (We'll also presume that
the system actuall y updates its clock 1000 times per second.
Surprisingly, some systems don't do that. One we know of will tell you
that the clock provides 100 ticks per second, but updates the clock in 5-
or 6-tick increments. The resolution is no better than somewhere
around 1/18th of a second.) Here, when we say "system" we mean not
only the computer system, but the environment provided by the C
compiler. Interestingly, different C compilers for the same system will
report different clock ticks per second.

Built into the benchmarks is a global variable called GLOBALMINTICKS . This
variable is the minimum number of clock ticks that the benchmark will
allow StopStopwatch() to report.

Suppose you run the Numeric Sort benchmark. The benchmark
program will construct an array filled with random numbers, call
StartStopwatch() , sort the array, and call StopStopwatch() . If the time
reported in StopStopwatch() is less than GLOBALMINTIC KS , then the
benchmark will build two arrays, and try again. If sorting two arrays
took less time than GLOBALMINTICKS , the process repeats with more
arrays.

This goes on until the benchmark makes enough work so that an
interval between StartStopwatch() and StopStopwatch() exceeds
GLOBALMINTICKS . Once that happens, the test is actually run, and scores
are calculated.

Notice that the benchmark didn't make bigger arrays, it made more
arrays. That's because the time taken by the sort test does not increase
linearly as the array grows, it increases by a factor of N*log(N) (where
N is the size of the array).

This principle is applied to all the benchmark tests. A machine with a
less accurate clock may be forced to sort more arrays at a time, but the
results are given in arrays per second. In this way fast machines, slow
machines, machines with accurate clocks, machines with less accurate
clocks, can all be tested with the same code.

Confidence Intervals

Another built-in feature of the BYTEmark is a set of statistical-analysis
routines. Running benchmarks is one thing; the question arises as to
how many times should a test be run until you know you have a good
sampling. Also, can you determine whether the test is stable (i.e., do
results vary widely from one execution of the benchmark to the next)?
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The BYTEmark keeps score as follows: Each test (a test being a numeric
sort, a string sort, etc.) is run five times. These five scores are
averaged, the standard deviation is determined, and a 95% confidence
half-interval for the mean is calculated. This tells us that the true
average lies -- with a 95% probability -- within plus or minus the
confidence half-interval of the calculated average. If this half-interval is
within 5% of the calculated average, the benchmarking stops.
Otherwise, a new test is run and the calculations are repeated.

The upshot is that, for each benchmark test, the true average is -- with
a 95% level of confidence -- within 5% of the average reported. Here,
the "true average" is the average we would get were we able to run the
tests over and over again an infinite number of times.

This specification ensures that the calculation of results is controlled;
that someone running the tests in California will use the same
technique for determining benchmark results as someone running the
tests in New York.

Interpreting Results

Of course, running the benchmarks can present you with a boatload of
data. It can get mystifying, and some of the more esoteric statistical
information is valuable only to a limited audience. The big question is:
What does it all mean?

First, we should point out that the BYTEmark reports both "raw" and
indexed scores for each test. The raw score for a particular test
amounts to the "iterations per second" of that test. For example, the
numeric sort test reports as its raw score the number of arrays it was
able to sort per second.

The indexed score is the raw score of the system under test divided by
the raw score obtained on the baseline machine. As of this release, the
baseline machine is a DELL 90 Mhz Pentium XPS/90 with 16 MB of RAM
and 256K of external processor cache. (The compiler used was the
Watcom C/C++ 10.0 compiler; optimizations set to "fastest possible
code", 4-byte structure alignment, Pentium code generation with
Pentium register-based calling.) The indexed score serves to
"normalize" the raw scores, reducing their dynamic range and making
them easier to grasp. Simply put, if your machine has an index score of
2.0 on the numeric sort test, it performed that test twice as fast as a 90
Mhz Pentium.

If you run all the tests (as you'll see, it is possible to perform "custom
runs", which execute only a subset of the tests) the BYTEmark will also
produce two overall index figures: Integer index and Floating-point
index. The Integer index is the geometric mean of those tests that
involve only integer processing -- numeric sort, string sort, bitfield,
emulated floating-point, assignment, Huffman, and IDEA -- while the
Floating-point index is the geometric mean of those tests that require
the floating-point comprocessor -- Fourier, neural net, and LU
decomposition. You can use these scores to get a general feel for the
performance of the machine under test as compared to the baseline 90
Mhz Pentium.

What follows is a list of the benchmarks and associated brief remarks
that describe what the tests do: What they exercise; what a "good"
result or a "bad" result means. Keep in mind that, in this expanding
universe of faster processors, bigger caches, more elaborate memory
architectures, "good" and "bad" are indeed relative terms. A good score
on today's hot new processor will be a bad score on tomorrow's hot new
processor.

These remark s are based on empirical data and profiling that we have
done to date. (NOTE: The profiling is limited to Intel and Motorola 68K
on this release. As more data is gathered, we will be refining this
section. 3/14/95--RG)
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Benchmark

Description

Numeric sort                         Generic integer performance.  Should
                                     exercise non-sequential performance
                                     of cache (or memory if cache is less
                                     than 8K).  Moves 32-bit longs at a
                                     time, so 16-bit processors will be
                                     at a disadvantage.

String sort                          Tests memory-move performance.
                                     Should exercise non-sequent
ial
                                     performance of cache, with added
                                     burden that moves are byte-wide and
                                     can occur on odd address boundaries.
                                      May tax the performance of
                                     cell-based processors that must
                                     perform additional shift operations
                                     to deal with bytes.

Bitfield                             Exercises "bit twiddling"
                                     performance.  Travels through memory
                                     in a somewhat sequential fashion;
                                     different from sorts in that data is
                                     merely altered in place.  If

                                     properly compiled, takes into
                                     account 64-bit processors, which
                                     should see a boost.

Emulated F.P.                        Past experience has shown this test
                                     to be a good measurement of overall
                                     performance.

Fourier                              Good measure of transcendental and
                                     trigonometric performance of FPU.
                                     Little array activity, so this test
                                     should not be dependent of cache or
                                     memory architecture.

Assignment                           The test moves through large integer
                                     arrays in both row-wise and
                                     column-wise fashion.  Cache/memory
                                     with good sequential performance
                                     should see a boost (memory is
                                     altered in place -- no moving as in
                                     a sort operation).   Processing is
                                     done in 32-bit chunks -- no
                                     advantage given to 64-bit
                                     processors.

Huffman                              A combination of byte operations,

                                     bit twiddling, and overall integer
                                     manipulation.  Should be a good
                                     general measurement.

IDEA                                 Moves through data sequentally in
                                     16-bit chunks.  Should provide a
                                     good indication of raw speed.

Neural Net                           Small-array floating-point test
                                     heavily dependent on the exponential
                                     function; less dependent on overall
                                     FPU performance.  Small arrays, so
                                     cache/memory architecture should not
                                     come
 into play.

LU decomp.                           A floating-point test that moves
                                     through arrays in both row-wise and
                                     column-wise fashion.  Exercises only
                                     fundamental math operations (+, -,
                                     *, /).
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The Command File

Purpose

The BYTEmark program allows you to override many of its default
parameters using a command file. The command file also lets you
request statistical information, as well as specify an output file to hold
the test results for later use.

You identify the command file using a command-line argument. E.G.,

C: NBENCH -cCOMFILE.DAT

tells the benchmark program to read from COMFILE.DAT in the current
directory.

The content of the command file is simply a series of parameter names
and values, each on a single line. The parameters control internal
variables that are either global in nature (i.e., they effect all tests in the
program) or are specific to a given benchmark test.

The parameters are listed in a reference guide that follows, arranged in
the following groups:

Global Parameters

Numeric Sort

String Sort

Bitfield

Emulated floating-point

Fourier coefficients

Assignment algorithm

IDEA encryption

Huffman compression

Neural net

LU decomposition

As mentioned above, those items listed under "Global Parameters"
affect all tests; the rest deal with specific benchmarks. There is no
required ordering to parameters as they appear in the command file.
You can specify them in any sequence you wish.

You should be judicio us in your use of a command file. Some
parameters will override the "dynamic workload" adjustment that each
test performs. Doing this completely bypasses the benchmark code that
is designed to produce an accurate reading from your system clock.
Other parameters will alter default settings, yielding test results that
cannot be compared with published benchmark results.

A Sample Command File

Suppose you built a command file that contained the following:

ALLSTATS=T

CUSTOMRUN=T
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OUTFILE=D:\DATA.DAT

DONUMSORT=T

DOLU=T

Here's what this file tells the benchmark program:

ALLSTATS=T means that you've requested a "dump" of all the statistics
the test gathers. This includes not only the standard deviations of tests
run, it also produces test-specific information such as the number of
arrays built, the array size, etc.

CUSTOMRUN=T tells the system that this is a cus tom run. Only tests
explicitly specified will be executed.

OUTFILE=D:\DATA.DAT will write the output of the benchmark to the
file DATA.DAT on the root of the D: drive. (If DATA.DAT already exists,
output will be appended to the file.)

DONUMSORT=T tells the system to run the numeric sort benchmark.
(This was necessary on account of the CUSTOMRUN=T line, above.)

DOLU=T tells the system to run the LU decomposition benchmark.

Command File Parameters Reference

(NOTE: Altering some global parameters can invalidate results for
comparison purposes. Those parameters are indicated in the following
section by a bold asterisk ( * ). If you alter any parameters so
indicated, you may NOT publish the resulting data as BYTEmark
scores.)

Global Parameters

GLOBALMINTICKS=<n>

This overrides the default global_min_ticks value (defined in
NBENCH1.H). The global_min_ticks value is defined as the minimum
number of c lock ticks per iteration of a particular benchmark. For
example, if global_min_ticks is set to 100 and the numeric sort
benchmark is run; each iteration MUST take at least 100 ticks, or the
system will expand the work-per-iteration.

MINSECONDS=<n>

Sets the minimum number of seconds any particular test will run. This
has the effect of controlling the number of repetitions done. Default: 5.

ALLSTATS=<T|F>

Set this flag to T for a "dump" of all statistics. The information
displayed varies from test to test. Default: F.

OUTFILE=<path>

Specifies that output should go to the specified output file. Any test
results and statistical data displayed onscreen will also be written to the
file. If the file does not exist, it will be created; otherwise, new output
will be appended to an existing file. This allows you to "capture" several
runs into a single file for later review.

Note: the pat h should not appear in quotes. For example, something
like the following would work: OUTFILE=C:\BENCH\DUMP.DAT

CUSTOMRUN=<T|F>

Set this flag to T for a custom run. A "custom run" means that the
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program will run only the benchmark tests that you explicitly specify.
So, use this flag to run a subset of the tests. Default: F.

Numeric Sort

DONUMSORT=<T|F>

Indicates whether to do the numeric sort. Default is T, unless this is a
custom run ( CUSTOMRUN=T ), in which case default is F.

NUMNUMARRAYS=<n>

Indicates the number of numeric arrays the system will build. Setting
this value will override the program's "dynamic workload" adjustment
for this test. *

NUMARRAYSIZE=<n>

Indicates the number of elements in each numeric array. Default is
8001 entries. (NOTE: Altering this value will invalidate the test for
comparison purposes. The perform ance of the numeric sort test is not
related to the array size as a linear function; i.e., an array twice as big
will not take twice as long. The relationship involves a logarithmic
function.) *

NUMMINSECONDS=<n>

Overrides MINSECONDS for the numeric sort test.

String Sort

DOSTRINGSORT=<T|F>

Indicates whether to do the string sort. Default is T, unless this is a
custom run ( CUSTOMRUN=T ), in which case the default is F.

STRARRAYSIZE=<n>

Sets the size of the string array. Default is 8111. (NOTE: Altering this
value will invalidate the test for comparison purposes. The performance
of the string sort test is not related to the array size as a linear
function; i.e., an array twice as big will not take twice as long. The
relationship involves a logarithmic function.) *

NUMSTRARRAYS=<n>

Sets the number of string arrays that will be created to run the t est.
Setting this value will override the program's "dynamic workload"
adjustment for this test. *

STRMINSECONDS=<n>

Overrides MINSECONDS for the string sort test.

Bitfield

DOBITFIELD=<T|F>

Indicates whether to do the bitfield test. Default is T, unless this is a
custom run ( CUSTOMRUN=T ), in which case the default is F.

NUMBITOPS=<n>

Sets the number of bitfield operations that will be performed. Setting
this value will override the program's "dynamic workload" adjustment
for this test. *

BITFIELDSIZE=<n>
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Sets the number of 32-bit elements in the bitfield arrays. The default
value is dependent on the size of a long as defined by the current
compiler. For a typical compiler that defines a long to be 32 bits, the
default is 32768. (NOTE: Altering this parameter will invalidate test
results for comparison purposes .) *

BITMINSECONDS=<n>

Overrides MINSECONDS for the bitfield test.

Emulated floating-point

DOEMF=<T|F>

Indicates whether to do the emulated floating-point test. Default is T,
unless this is a custom run ( CUSTOMRUN=T ), in which case the default is F.

EMFARRAYSIZE=<n>

Sets the size (number of elements) of the emulated floating-point
benchmark. Default is 3000. The test builds three arrays, each of equal
size. This parameter sets the number of elements for EACH array.
(NOTE: Altering this parameter will invalidate test results for
comparison purposes.) *

EMFLOOPS=<n>

Sets the number of loops per iteration of the floating-point test. Setting
this value will override the program's "dynamic workload" adjustment
for this test. *

EMFMINSECONDS=<n>

Overrides MINSECONDS for the emulated floating-point test .

Fourier coefficients

DOFOUR=<T|F>

Indicates whether to do the Fourier test. Default is T, unless this is a
custom run ( CUSTOMRUN=T ), in which case the default is F.

FOURASIZE=<n>

Sets the size of the array for the Fourier test. This sets the number of
coefficients the test will derive. NOTE: Specifying this value will override
the system's "dynamic workload" adjustment for this test, and may
make the results invalid for comparison purposes. *

FOURMINSECONDS=<n>

Overrides MINSECONDS for the Fourier test.

Assignment Algorithm

DOASSIGN=<T|F>

Indicates whether to do the assignment algorithm test. Default is T,
unless this is a custom run ( CUSTOMRUN=T ), in which case the default is F.

ASSIGNARRAYS=<n>

Indicates the number of arrays that will be built for the test. Specifying
this value will overrid e the system's "dynamic workload" adjustment
for this test. (NOTE: The size of the arrays in the assignment algorithm
is fixed at 101 x 101. Altering the array size requires adjusting global
constants and recompiling; to do so, however, would invalidate test
results.) *
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ASSIGNMINSECONDS=<n>

Overrides MINSECONDS for the assignment algorithm test.

IDEA encryption

DOIDEA=<T|F>

Indicates whether to do the IDEA encryption test. Default is T, unless
this is a custom run ( CUSTOMRUN=T ), in which case the default is F.

IDEAARRAYSIZE=<n>

Sets the size of the plaintext character array that will be encrypted by
the test. Default is 4000. The benchmark actually builds 3 arrays: 1st
plaintext, encrypted version, and 2nd plaintext. The 2nd plaintext array
is the destination for the decryption process [part of the test]. All arrays
are set to the same size. (NOTE: Specifying this value will invalidate
test results for comparison purposes.) *

IDEALOOPS=<n>

Indicates the number of loops in the IDEA test. Specifying this value
will override the system's "dynamic workload" adjustment for this test.
*

IDEAMINSECONDS=<n>

Overrides MINSECONDS for the IDEA test.

Huffman compression

DOHUFF=<T|F>

Indicates whether to do the Huffman test. Default is T, unless this is a
custom run ( CUSTOMRUN=T ), in which case the default is F.

HUFFARRAYSIZE=<n>

Sets the size of the string buffer that will be compressed using the
Huffman test. The default is 5000. (NOTE: Altering this value will
invalidate test results for comparison purposes.) *

HUFFLOOPS=<n>

Sets the number of loops in the Huffman test. Specifying this value will
override the system's "dynamic workload" adjustment for this test. *

HUFFMINSECONDS=<n>

Overrides MINSECONDS for the Huffman test.

Neural net

DONNET=<T|F>

Indicates whether to do the Neural Net test. Default is T, unless this is
a custom run ( CUSTOMRUN=T ), in which case the default is F.

NNETLOOPS=<n>

Sets the number of loops in the Neural Net test. NOTE: Altering this
value overrides the benchmark's "dynamic workload" adjustment
algorithm, and may invalidate the results for comparison purposes. *

NNETMINSECONDS=<n>

Overrides MINSECONDS for the Neural Net test.
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LU decomposition

DOLU=<T|F>

Indicates whether to do the LU decomposition test. Default is T, unless
this is a custom run ( CUSTOMRUN=T) , in which case the default is F.

LUNUMARRAYS=<n>

Sets the number of arrays in each iteration of the LU decomposition
test. Specifyi ng this value will override the system's "dynamic
workload" adjustment for this test. *

LUMINSECONDS=<n>

Overrides MINSECONDS for the LU decomposition test.

Numeric Sort

Description

This benchmark is designed to explore how well the system sorts a
numeric array. In this case, a numeric array is a one-dimensional
collection of signed, 32-bit integers. The actual sorting is performed by
a heapsort algorithm (see the text box following for a description of the
heapsort algorithm).

It's probably unnecessary to point out (but we'll do it anyway) that
sorting is a fundamental operation in computer application software.
You'll likely find sorting routines nestled deep inside a variety of
applications; everything from database systems to operating-systems
kernels.

The numeric sort benchmark reports the number of arrays it was able
to sort per second. The array size is set by a global constant (it can be
ov erridden by the command file -- see below).

Analysis

Optimized 486 code : Profiling of the numeric sort benchmark using
Watcom's profiler (Watcom C/C++ 10.0) indicates that the algorithm
spends most of its time in the numsift() function (specifically, about 90%
of the benchmark's time takes place in numsift() ). Within numsift(), two
if statements dominate time spent:

if(array[k]<array[k+1L]) and if(array[i]<array[k])

Both statements involve indexes into arrays, so it's likely the processor
is spending a lot of time resolving the array references. (Though both
statements involve "less-than" comparisons, we doubt that much time
is consumed in performing the signed compare operation.) Though the
first statement involves array elements that are adjacent to one
another, the second does not. In fact, the second statement will
probably involve elements that are far apart from one another during
early passes t hrough the sifting process. We expect that systems
whose caching system pre-fetches contiguous elements (often in
"burst" line fills) will not have any great advantage of systems without
pre-fetch mechanisms.

Similar results were found when we profiled the numeric sort algorithm
under the Borland C/C++ compiler.

680x0 Code (Macintosh CodeWarrior): CodeWarrior's profiler is
function based; consequently, it does not allow for line-by-line analysis
as does the Watcom compiler's profiler.

However, the CodeWarrior profiler does give us enough information to
note that NumSift() only accounts for about 28% of the time consumed
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by the benchmark. The outer routine, NumHeapSort() accounts for around
71% of the time taken. It will require additional analysis to determine
why the two compilers -- Watcom and CodeWarrior divide the workload
so differently. (It may have something to do with compiler architecture,
or the act of profiling the code may pr oduce results that are
significantly different than how the program runs under normal
conditions, though that would lead one to wonder what use profilers
would be.)

Porting Considerations

The numeric sort routine should represent a trivial porting exercise. It is
not an overly large benchmark in terms of source code. Additionally,
the only external routines it calls on are for allocating and releasing
memory, and managing the stopwatch.

The numeric sort benchmark depends on the following global definitions
(note that these may be overridden by the command file):

NUMNUMARRAYS -- Sets the upper limit on the number of arrays that
the benchmark will attempt to build. The numeric sort benchmark
creates work for itself by requiring the system to sort more and more
arrays...not bigger and bigger arrays. (The latter case would skew
results, because the sorting time for heapsort is N log2 N - e.g.,
doubling the array size does not double the sort time.) This constant se
ts the upper limit to the number of arrays the system will build before it
signals an error. The default value is 100, and may be changed if your
system exceeds this limit.

NUMARRAYSIZE - Determines the size of each array built. It has been
set to 8111L and should not be tampered with. The command file entry
NUMARRAYSIZE=<n> can be used to change this value, but results
produced by doing this will make your results incompatible with other
runs of the benchmark (since results will be skewed -- see preceding
paragraph).

To test for a correct execution of the numeric sort benchmark,
#define the DEBUG symbol. This will enable code that verifies that
arrays are properly sorted. You should run the benchmark program
using a command file that has only the numeric sort test enabled. If
there is an error, the program will display "SORT ERROR." (If this
happens, it's possible that tons of "SORT ERROR" messages will be
emitted, so it's best not to redirect output to a file.)

References

Gonnet, G.H. 1984, Handbook of Algorithms and Data Structures
(Reading, MA: Addison-Wesley).

Knuth, Donald E. 1968, Fundamental Algorithms, vol 1 of The Art of
Computer Programming (Reading, MA: Addison-Wesley).

Press, William H., Flannery, Brian P., Teukolsky, Saul A., and Vetterling,
William T. 1989, Numerical Recipes in Pascal (Cambridge: Cambridge
University Press).

Heapsort

The heapsort algorithm is well-covered in a number of the popular
computer-science textbooks. In fact, it gets a pat on the back in
Numerical Recipes (Press et. al.), where the authors write:

Heapsort is our favorite sorting routine. It can be recommended
wholeheartedly for a variety of sorting applications. It is a true "in-
place" sort, requiring no auxiliary storage.

Heapsort works by building the array into a kind of a queue called a
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heap. You can imagine this heap as being a form of in-memory binary t
ree. The topmost (root) element of the tree is the element that -- were
the array sorted -- would be the largest element in the array. Sorting
takes place by first constructing the heap, then pulling the root off the
tree, promoting the next largest element to the root, pulling it off, and
so on. (The promotion process is known as "sifting up.")

Heapsort executes in N log2 N time even in its worst case. Unlike some
other sorting algorithms, it does not benefit from a partially sorted
array (though Gonnet does refer to a variation of heapsort, called
"smoothsort," which does -- see references).

String Sort

Description

This benchmark is designed to gauge how well the system moves bytes
around. By that we mean, how well the system can copy a string of
bytes from one location to another; source and destination being
aligned to arbitrary addresses. (This is unlike the numeric sort array,
which moves bytes longword-at-a-time.) The strings themselves are
built so as to be of random length, ranging from no fewer than 4 bytes
and no greater than 80 bytes. The mixture of random lengths means
that processors will be forced to deal with strings that begin and end on
arbitrary address boundaries.

The string sort benchmark uses the heapsort algorithm; this is the
same algorithm as is used in the numeric sort benchmark (see the
sidebar on the heapsort for a detailed description of the algorithm).

Manipulation of the strings is actually handled by two arrays. One array
holds the strings themselves; the other is a pointers array. Each
member of the pointers array carries an offset that points into the
string array, so that the i th pointer carries the offset to the i th string.
This allows the benchmark to rapidly locate the position of the i th
string. (The sorting algorithm requires exchanges of items that might
be "distant" from one another in the array. It's critical that the routine
be abl e to rapidly find a string based on its indexed position in the
array.)

The string sort benchmark reports the number of string arrays it was
able to sort per second. The size of the array is set by a global
constant.

Analysis

Optimized 486 code (Watcom C/C++ 10.0) : Profiling of the string
sort benchmark indicates that it spends most of its time in the C library
routine memmove(). Within that routine, most of the execution is
consumed by a pair of instructions: rep movsw and rep movsd. These are
repeated string move -- word width and repeated string move --
doubleword width , respectively.

This is precisely where we want to see the time spent. It's interesting to
note that the memmove() of the particular compiler/profiler tested
(Watcom C/C++ 10.0) was "smart" enough to do most of the moving
on word or doubleword boundaries. The string sort benchmark
specifically sets arbitrary boundaries, so we'd expect to see lots of byte-
wide moves. The "smart" memmove() is able to move bytes only when it
has to, and does the remainder of the work via words and doublewords
(which can move more bits at a time).

680x0 Code (Macintosh CodeWarrior): Because CodeWarrior's
profiler is function based, it is impossible to get an idea of how much
time the test spends in library routines such as memmove().
Fortunately, as an artifact of the early version of the benchmark, the
string sort algorithm makes use of the MoveMemory() routine in the
sysspec.c file (system specific routines). This call, on anything other than
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a 16-bit DOS system, calls memmove() directly. Hence, we can get a good
approximation of how much time is spent moving bytes.

The answer is that nearly 78% of the benchmark's time is consumed by
MoveMemory(), the rest being taken up by the other routines (the
str_is_less() routine, which performs string c omparisons, takes about
7% of the time). As above, we can guess that most of the benchmark's
time is dependent on the performance of the library's memmove() routine.

Porting Considerations

As with the numeric sort routine, the string sort benchmark should be
simple to port. Simpler, in fact. The string sort benchmark routine is not
dependent on any typedef that may change from machine to machine
(unless a char type is not 8 bits).

The string sort benchmark depends on the following global definitions:

NUMSTRARRAYS - Sets the upper limit on the number of arrays that the
benchmark will attempt to build. The string sort benchmark creates
work for itself by requiring the system to sort more and more arrays,
not bigger and bigger arrays. (See section on Numeric Sort for an
explanation.) This constant sets the upper limit to the number of arrays
the system will build before it signals an error. The default value is 100,
and may be changed if your system exceeds this limit.

STRARRAYSIZE - Sets the default size of the string arrays built. We say
"arrays" because, as with the numeric sort benchmark, the system adds
work not by expanding the size of the array, but by adding more
arrays. This value is set to 8111, and should not be modified, since
results would not be comparable with other runs of the same
benchmark on other machines.

To test for a correct execution of the string sort benchmark ,
#define the DEBUG symbol. This will enable code that verifies the
arrays are properly sorted. Set up a command file that runs only the
string sort, and execute the benchmark program. If the routine is
operating properly, the benchmark will complete with no error
messages. Otherwise, the program will display "Sort Error" for each pair
of strings it finds out of order.

References

See the references for the Numeric Sort benchmark.

Bitfield Operations

Description

The purpose of this benchmark is to explore how efficiently the system
executes operations that deal with "twiddling bits." The test is set up to
simulate a "bit map"; a data structure used to keep track of storage
usage. (Don't confuse this meaning of "bitmap" with its use in
describing a graphics data structure.)

Systems often use bit maps to keep an inventory of memory blocks or
(more frequently) disk blocks. In the case of a bit map that manages
disk usage, an operating system will set aside a buffer in memory so
that each bit in that buffer corresponds to a block on the disk drive. A 0
bit means that the corresponding block is free; a 1 bit means the block
is in use. Whenever a file requests a new block of disk storage, the
operating system searches the bit map for the first 0 bit, sets the bit (to
indicate that the block is now spoken for), and returns the number of
the corresponding disk block to the requesting file.

These types o f operations are precisely what this test simulates. A
block of memory is set allocated for the bit map. Another block of
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memory is allocated, and set up to hold a series of "bit map
commands". Each bitmap command tells the simulation to do 1 of 3
things:

1) Clear a series of consecutive bits,

2) Set a series of consecutive bits, or

3) Complement (1->0 and 0->1) a series of consecutive bits.

The bit map command block is loaded with a set of random bit map
commands (each command covers an random number of bits), and
simulation routine steps sequentially through the command block,
grabbing a command and executing it.

The bitfield benchmark reports the number of bits it was able to operate
on per second. The size of the bit map is constant; the bitfield
operations array is adjusted based on the capabilities of the processor.
(See the section describing the auto-adjust feature of the benchmarks.)

Analysis

Optimized 486 code : Using the Watcom C/C++ 10.0 profiler, the
Bitfield benchmark appears to spend all of its time in two routines:
ToggleBitRun() (74% of the time) and DoBitFieldIteration() (24% of the
time). We say "appears" because this is misleading, as we will explain.

First, it is important to recall that the test performs one of three
operations for each run of bits (see above). The routine ToggleBitRun()

handles two of those three operations: setting a run of bits and clearing
a run of bits. An if() statement inside ToggleBitRun() decides which of
the two operations is performed. (Speed freaks will quite rightly point
out that this slows the entire algorithm. ToggleBitRun() is called by a
switch() statement which has already decided whether bits should be set
or cleared; it's a waste of time to have ToggleBitRun() have to make that
decision yet again.)

DoBitFieldIteration() is the "outer" routine that calls ToggleBitRun() .
DoBitFieldIteration() also calls FlipBitRun() . This latter routine is the one
that performs the third bitfield operation: complementing a run of bits.
FlipBitRun() gets no "air time" at all (while DoBitFieldIteration() gets 24
% of the time) simply because the compiler's optimizer recognizes that
FlipBitRun() is only called by DoBitFieldIteration() , and is called only
once. Consequently, the optimizer moves FlipBitRun() "inline", i.e., into
DoBitFieldIteration() . This removes an unnecessary call/return cycle
(and is probably part of the reason why the FlipBitRun() code gets 24%
of the algorithm's time, instead of something closer to 30% of its time.)

Within the routines, those lines of code that actually do the shifting, the
and operations, and the or operations, consume time evenly. This
should make for a good test of a processor's " bit twiddling" capabilities.

680x0 Code (Macintosh CodeWarrior): The CodeWarrior profiler is
function based. Consequently, it is impossible to produce a profile of
machine instruction execution time. We can, however, get a good
picture of how the algorithm divides its time among the various
functions.

Unlike the 486 compiler, the CodeWarrior compiler did not appear to
collapse the FlipBitRun() routine into the outer DoBitFieldIteration()

routine. (We don't know this for certain, of course. It's possible that the
compiler would have done this had we not been profiling.)

In any case, the time spent in the two "core" routines of the bitfield test
are shown below:

FlipBitRun() - 18031.2 microsecs (called 509 times)
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ToggleBitRun() - 50770.6 microsecs (called 1031 times)

In terms of total time, FlipBitRun() takes about 35% of the time (it gets
about 33% of the calls). Remember, Tog gleBitRun() is a single routine
that is called both to set and clear bits. Hence, ToggleBitRun() is called
twice as often as FlipBitRun().

We can conclude that time spent setting bits to 1, seting bits to 0, and
changing the state of bits, is about equal; the load is balanced close to
what we'd expect it to be, based on the structure of the algorithm.

Porting Considerations

The bitfield operations benchmark is dependent on the size of the long
datatype. On most systems, this is 32 bits. However, on some of the
newer RISC chips, a long can be 64 bits long. If your system does use
64-bit longs, you'll need to #define the symbol LONG64 .

If you are unsure of the size of a long in your system (some C compiler
manuals make it difficult to discover), simply place an ALLSTATS=T line
in the command file and run the benchmarks. This will cause the
benchmark program to display (among other things) the size of the
data types int , short , and long in bytes.

BITFARRAYSIZE - Sets the number of longs in the bit map array. This
number is fixed, and should not be altered. The bitfield test adjusts
itself by adding more bitfield commands (see above), not by creating a
larger bit map.

Currently, there is no code added to test for correct execution. If you
are concerned that your port was incorrect, you'll need to step through
your favorite debugger and verify execution against the original source
code.

References

None.

Emulated Floating-point

Description

The emulated floating-point benchmark includes routines that are
similar to those that would be executed whenever a system performs
floating-point operations in the absence of a coprocessor. In general,
this amounts to a mixture of integer instructions, including shift
operations, integer addition and subtraction, and bit testing (among
others).

The benchmark itself is remarkably simple. The test builds three 1-
dimensional arrays and loads the first two up with random floating-
point numbers. The arrays are then partitioned into 4 equal-sized
groups, and the test proceeds by performing addition, subtraction,
multiplication, and division -- one operation on each group. (For
example, for the addition group, an element from the first array is
added to the second array and the result is placed in the third array.)

Of course, most of the work takes place inside the routines that perform
the addition, subtraction, multiplication, and division. These routines
operate on a special data type (referred to as an InternalFPF number)
that -- though not strictly IEEE compliant -- carries all the necessary
data fields to support an IEEE-compatible floating-point system.
Specifically, an InternalFPF number is built up of the following fields:

Type (indicates a NORMAL, SUBNORMAL, etc.)

Mantissa sign
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Unbiased, signed 16-bit exponent

4-word (16 bits ) mantissa.

The emulated floating-point test reports its results in number of loops
per second (where a "loop" is one pass through the arrays as described
above).

Finally, we are aware that this test could be on its way to becoming an
anachronism. A growing number of systems are appearing that have
coprocessors built into the main CPU. It's possible that floating-point
emulation will one day be a thing of the past.

Analysis

Optimized 486 code (Watcom C/C++ 10.0): The algorithm's time is
distributed across a number of routines. The distribution is:

ShiftMantLeft1() - 60% of the time

ShiftMantRight1() - 17% of the time

DivideInternalFPF() - 14% of the time

MultiplyInternalFPF() - 5% of the time.

The first two routines are similar to one another; both shift bits about in
a floating-point number's mantissa. It's reasonable that ShiftMantLeft1
() should take a larger share o f the system's time; it is called as part of
the normalization process that concludes every emulated addition,
subtraction, mutiplication, and division.

680x0 Code (Macintosh CodeWarrior): CodeWarrior's profiler is
function-based; consequently, it isn't possible to get timing at the
machine instruction level. However, the output to CodeWarrior's profiler
has provided insight into the breakdown of time spent in various
functions that forces us to rethink our 486 code analysis.

Analyzing what goes on inside the emulated floatingpoint tests is a
tough one to call because some of the routines that are part of the test
are called by the function that builds the arrays. Consequently, a quick
look at the profiler's output can be misleading; it's not obvious how
much time a particular routine is spending in the test and how much
time that same routine is spending setting up the test (an operation
that does not get timed).

Specifically, the routine that loads up the arrays w ith test data calls
LongToInternalFPF() and DivideInternalFPF(). LongToInternalFPF() makes one
call to normalize() if the number is not a true zero. In turn, normalize()

makes an indeterminate number of calls to ShiftMantLeft1(), depending
on the structure of the mantissa being normalized.

What's worse, DivideInternalFPF() makes all sorts of calls to all kinds of
important low-level routines such as Sub16Bits() and ShiftMantLeft1().

Untangling the wiring of which routine is being called as part of the test,
and which is being called as part of the setup could probably be done
with the computer equivalent of detective work and spelunking, but in
the interest of time we'll opt for approximation.

Here's a breakdown of some of the important routines and their times:

AddSubInternalFPF() - 1003.9 microsecs (called 9024 times)

MultiplyInternalFPF() - 20143 microsecs (called 56 10 times)

DivideInternalFPF() - 18820.9 microsecs (called 3366 times).
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The 3366 calls to DivideInternalFPF() are timed calls, not setup calls --
the profiler at least gives outputs of separate calls made to the same
routine, so we can determine which call is being made by the
benchmark, and which is being made by the setup routine. It turns out
that the setup routine calls DivideInternalFPF() 30,000 times.

Notice that though addition/subtraction are called most often,
multiplication next, then finally division; the time spent in each is the
reverse. Division takes the most time, then multiplication, finally
addition/subtraction. (There's probably some universal truth lurking
here somewhere, but we haven't found it yet.)

Other routines, and their breakdown:

Add16Bits() - 115.3 microsecs

ShiftMantRight1() - 574.2 microsecs

Sub16Bits() - 1762 microsecs

StickySiftRightMant - 40.4 micr osecs

ShiftMantLeft1() - 17486.1 microsecs

The times for the last three routines are suspect, since they are called
by DivideInternalFPF() , and a large portion of their time could be part of
the setup process. This is what leads us to question the results obtained
in the 486 analysis, since it, too, is unable to determine precisely who is
calling whom.

Porting Considerations

Earlier versions of this benchmark were extremely sensitive to porting;
particularly to the "endianism" of the target system. We have tried to
eliminate many of these problems. The test is nonetheless more
"sensitive" to porting than most others.

Pay close attention to the following defines and typedefs. They can be
found in the files EMFLOAT.H, NMGLOBAL.H, and NBENCH1.H:

u8 - Stands for unsigned, 8-bit. Usually defined to be unsigned char .

u16 - Stands for unsigned, 16-bit. Usually defined to be uns igned short .

u32 - Stands for unsigned, 32-bit. Usually defined to be unsigned long.

INTERNAL_FPF_PRECISION - Indicates the number of elements in the mantissa
of an InternalFPF number. Should be set to 4.

The exponent field of an InternalFPF number is of type short . It should
be set to whatever minimal data type can hold a signed, 16-bit number.

Other global definitions you will want to be aware of:

CPUEMFLOATLOOPMAX - Sets the maximum number of loops the
benchmark will attempt before flagging an error. Each execution of a
loop in the emulated floating-point test is "non-destructive," since the
test takes factors from two arrays, operates on the factors, and places
the result in a third array. Consequently, the test makes more work for
itself by increasing the number of times it passes through the arrays (#
of loops). If the system exceeds the limit set by
CPUEMFLOATLOOPMAX, it will signal an error.

Th is value may be altered to suit your system; it will not effect the
benchmark results (unless you reduce it so much the system can never
generate enough loops to produce a good test run).
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EMFARRAYSIZE - Sets the size of the arrays to be used in the test. This
value is the number of entries (InternalFPF numbers) per array.
Currently, the number is fixed at 3000, and should not be altered.

Currently, there is no means of testing correct execution of the
benchmark other than via debugger. There are routines available to
decode the internal floating point format and print out the numbers, but
no formal correctness test has been constructed. ( This should be
available soon. -- 3/14/95 RG )

References

Microprocessor Programming for Computer Hobbyists, Neill Graham,
Tab Books, Blue Ridge Summit, PA, 1977.

Apple Numerica Manual, Second edition, Apple Computer, Addison-
Wesley Publishing Co., Reading, MA, 1988.

Fourier Series

Description

This is a floating-point benchmark designed primarily to exercise the
trigonometric and transcendental functions of the system. It calculates
the first n Fourier coefficients of the function (x+1)x on the interval 0,2.
In this case, the function (x+1)x is being treated as a cyclic waveform
with a period of 2.

The Fourier coefficents, when applied as factors to a properly
constructed series of sine and cosine functions, allow you to
approximate the original waveform. (In fact, if you can calculate all the
Fourier coefficients -- there'll be an infinite number -- you can
reconstruct the waveform exactly). You have to calculate the
coefficients via intergration, and the algorithm does this using a simple
trapezoidal rule for its numeric integration function.

The upshot of all this is that it provides an exercise for the floating-
point routines that calculate sine, cosine, and raising a number to a
power. There are also some floating-point multiplications, divisions,
additi ons, and subtractions mixed in.

The benchmark reports its results as the number of coefficients
calculated per second.

As an additional note, we should point out that the performance of this
benchmark is heavily dependent on how well-built the compiler's math
library is. We have seen at least two cases where recompilation with
new (and improved!) math libraries have resulted in two-fold and five-
fold performance improvements. (Apparently, when a compiler gets
moved to a new platform, the trigonometric and transcendental
functions in the math libraries are among the last routines to be "hand
optimized" for the new platform.) About all we can say about this is that
whenever you run this test, verify that you have the latest and greatest
math libraries.

Analysis

Optimized 486 code : The benchmark partitions its time almost
evenly among the modules pow387 , exp386 , and trig387 ; giving between
25% and 28% of its time to ea ch. This is based on profiling with the
Watcom compiler running under Windows NT. These modules hold the
routines that handle raising a number to a power and performing
trigonometric (sine and cosine) calculations. For example, within
trig387 , time was nearly equally divided between the routine that
calculates sine and the routine that calculates cosine.

The remaining time (between 17% and 18%) was spent in the balance
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of the test. We noticed that most of that time occurred in the routine
thefunction() . This is at the heart of the numerical integration routine
the benchmark uses.

Consequently, this benchmark should be a good test of the exponential
and trigonometric capabilities of a processor. (Note that we recognize
that the performance also depends on how well the compiler's math
library is built.)

680x0 Code (Macintosh CodeWarrior): The CodeWarrior profiler is
function based, therefore it is impossible to get performance results for
individua l machine instructions. The CodeWarrior compiler is also
unable to tell us how much time is spent within a given library routine;
we can't see how much time gets spent executing the sin() , cos() , or
pow() functions (which, unfortunately, was the whole idea behind the
benchmark).

About all we can glean from the results is that thefunction() takes about
74% of the time in the test (this is where the heavy math calculations
take place) while trapezoidintegrate() accounts for about 26% of the time
on its own.

Porting Considerations

Necessarily, this benchmark is at the mercy of the efficiency of the
floating-point support provided by whatever compiler you are using. It
is recommended that, if you are doing the port yourself, you contact
the designers of the compiler, and discuss with them what optimization
switches should be set to produce the fastest code. (This sounds
simple; usually it's not. Some systems let you decide be tween speed
and true IEEE compliance.)

As far as global definitions go, this benchmark is happily free of them.
All the math is done using double data types. We have noticed that, on
some Unix systems, you must be careful to include the correct math
libraries. Typically, you'll discover this at link time.

To test for correct execution of the benchmark : It's unlikely you'll
need to do this, since the algorithm is so cut-and-dried. Furthermore,
there are no explicit provisions made to verify the correctness. You can,
however, either dip into your favorite debugger, or alter the code to
print out the contents of the abase (which holds the A[i] terms) and
bbase (which holds the B[i] terms) arrays as they are being filled (see
routine DoFPUTransIteration ). Run the benchmark with a command file set
to execute only the Fourier test, and examine the contents of the
arrays. The first 4 elements of each array should be:

A[i] B[i]

2.8377707 56 n/a

1.045784473 -1.879103261

.2741002242 -1.158835123

.0824148217 -.8057591902

Note that there is no B[0] coefficient. If the above numbers are in the
arrays shown, you can feel pretty confident that the benchmark it
working properly.

References

Engineering and Scientific Computations in Pascal, Lawrence P.
Huelsman, Harper & Row, New York, 1986.

Assignment Algorithm
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Description

This test is built on an algorithm with direct application to the business
world. The assignment algorithm solves the following problem: Say you
have X machines and Y jobs. Any of the machines can do any of the
jobs; however, the machines are sufficiently different that the cost of
doing a particular job can vary depending what machine does it.
Furthermore, the jobs are sufficiently different that the cost varies
depending on which job a given machine does. You therefore construct
a matrix; machines are the rows, jobs are the col umns, and the [i,j]
element of the array is the cost of doing the jth job on the ith machine.
How can you assign the jobs so that the cost of completing them all is
minimal? (This also assumes that one machine does one job.)

Did you get that?

The assignment algorithm benchmark is largely a test of how well the
processor handles problems built around array manipulation. It is not a
floating-point test; the "cost matrix" built by the algorithm is simply a
2D array of long integers. This benchmark considers an iteration to be a
run of the assignment algorithm on a 101 x 101 - element matrix. It
reports its results in iterations per second.

Analysis

Optimized 486 code (Watcom C/C++ 10.0) : There are numerous
loops within the assignment algorithm. The development system we
were using (Watcom C/C++ 10.0) appears to have a fine time unrolling
many of them. Consequently, it is difficult to pin down the execution
impact of single lines (as in, for example, the numeric sort benchmark).

On the level of functions, the benchmark spends around 70% of its time
in the routine first_assignments() . This is where a) lone zeros in rows
and columns are found and selected, and b) a choice is made between
duplicate zeros. Around 23% of the time is spent in the second_assignments

() routine where (if first_assignments() fails) the matrix is partitioned into
smaller submatrices.

Overall, we did a tally of instruction mix execution. The approximate
breakdowns are:

move - 38%

conditional jump - 12%

unconditional jump - 11%

comparison - 14%

math/logical/shift - 24%

Many of the move instructions that appeared to consume the most
amounts of time were referencing items on the local stack frame. This
required an indirect reference through EBP, plus a constant offset to
resolve the address.

This should be a good exercise of a cache, since operations in the
first_as signments() routine require both row-wise and column-wise
movement through the array. Note that the routine could be made
more "severe" by chancing the assignedtableau[][] array to an array of
unsigned char -- forcing fetches on byte boundaries.

680x0 Code (CodeWarrior): The CodeWarrior profiler is function-
based. Consequently, it's not possible to determine what's going on at
the machine instruction level. We can, however, get a good idea of how
much time the algorithm spends in each routine. The important routines
are broken down as follows:
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calc_minimum_costs() - approximately 0.3% of the time

(250 microsecs)

first_assignments() - approximately 79% of the time

(96284.6 microsecs)

second_assignments() - approximately 19% of the time

(22758 microsecs)

These times are approximate; some time is spent in the Assignment()

routine itself.

These figures are reas onably close to those of the 486, at least in
terms of the mixture of time spent in a particular routine. Hence, this
should still be a good test of system cache (as described in the
preceding section), given the behavior of the first_assignments() routine.

Porting Considerations

The assignment algorithm test is purely an integer benchmark, and
requires no special data types that might be affected by ports to
different architectures. There are only two global constants that affect
the algorithm:

ASSIGNROWS and ASSIGNCOLS - These set the size of the assignment
array. Both are defined to be 101 (so, the array that is benchmarked is
a 101 x 101 -element array of longs). These values should not be
altered.

To test for correct execution of the benchmark : #define the
symbol DEBUG, recompile, set up a command file that executes only
the assignment algorithm, and run the benchmark. (You may want to
pipe the output through a paging filter, like the more program.) The act
of defining DEBUG will enable a section of code that displays the
assigned columns on a per-row basis. If the benchmark is working
properly, the first 25 numbers to be displayed should be:

37 58 95 99 100 66 9 52 4 65 43 23 16 19 62 13 77 10 11 95 4 64 2
76 78

These are the column choices for each row made by the algorithm. (For
example, row 0 selects column 37, row 1 selects column 58, etc.) Odds
are extremely good that, if you see these numbers displayed, the
algorithm is working correctly.

References

Quantitative Decision Making for Business, Gordon, Pressman, and
Cohn, Prentice-Hall, Englewood Cliffs, NJ, 1990.

Quantitative Decision Making, Guiseppi A. Forgionne, Wadsworth
Publishing Co., California, 1986.

Huffman Compression

Description

This is a compression algorithm that -- while helpful for some time as a
text compression technique -- has since fallen out of fashion on account
of the supe rior performance by algorithms such as LZW compression.
It is, however, still used in some graphics file formats in one form or
another.
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The benchmark consists of three parts:

Building a "Huffman Tree" (explained below),

Compression, and

Decompression.

A "Huffman Tree" is a special data structure that guides the
compression and decompression processes. If you were to diagram one,
it would look like a large binary tree (i.e., two branches per each node).
Describing its function in detail is beyond the scope of this paper (see
the references for more information). We should, however, point out
that the tree is built from the "bottom up"; and the procedure for
constructing it requires that the algorithm scan the uncompressed
buffer, building a frequency table for all the characters appearing in the
buffer. (This version of the Huffman algorithm compresses byte-at-a-
time, though there's no reason why the same principle could not be
applied to tokens larger than one byte.)

Once the tree is built, text compression is relatively straightforward.
The algorithm fetches a character from the uncompressed buffer,
navigates the tree based on the character's value, and produces a bit
stream that is concatenated to the compressed buffer. Decompression
is the reverse of that process. (We recognize that we are simplifying the
algorithm. Again, we recommend you check the references.)

The Huffman Compression benchmark considers an iteration to be the
three operations described above, performed on an uncompressed text
buffer of 5000 bytes. It reports its results in iterations per second.

Analysis

Optimized 486 code (Watcom C/C++ 10.0) : The Huffman
compression algorithm -- tree building, compression, and
decompression -- is written as a single, large routine: DoHuffIteration() .
All the benchmark's time is spent within that routine.

Components of DoHuffIteration() that consume the most time are those
that perform the compression and decompression .

The code for performing the compression spends most of its time
(accounting for about 13%) constructing the bit string for a character
that is being compressed. It does this by seeking up the tree from a
leaf, emitting 1's and 0's in the process, until it reaches the root. The
stream of 1's and 0's are loaded into a character array; the algorithm
then walks "backward" through the array, setting (or clearing) bits in
the compression buffer as it goes.

Similarly, the decompression portion takes about 12% of the time as
the algorithm pulls bits out of the compressed buffer -- using them to
navigate the Huffman tree -- and reconstructs the original text.

680x0 Code (Macintosh CodeWarrior): CodeWarrior's profiler is
function based. Consequently, it's impossible to get performance scores
for individual machine instructions. Furthermore, as mentioned above,
the Huffman compre ssion algorithm is written as a monolithic routine.
This makes the results from the CodeWarrior profiler all the more
sparse.

We can at least point out that the lowmost routines ( GetCompBit() and
SetCompBit() ) that read and write individual bits, though called nearly 13
million times each, account for only 0.7% and 0.3% of the total time,
respectively.

Porting Considerations
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The Huffman algorithm relies on no special data types. It should port
readily. Global constants of interest include:

EXCLUDED - This is a large, positive value. Currently it is set to 32000,
and should be left alone. Basically, this is a token that the system uses
to indicate an excluded character (one that does not appear in the
plaintext). It is set to a ridiculously high value that will never appear in
the pointers of the tree during normal construction.

MAXHUFFLOOPS - This is another one of those "governor" constants.
The Huffman benchmark creates m ore work for itself by doing multiple
compression/decompression loops. This constant sets the maximum
number of loops it will attempt per iteration before it gives up.
Currently, it is set to 50000. Though it is unlikely you'll ever need to
modify this value, you can increase it if your machine is too fast for the
adjustment algorithm. Do not reduce the number.

HUFFARRAYSIZE - This value sets the size of the plaintext array to be
compressed. You can override this value with the command file to see
how well your machine performs for larger or smaller arrays. The
subsequent results, however, are invalid for comparison with other
systems.

To test for correct execution of the benchmark : #define the
symbol DEBUG, recompile, build a command file that executes only the
Huffman compression algorithm, and run the benchmark. Defining
DEBUG will enable a section of code that verifies the decompression as
it takes place (i.e., the routine compares -- character at a time -- the
un compressed data with the original plaintext). If there's an error, the
program will repeatedly display: "Error at textoffset xxx".

References

Data Compression: Methods and Theory, James A. Storer, Computer
Science Press, Rockville, MD, 1988.

An Introduction to Text Processing, Peter D. Smith, MIT Press,
Cambridge, MA, 1990.

IDEA Encryption

Description

This is another benchmark based on a "higher-level" algorithm; "higher
-level" in the sense that it is more complex than a sort or a search
operation.

Security -- and, therefore, cryptography -- are becoming increasingly
important issues in the computer realm. It's likely that more and more
machines will be running routines like the IDEA encryption algorithm.
(IDEA is an acronym for the International Data Encryption Algorithm.)

A good description of the algorithm (and, in fact, the reference we used
to create the source code for the test) can be fou nd in Bruce Schneier's
exhaustive exploration of encryption, "Applied Cryptography" (see
references). To quote Mr. Schneier: "In my opinion, it [IDEA] is the
best and most secure block algorithm available to the public at this
time."

IDEA is a symmetrical, block cypher algorithm. Symmetrical means that
the same routine used to encrypt the data also decrypts the data. A
block cipher works on the plaintext (the message to be encrypted) in
fixed, discrete chunks. In the case of IDEA, the algorithm encrypts and
decrypts 64 bits at a time.

As pointed out in Schneier's book, there are three operations that the
IDEA uses to do its work:
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XOR (exclusive-or)

Addition modulo 216 (ignoring overflow)

Multiplication modulo 216+1 (ignoring overflow).

IDEA requires a key of 128 bits. However, keys and blocks are further
subdivided into 16-bit chunks, so that any given operation within the
IDEA encryption is performed on 16-bit quantities. (T his is one of the
many advantages of the algorithm, it is efficient even on 16-bit
processors.)

The IDEA benchmark considers an "iteration" to be an encryption and
decryption of a buffer of 4000 bytes. The test actually builds 3 buffers:
The first to hold the original plaintext, the second to hold the encrypted
text, and the third to hold the decrypted text (the contents of which
should match that of the first buffer). It reports its results in iterations
per second.

Analysis

Optimized 486 code: The algorithm actually spends most of its time
(nearly 75%) within the mul() routine, which performs the multiplication
modulo 216+1. This is a super-simple routine, consisting primarily of if

statements, shifts, and additions.

The remaining time (around 24%) is spent in the balance of the
cipher_idea() routine. (Note that cipher_idea() calls the mul() routine
frequently; so, the 24% is comprised of t he other lines of cipher_idea

() ). cipher_idea() is littered with simple pointer-fetch-and-increment
operations, some addition, and some exclusive-or operations.

Note that IDEA's exercise of system capabilities probably doesn't
extend beyond testing simple integer math operations. Since the buffer
size is set to 4000 bytes, the test will run entirely in processor cache on
most systems. Even the cache won't get a heavy "internal" workout,
since the algorithm proceeds sequentially through each buffer from
lower to higher addresses.

680x0 code (Macintosh CodeWarrior): CodeWarrior's profiler is
function based; consequently, it is impossible to determine execution
profiles for individual machine instructions. We can, however, get an
idea of how much time is spent in each routine.

As with Huffman compression, the IDEA algorithm is written
monolithically -- a single, large routine does most of the work.
However, a special multiplication routine , mul() , is frequently called
within each encryption/decription iteration (see above).

In this instance, the results for the 68K system diverges widely from
those of the 486 system. The CodeWarrior profiler shows the mul()

routine as taking only 4% of the total time in the benchmark, even
though it is called over 20 million times. The outer routine is called
600,000 times, and accounts for about 96% of the whole program's
entire time.

Porting Considerations

Since IDEA does its work in 16-bit units, it is particularly important that
u16 be defined to whatever datatype provides an unsigned 16-bit
integer on the test platform. Usually, unsigned short works for this. (You
can verify the size of a short by running the benchmarks with a
command file that includes ALLSTATS=T as one of the commands. This
will cause the benchmark program to display a message that tells the
size of the int, short, and long datatypes in bytes.)

Also, the mul() routine in IDEA requires the u32 datatype to define an
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unsigned 32-bit integer. In most cases, unsigned long works.

To test for correct execution of the benchmark : #define the
symbol DEBUG, recompile, build a command file that executes only the
IDEA algorithm, and run the benchmark. Defining DEBUG will enable a
section of code that compares the original plaintext with the output of
the test. (Remember, the benchmark performs both encryption and
decryption.) If the algorithm has failed, the output will not match the
input, and you'll see "IDEA Error" messages all over your display.

References

Applied Cryptography: Protocols, Algorithms, and Source Code in C,
Bruce Schneier, John Wiley & Sons, Inc., New York, 1994.

Neural Net

Description

The Neural Net simulation benchmark is based on a simple back-
propagation neural network presented by Maureen Caudill as part of a
BYTE article that appeared in the October, 1991 issue (see "Expert
Networks" in that issue). The network involved is a simple 3-layer
(input neurodes, middle-layer neurodes, and output neurodes) network
that accepts a number of 5 x 7 input patterns and produce a single 8-
bit output pattern.

The test involves sending the network an input pattern that is the 5 x 7
"image" of a character (1's and 0's -- 1's representing lit pixels, 0's
representing unlit pixels), and teaching it the 8-bit ASCII code for the
character.

A thorough description of how the back propagation algorithm works is
beyond the scope of this paper. We recommend you search through the
references given at the end of this paper, particularly Ms. Caudill's
article, for detailed discussion. In brief, the benchmark is primarily an
exercise in floating-point operations, with some frequent use of the exp

() function. It also performs a great deal of array references, though
the arrays in use are well und er 300 elements each (and less than 100
in most cases).

The Neural Net benchmark considers an iteration to be a single learning
cycle. (A "learning cycle" is defined as the time it takes the network to
be able to associate all input patterns to the correct output patterns
within a specified tolerance.) It reports its results in iterations per
second.

Analysis

Optimized 486 code : The forward pass of the network (i.e.,
calculating outputs from inputs) utilize a sigmoid function. This function
has, at its heart, a call to the exp() library routine. A small but non-
negligible amount of time is spent in that function (a little over 5% for
the 486 system we tested).

The learning portion of the network benchmark depends on the
derivative of the sigmoid function, which turns out to require only
multiplications and subtractions. Consequently, each learning pass
exercises only simple floating-point operations.

If we divide the time spen t in the test into two parts -- forward pass
and backward pass (the latter being the learning pass) -- then the test
appears to spend the greatest part of its time in the learning phase. In
fact, most time is spent in the adjust_mid_wts() routine. This is the part of
the routine that alters the weights on the middle layer neurodes. (It
accounts for over 40% of the benchmark's time.)
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680x0 Code (Macintosh CodeWarrior): Though CodeWarrior's
profiler is function based, the neural net benchmark is highly modular.
We can therefore get a good breakdown of routine usage:

worst_pass_error() - 304 microsecs (called 4680 times)

adjust_mid_wts() - 83277 microsecs (called 46800 times)

adjust_out_wts() - 17394 microsecs (called 46800 times)

do_mid_error() - 11512 microsecs (called 46800 times)

do_out_error() - 3002 microsecs (called 46800 times)

do_mid_forward() - 49559 microsecs (called 46800 times)

do_out_forward() - 20634 microsecs (called 46800 times)

Again, most time was spent in adjust_mid_wts() (as on the 486),
accounting for almost twice as much time as do_mid_forward().

Porting Consideration

The Neural Net benchmark is not dependent on any special data types.
There are a number of global variables and arrays that should not be
altered in any way. Most importantly, the #defines found in NBENCH1.H
under the Neural Net section should not be changed. These control not
only the number of neurodes in each layer; they also include constants
that govern the learning processes.

Other globals to be aware of:

MAXNNETLOOPS - This constant simply sets the upper limit on the
number of training loops the test will permit per iteration. The Neural
Net benchmark adjusts its workload by re-teaching itself over and over
(each time it begins a new training session, the network is "cleared" --
loaded with random va lues). It is unlikely you will ever need to modify
this constant.

inpath - This string pointer is set to the path from which the neural net's
input data is read. It is currently hardwired to "NNET.DAT". You
shouldn't have to change this name, unless your filesystem requires
directory information as part of the path.

Note that the Neural Net benchmark is the only test that requires an
external data file. The contents of the file are listed in an attachment to
this paper. You should use the attachment to reconstruct the file should
it become lost or corrupted. Any changes to the file will invalidate the
test results.

To test for correct execution of the benchmark : #define the
symbol DEBUG, recompile, build a command file that executes only the
Neural Net test, and run the benchmark. Defining DEBUG will enable a
section of code that displays how many passes through the learning
process were required for the net to learn. It should learn in 780
passes.
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LU Decomposition

Description

LU Decomposition is an algorithm that can be used as the heart of a
program for solving linear equations. Suppose you have a matrix A . LU
Decomposition determines the matrices L and U such that

L . U = A

where L is a lower triangular matrix and U is an upper triangular
matrix. (A lower triangular matrix has nonzero elements only on the
main diagonal and below. An upper triangular matrix has nonzero
elements only on the main diagonal and above.)

Without going into the mathe matical details too deeply, having the L
and U matrices makes the solution of linear equations (i.e., equations
of the form A . x = b ) quite easy. It turns out that you can also use LU
decomposition to determine matrix inverses and determinants.

The algorithm used in the benchmarks was derived from Numerical
Recipes in Pascal (there is a C version of the book, which we did not
have on hand), a book we heartily recommend to anyone serious about
mathematical and scientific computing. The authors are approving of LU
decomposition as a means of solving linear equations, pointing out that
their version (which makes use of what we would have to call "Crout's
method with partial implicit pivoting") is a factor of 3 better than one of
their Gauss-Jordan routines, a factor of 1.5 better than another. They
go on to demonstrate the use of LU decomposition for iterative
improvement of linear equation solutions.

The benchmark begins by crea ting a "solvable" linear system. This is
easily done by loading up the column vector b with random integers,
then initializing A with an identity matrix. The equations are then
"scrambled" by either multiplying a row by a constant, or adding one
row to another. The scrambled matrices are handed to the LU
algorithm.

The LU Decomposition benchmark considers a single iteration to be the
solution of one set of equations (the size of A is fixed at 101 x 101
elements). It reports its results in iterations per second.

Analysis

Optimized 486 code (Watcom C/C++ 10.0) : The entire algorithm
consists of two parts: the LU decomposition itself, and the back
substitution algorithm that builds the solution vector. The majority of
the algorithm's time takes place within the former; the algorithm that
builds the L and U matrices (this takes place in routine ludcmp() ).

Within ludcmp() , there are tw o extremely tight for loops forming the
heart of Crout's algorithm that consume the majority of the time. The
loops are "tight" in that they each consist of only one line of code; in
both cases, the line of code is a "multiply and accumulate" operation
(actually, it's sort of a multiply and de-accumulate, since the result of
the multiplication is subtracted, not added).

In both cases, the items multiplied are elements from the A array; and
one factor's row index is varying more rapidly, while another factor's
column index is varying more rapidly.

Note that this is a good overall test of floating-point operations within
matrices. Most of the math is floating-point; primarily additions,
subtractions, and multiplications (only a few divisions).
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680x0 Code (Macintosh CodeWarrior): CodeWarrior's profiler is
function based. It is therefore impossible to determine execution
profiles at the machine-code level. The profiler does, however, allow us
to det ermine how much time the benchmark spends in each routine.
This breakdown is as follows:

lusolve() - 3.4 microsecs (about 0% of the time)

lubksb() 1198 microsec (about 2% of the time)

ludcmp() - 63171 microsec (about 91% of the time)

The above percentages are for the whole program. Consequently, as a
portion of actual benchmark time, the amount attributed to each will be
slightly larger (though the proportions will remain the same).

Since ludcmp() performs the actual LU decomposition, this is exactly
where we'd want the benchmark to spend its time. The lubksb() routine
calls ludcmp() , using the resulting matrix to "back-solve" the linear
equation.

Porting Considerations

The LU Decomposition routine requires no special data types, and is
immune to byte ordering. It does make use of a typedef ( LUdblptr ) that
includes an embedded union; this allows the benchmark to "co erce" a
pointer to double into a pointer to a 2D array of double. This
arrangement has not caused problems with the compilers we have
tested to date.

Other constants and globals to be aware of:

LUARRAYROWS and LUARRAYCOLS - These constants set the size of the
coefficient matrix, A. They cannot be altered by command file. In fact,
you shouldn't alter them at all, or your results will be invalid. Currently,
they are both set to 101.

MAXLUARRAYS - This is another "governor" constant. The algorithm
performs dynamic workload adjustment by building more and more
arrays to solve per timing round. This sets the maximum upper limit of
arrays that it will build. Currently, it is set to 1000, which should be
more than enough for the reasonable future (1000 arrays of 101 x 101
floating-point doubles would require somewhere around 80 megabytes
of RAM -- and that's not counting the column vectors).

To test for correct execution of the benchmark : Currently, there
is no simple technique for doing this. You can, however, either use your
favorite debugger (or embed a printf() statement) at the conclusion of
the lubksb() routine. When this routine concludes, the array b will hold
the solution vector. These items will be stored as floating-point doubles,
and the first 14 are (with rounding):

46 20 23 22 85 86 97 95 8 89 75 67 6 86

If you find these numbers as the first 14 in the array b[] , then you're
virtually guaranteed that the algorithm is working correctly.
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