Exercises

1) \[f(x,y) = x^2 + 4xy + 5y^2 + 3 \]

- What is the domain of \(f(x,y) \)?
- What is the range of \(f(x,y) \)?
- Is \(f(x,y) \) continuous?
- Compute \(\nabla f(x,y) \)
- Find tangent plane to \(z = f(x,y) \) at \((x_0, y_0) = (1,1) \)
- Explain why \(\frac{\partial}{\partial y} f(x,y) = \frac{\partial}{\partial x} f(x,y) \)
- Sketch the graph \(z = f(x,y) \)

2) Same as Ex.1, with \(f(x,y) = \sqrt{4-x^2-y^2} \)

3) Same as Ex.1, with \(f(x,y) = \log(x^2+y^2) \)
 - What happens at \((x,y) = (0,0) \)?

4) Find an example of a function \(f(x,y) \) such that \(\frac{\partial}{\partial x} f(x,y) \) exists but \(\frac{\partial}{\partial y} f(x,y) \) does not at a certain point \((x_0, y_0) \) in the domain of \(f(x,y) \).

5) Find an example of a function \(f(x,y) \) such that \(\frac{\partial}{\partial x} f(x,y) \) and \(\frac{\partial}{\partial y} f(x,y) \) exist at a point \((x_0, y_0) \) in the domain of \(f(x,y) \) but the tangent plane does not make sense...
(6) \(\mathbf{r}(t) = \begin{bmatrix} z \cos(t/2) \\ \sqrt{2} \sin(t/2) \\ \sqrt{2} \sin(t/2) \end{bmatrix} \) curve in 3D, \(0 \leq t \leq 4\pi \)

- Compute \(\| \mathbf{r}(t) \|, \mathbf{v}(t), \mathbf{v}(t), \mathbf{a}(t) \).
- Show that \(\mathbf{r}''(t) = -\frac{\mathbf{r}(t)}{\| \mathbf{r}(t) \|^2} \) for all \(0 \leq t \leq 4\pi \).
- Use equation \(\ast \) to prove that
 \[\frac{d}{dt} \left[\mathbf{r}'(t) \times \mathbf{r}(t) \right] = 0 \]
- Prove that all curves \(\mathbf{r}(t) \) which satisfy \(\ast \) are planar, i.e., they lie on a plane.

Is it true?

\(\ast \) Show that a curve \(\mathbf{r}(t) \) with curvature \(\kappa(t) \) constant is a circle if \(\kappa(t) \neq 0 \) and it is a line if \(\kappa(t) = 0 \) ?

Apply this to Ex. 6 (DIFFICULT).

From textbook: Go through all her done so far! Plus:

13.4: \(\text{all} \rightarrow 4, 11, 15, 16, 17, 28, 33 \)
13.5: \(\text{all} \rightarrow 4, 14, 18, 44, 45, 46, 49 \)