## Derivatives

$D_{x} \sin (x)=\cos (x)$
$D_{x} \cos (x)=-\sin (x)$
$D_{x} \tan (x)=\sec ^{2}(x)$
$D_{x} \cot (x)=-\csc (x)$
$D_{x} \sec (x)=\sec (x) \tan (x)$
$D_{x} \csc (x)=-\csc (x) \cot (x)$
$D_{x} \sin ^{-1}=\frac{1}{\sqrt{1-x^{2}}}, x \in[-1,1]$
$D_{x} \cos ^{-1}=\frac{-1}{\sqrt{1-x^{2}}}, x \in[-1,1]$
$D_{x} \tan ^{-1}=\frac{1}{1+x^{2}}, \frac{-\pi}{2} \leq x \leq \frac{\pi}{2}$
$D_{x} \sec ^{-1}=\frac{1}{|x| \sqrt{x^{2}-1}},|x|>1$
$D_{x} \sinh (x)=\cosh (x)$
$D_{x} \cosh (x)=\sinh (x)$
$D_{x} \tanh (x)=\operatorname{sech}^{2}(x)$
$D_{x} \operatorname{coth}(x)=-\operatorname{csch}^{2}(x)$
$D_{x} \operatorname{coth}(x)=-\operatorname{csch}^{2}(x)$
$D_{x} \operatorname{sech}(x)=-\operatorname{sech}(x) \tanh (x)$
$D_{x} \operatorname{sech}(x)=-\operatorname{sech}(x) \tanh (x)$
$D_{x} \operatorname{csch}(x)=-\operatorname{csch}(x) \operatorname{coth}(x)$
$D_{x} \operatorname{csch}(x)=-\operatorname{csch}(x) \operatorname{coth}(x)$
$D_{x} \sinh ^{-1}=\frac{1}{\sqrt{x^{2}+1}}$
$D_{x} \cosh ^{-1}=\frac{-1}{\sqrt{x^{2}-1}}, x>1$
$D_{x} \tanh ^{-1}=\frac{1}{1-x^{2}}-1<x<1$
$D_{x} \operatorname{sech}^{-1}=\frac{1}{x \sqrt{1-x^{2}}}, 0<x<1$
$D_{x} \ln (x)=\frac{1}{x}$

## Integrals

$\int \frac{1}{x} d x=\ln |x|+c$
$\int e^{x} d x=e^{x}+c$
$\int a^{x} d x=\frac{1}{\ln a} a^{x}+c$
$\int e^{a x} d x=\frac{1}{a} e^{a x}+c$
$\int \frac{1}{\sqrt{1-x^{2}}} d x=\sin ^{-1}(x)+c$
$\int \frac{1}{1+x^{2}} d x=\tan ^{-1}(x)+c$
$\int \frac{1}{x \sqrt{x^{2}-1}} d x=\sec ^{-1}(x)+c$
$\int \sinh (x) d x=\cosh (x)+c$
$\int \cosh (x) d x=\sinh (x)+c$
$\int \tanh (x) d x=\ln |\cosh (x)|+c$
$\int \tanh (x) \operatorname{sech}(x) d x=-\operatorname{sech}(x)+c$
$\int \operatorname{sech}^{2}(x) d x=\tanh (x)+c$
$\int \operatorname{csch}(x) \operatorname{coth}(x) d x=-\operatorname{csch}(x)+c$
$\int \tan (x) d x=-\ln |\cos (x)|+c$
$\int \cot (x) d x=\ln |\sin (x)|+c$
$\int \cos (x) d x=\sin (x)+c$
$\int \sin (x) d x=-\cos (x)+c$
$\int \frac{1}{\sqrt{a^{2}-u^{2}}} d x=\sin ^{-1}\left(\frac{u}{a}\right)+c$
$\int \frac{1}{a^{2}+u^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{u}{a}+c$
$\int \ln (x) d x=(x \ln (x))-x+c$

## U-Substitution

Let $u=f(x)$ (can be more than one variable).
Determine: $d u=\frac{f(x)}{d x} d x$ and solve for dx.

Then, if a definite integral, substitute the bounds for $u=f(x)$ at each bounds Solve the integral using $u$.

## Integration by Parts

$\int u d v=u v-\int v d u$

## Fns and Identities

$\sin \left(\cos ^{-1}(x)\right)=\sqrt{1-x^{2}}$
$\cos \left(\sin ^{-1}(x)\right)=\sqrt{1-x^{2}}$
$\sec \left(\tan ^{-1}(x)\right)=\sqrt{1+x^{2}}$
$\tan \left(\sec ^{-1}(x)\right)$
$=\left(\sqrt{x^{2}-1}\right.$ if $\left.x \geq 1\right)$
$=\left(-\sqrt{x^{2}-1}\right.$ if $\left.x \leq-1\right)$
$\sinh ^{-1}(x)=\ln x+\sqrt{x^{2}+1}$
$\sinh ^{-1}(x)=\ln x+\sqrt{x^{2}-1}, x \geq-1$
$\tanh ^{-1}(x)=\frac{1}{2} \ln x+\frac{1+x}{1-x}, 1<x<-1$
$\operatorname{sech}^{-1}(x)=\ln \left[\frac{1+\sqrt{1-x^{2}}}{x}\right], 0<x \leq-1$
$\sinh (x)=\frac{e^{x}-e^{-x}}{2}$

## Trig Identities

$\sin ^{2}(x)+\cos ^{2}(x)=1$
$1+\tan ^{2}(x)=\sec ^{2}(x)$
$1+\cot ^{2}(x)=\csc ^{2}(x)$
$1+\cot ^{2}(x)=\csc ^{2}(x)$
$\sin (x \pm y)=\sin (x) \cos (y) \pm \cos (x) \sin (y)$ $\cos (x \pm y)=\cos (x) \cos (y) \pm \sin (x) \sin (y)$
$\tan (x \pm y)=\frac{\tan (x) \pm \tan (y)}{1 \mp \tan (x) \tan (y)}$
$\sin (2 x)=2 \sin (x) \cos (x)$
$\cos (2 x)=\cos ^{2}(x)-\sin ^{2}(x)$
$\cosh \left(n^{2} x\right)-\sinh ^{2} x=1$
$1+\tan ^{2}(x)=\sec ^{2}(x)$
$1+\cot ^{2}(x)=\csc ^{2}(x)$
$\sin ^{2}(x)=\frac{1-\cos (2 x)}{2}$
$\cos ^{2}(x)=\frac{1+\cos (2 x)}{2}$
$\tan ^{2}(x)=\frac{1-\cos (2 x)}{1-\cos (2 x)}$
$\sin (-x)=\frac{1+\cos (2 x)}{1+\sin (x)}$
$\sin (-x)=-\sin (x)$
$\cos (-x)=\cos (x)$
$\cos (-x)=\cos (x)$
$\tan (-x)=-\tan (x)$

## Calculus 3 Concepts

## Cartesian coords in 3D

given two points:
$\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$
$\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}}$
$\sqrt{\left(x_{1}-x_{2}\right.}$
Midpoint:
$\left(\frac{x_{1}+x_{2}}{2}, \underline{y_{1}+y_{2}}, \underline{z_{1}+z_{2}}\right)$
$\left(\frac{x_{1}}{2}\right.$
Sphere with center ${ }^{2}(\mathrm{~h}, \mathrm{k}, \mathrm{l})$ and radius r $(x-h)^{2}+(y-k)^{2}+(z-l)^{2}=r^{2}$

## Vectors

Vector: $\vec{u}$
Unit Vector: $\hat{u}$
Magnitude: $\|\vec{u}\|=\sqrt{u_{1}^{2}+u_{2}^{2}+u_{3}^{2}}$
Unit Vector: $\hat{u}=\frac{\vec{u}}{\|\vec{u}\|}$
Dot Product
$\vec{u} \cdot \vec{v}$
Produces a Scalar
(Geometrically, the dot product is a vector projection)
$\overrightarrow{\vec{u}}=<u_{1}, u_{2}, u_{3}>$
$\vec{v}=<v_{1}, v_{2}, v_{3}$
$\vec{u} \cdot \vec{v}=\overrightarrow{0}$ means the two vectors are
Perpendicular $\theta$ is the angle between them.
$\vec{u} \cdot \vec{v}=\|\vec{u}\|\|\vec{v}\| \cos (\theta)$
$\vec{u} \cdot \vec{v}=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}$
NOTE:
$\hat{u} \cdot \hat{v}=\cos (\theta)$
$\|\vec{u}\|^{2}=\vec{u} \cdot \vec{u}$
$\vec{u} \cdot \vec{v}=0$ when
Angle Between $\vec{u}$ and $\vec{v}$ :
$\theta=\cos ^{-1}\left(\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\|\|\vec{v}\|}\right)$

Projection of $\vec{u}$ onto $\vec{v}$
$p r_{\vec{v}} \vec{u}=\left(\frac{\vec{u} \cdot \vec{v}}{\|\vec{v}\|^{2}}\right) \vec{v}$

## Cross Product

$\vec{u} \times \vec{v}$
Produces a Vector
(Geometrically, the cross product is the area of a paralellogram with sides $\|\vec{u}\|$ and $\|\vec{v}\|)$
$\vec{u}=<u_{1}, u_{2}, u_{3}>$
$\vec{v}=<v_{1}, v_{2}, v_{3}>$

$$
\vec{u} \times \vec{v}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right|
$$

$\vec{u} \times \vec{v}=\overrightarrow{0}$ means the vectors are paralell

## Lines and Planes

## Equation of a Plane

$\left(x_{0}, y_{0}, z_{0}\right)$ is a point on the plane and $<A, B, C>$ is a normal vector
$A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+C\left(z-z_{0}\right)=0$
$<A, B, C>\cdot<x-x_{0}, y-y_{0}, z-z_{0}>=0$ $A x+B y+C z=D$ where
$D=A x_{0}+B y_{0}+C z_{0}$

## Equation of a line

A line requires a Direction Vector
$\vec{u}=<u_{1}, u_{2}, u_{3}>$ and a point
$\left(x_{1}, y_{1}, z_{1}\right)$
then,
a parameterization of a line could be:
$x=u_{1} t+x_{1}$
$y=u_{2} t+y_{1}$
$z=u_{3} t+z_{1}$
Distance from a Point to a Plane
The distance from a point $\left(x_{0}, y_{0}, z_{0}\right)$ to
a plane $\mathrm{Ax}+\mathrm{By}+\mathrm{Cz}=\mathrm{D}$ can be expressed
by the formula:
$d=\frac{\left|A x_{0}+B y_{0}+C z_{0}-D\right|}{\sqrt{A^{2}+B^{2}+C^{2}}}$

## Coord Sys Conv

Cylindrical to Rectangular
$x=r \cos (\theta)$
$y=r \sin (\theta)$
$z=z$
Rectangular to Cylindrical
$r=\sqrt{x^{2}+y^{2}}$
$\tan (\theta)=\frac{y}{x}$
$z=z$
Spherical to Rectangular
$x=\rho \sin (\phi) \cos (\theta)$
$y=\rho \sin (\phi) \sin (\theta)$
$z=\rho \cos (\phi)$
Rectangular to Spherical
$\rho=\sqrt{x^{2}+y^{2}+z^{2}}$
$\tan (\theta)=\frac{y}{x}$
$\cos (\phi)=\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}$
Spherical to Cylindrical
$r=\rho \sin (\phi)$
$\theta=\theta$
$z=\rho \cos (\phi)$
Cylindrical to Spherical
$\rho=\sqrt{r^{2}+z^{2}}$
$\theta=\theta$
$\theta=\theta$
$\cos (\phi)=\frac{z}{\sqrt{r^{2}+z^{2}}}$

## Surfaces

Ellipsoid
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$

Hyperboloid of One Sheet
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1$
(Major Axis: z because it follows - )


Hyperboloid of Two Sheets
$\frac{z^{2}}{c^{2}}-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
(Major Axis: Z because it is the one not subtracted)

Elliptic Paraboloid
$z=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$
(Major Axis: z because it is the variable NOT squared)


## Hyperbolic Paraboloid

(Major Axis: Z axis because it is not squared)
$z=\frac{y^{2}}{b^{2}}-\frac{x^{2}}{a^{2}}$


Elliptic Cone
(Major Axis: Z axis because it's the only one being subtracted)
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=0$


Cylinder
1 of the variables is missing
OR
$(x-a)^{2}+\left(y-b^{2}\right)=c$
(Major Axis is missing variable)

## Partial Derivatives

Partial Derivatives are simply holding all other variables constant (and act like constants for the derivative) and only taking the derivative with respect to a given variable

Given $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$, the partial derivative of
Z with respect to x is:
$f_{x}(x, y)=z_{x}=\frac{\partial z}{\partial x}=\frac{\partial f(x, y)}{\partial x}$
likewise for partial with respect to y :
$f_{y}(x, y)=z_{y}=\frac{\partial z}{\partial y}=\frac{\partial f(x, y)}{\partial y}$
Notation
For $f_{x y y}$, work "inside to outside" then $f_{x y}$, then $f_{x y y}$
$f_{x y y}=\frac{\partial^{3} f}{\partial^{2} y \partial x}$,
For $\frac{\partial^{3} f}{\partial^{2} y \partial x}$, work right to left in the denominator

## Gradients

The Gradient of a function in 2 variables is $\nabla f=<f_{x}, f_{y}>$
The Gradient of a function in 3 variables is $\nabla f=<f_{x}, f_{y}, f_{z}>$

## Chain Rule(s)

Take the Partial derivative with respect to the first-order variables of the
function times the partial (or normal)
derivative of the first-order variable to
the ultimate variable you are looking for summed with the same process for other first-order variables this makes sense for. Example:
let $x=x(s, t), y=y(t)$ and $z=z(x, y)$ $z$ then has first partial derivative:
$\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$
x has the partial derivatives:
$\frac{\partial x}{\partial s}$ and $\frac{\partial x}{\partial t}$
$\partial s$
and $y$ has the derivative:
$\frac{d y}{d t}$
In this case (with $z$ containing $x$ and $y$ as well as x and y both containing s and t), the chain rule for $\frac{\partial z}{\partial s}$ is $\frac{\partial z}{\partial s}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial s}$ The chain rule for $\frac{\partial z}{\partial t}$ is
$\frac{\partial z}{\partial t}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial z}{\partial y} \frac{d y}{d t}$
Note: the use of "d" instead of " $\partial$ " with the function of only one independen

## Limits and Continuity

Limits in 2 or more variables Limits taken over for of the limit.
Strategies to show limit exists

1. Plug in Numbers, Everything is Fine 2. Algebraic Manipulation
. Algebraic Manipula
-use trig identites
2. Change to polar coords
if $(x, y) \rightarrow(0,0) \Leftrightarrow r \rightarrow 0$
Strategies to show limit DNE
3. Show limit is different if approached from different paths
( $\mathrm{x}=\mathrm{y}, x=y^{2}$, etc.)
4. Switch to Polar coords and show the limit DNE.
Continunity
A fn, $z=f(x, y)$, is continuous at (a,b) if
$f(a, b)=\lim _{(x, y) \rightarrow(a, b)} f(x, y)$
Which means:
5. The limit exists
6. The fn value is defined
7. They are the same value

## Directional Derivatives

Let $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$ be a fuction, $(\mathrm{a}, \mathrm{b})$ ap point in the domain (a valid input point) and $\hat{u}$ a unit vector (2D).
The Directional Derivative is then the derivative at the point ( $\mathrm{a}, \mathrm{b}$ ) in the
direction of $\hat{u}$ or:
$D_{\vec{u}} f(a, b)=\hat{u} \cdot \nabla f(a, b)$
This will return a scalar. 4-D version:

## Tangent Planes

let $F(x, y, z)=k$ be a surface and $P=$ $\left(x_{0}, y_{0}, z_{0}\right)$ be a point on that surface. Equation of a Tangent Plane:
$\nabla F\left(x_{0}, y_{0}, z_{0}\right) \cdot<x-x_{0}, y-y_{0}, z-z_{0}>$

## Approximations

let $z=f(x, y)$ be a differentiable function total differential of $\mathrm{f}=\mathrm{dz}$ $d z=\nabla f .<d x, d y>$
This is the approximate change in z The actual change in z is the difference in z values:

## Maxima and Minima

Internal Points

1. Take the Partial Derivatives with 1. Take the Partial Derivatives with gradient)
2. Set derivatives equal to 0 and use to solve system of equations for x and y 3. Plug back into original equation for $z$ Use Second Derivative Test for whether points are local max, min, or saddle

Second Partial Derivative Test

1. Find all $(x, y)$ points such that
$\nabla f(x, y)=\overrightarrow{0}$
2. Let $D=f_{x x}(x, y) f_{y y}(x, y)-f_{x y}^{2}(x, y)$ IF (a) D $>0$ AND $f_{x x}<0, \mathrm{f}(\mathrm{x}, \mathrm{y})$ is local max value
(b) D $>0$ AND $f_{x x}(x, y)>0 \mathrm{f}(\mathrm{x}, \mathrm{y})$ is local min value
(c) $\mathrm{D}<0,(\mathrm{x}, \mathrm{y}, \mathrm{f}(\mathrm{x}, \mathrm{y}))$ is a saddle point (d) $\mathrm{D}=0$, test is inconclusive
3. Determine if any boundary point gives min or max. Typically, we have to parametrize boundary and then reduce to a Calc 1 type of min/max problem to solve.
The following only apply only if a boundary is given
4. check the corner points
5. Check each line ( $0 \leq \mathrm{x} \leq 5$ would give $x=0$ and $x=5$ )
On Bounded Equations, this is the global min and max...second derivative test is not needed.

## Lagrange Multipliers

Given a function $f(x, y)$ with a constraint $\mathrm{g}(\mathrm{x}, \mathrm{y})$, solve the following system of equations to find the max and min points on the constraint (NOTE: may need to also find internal points.): $\nabla f=\lambda \nabla g$
$g(x, y)=0($ orkifgiven $)$

## Double Integrals

With Respect to the xy-axis, if taking an $\iint d y d x$ is cutting in vertical rectangles, $\iint d x d y$ is cutting in horizontal rectangles

Polar Coordinates
When using polar coordinates,
$d A=r d r d \theta$

## Surface Area of a Curve

let $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$ be continuous over S (a closed Region in 2D domain)
Then the surface area of $z=f(x, y)$ over S is:
$S A=\iint_{S} \sqrt{f_{x}^{2}+f_{y}^{2}+1} d A$

## Triple Integrals

$\iiint_{s} f(x, y, z) d v=$
$\int_{a_{1}}^{a_{2}} \int_{\phi_{1}(x)}^{\phi_{2}(x)} \int_{\psi_{1}(x, y)}^{\psi_{2}(x, y)} f(x, y, z) d z d y d x$ Note: $d v$ can be exchanged for $d x d y d z$ in any order, but you must then choose your limits of integration according to that order

## Jacobian Method

$\iint_{G} f(g(u, v), h(u, v))|J(u, v)| d u d v=$ $\iint_{R} f(x, y) d x d y$

$$
J(u, v)=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|
$$

Common Jacobians:
Rect. to Cylindrical:
Rect. to Spherical: $\rho^{2} \sin (\phi)$

## Vector Fields

let $f(x, y, z)$ be a scalar field and $\vec{F}(x, y, z)=$
$M(x, y, z) \hat{i}+N(x, y, z) \hat{j}+P(x, y, z) \hat{k}$ be a vector field,
Grandient of $\mathrm{f}=\nabla f=<\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}>$
Divergence of $\vec{F}$ :
$\nabla \cdot \vec{F}=\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}+\frac{\partial P}{\partial z}$
Curl of $\vec{F}$;
$\nabla \times \vec{F}=\left\lvert\, \begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ M & N & P\end{array}\right.$

## Line Integrals

C given by $x=x(t), y=y(t), t \in[a, b]$
$\int_{c} f(x, y) d s=\int_{a}^{b} f(x(t), y(t)) d s$
where $d s=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$
or $\sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x$
or $\sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y$
To evaluate a Line Integral
get a paramaterized version of the line (usually in terms of $t$, though in
exclusive terms of x or y is ok)

- evaluate for the derivatives needed (usually dy, dx, and/or dt)
- plug in to original equation to get in
terms of the independant variable
solve integral

Work
Let $\vec{F}=M \hat{i}+\hat{j}+\hat{k}$ (force)
$M=M(x, y, z), N=N(x, y, z), P=$ $P(x, y, z)$
(Literally) $d \vec{r}=d x \hat{i}+d y \hat{j}+d z \hat{k}$
Work $w=\int_{C} \vec{F} \cdot d \vec{r}$
(Work done by moving a particle over curve C with force $\vec{F}$ )

## Independence of Path

Fund Thm of Line Integrals C is curve given by $\vec{r}(t), t \in[a, b] ;$ $\vec{r}^{\prime}(t)$ exists. If $f(\vec{r})$ is continuously differentiable on an open set containing C, then $\int_{c} \nabla f(\vec{r}) \cdot d \vec{r}=f(\vec{b})-f(\vec{a})$ Equivalent Conditions
$\vec{F}(\vec{r})$ continuous on open connected set D. Then,
(a) $\vec{F}=\nabla f$ for some fn f . (if $\vec{F}$ is conservative)
$\Leftrightarrow(b) \int_{c} \vec{F}(\vec{r}) \cdot d \vec{r}$ isindep.of pathin $D$ $\Leftrightarrow$ (c) $\int_{c} \vec{F}(\vec{r}) \cdot d \vec{r}=0$ for all closed paths n D .
Conservation Theorem
$\vec{F}=M \hat{i}+N \hat{j}+P \hat{k}$ continuously
differentiable on open, simply connected $\overrightarrow{s e t}$ D.
$\vec{F}$ conservative $\Leftrightarrow \nabla \times \vec{F}=\overrightarrow{0}$
$\left(\right.$ in 2D $\nabla \times \vec{F}=\overrightarrow{0}$ iff $\left.M_{y}=N_{x}\right)$

## Green's Theorem

(method of changing line integral for double integral - Use for Flux and Circulation across 2D curve and line integrals over a closed boundary) $\oint M d y-N d x=\iint_{R}\left(M_{x}+N_{y}\right) d x d y$ $\oint M d x+N d y=\iint_{R}\left(N_{x}-M_{y}\right) d x d y$ Let:
R be a region in xy-plane
C is simple, closed curve enclosing R (w/ paramerization $\vec{r}(t)$ )
$\cdot \vec{F}(x, y)=M(x, y) \hat{\imath}+N(x, y) \hat{\jmath}$ be continuously differentiable over $\mathrm{R} \cup \mathrm{C}$ Form 1: Flux Across Boundary $\vec{n}=$ unit normal vector to C
$\oint_{c} \vec{F} \cdot \vec{n}=\iint_{R} \nabla \cdot \vec{F} d A$
$\Leftrightarrow \oint M d y-N d x=\iint_{R}\left(M_{x}+N_{y}\right) d x d y$ Form 2: Circulation Along Boundary
$\oint_{c} \vec{F} \cdot d \vec{r}=\iint_{R} \nabla \times \vec{F} \cdot \hat{u} d A$
$\Leftrightarrow \oint M d x+N d y=\iint_{R}\left(N_{x}-M_{y}\right) d x d y$ Area of R
$A=\oint\left(\frac{-1}{2} y d x+\frac{1}{2} x d y\right)$

## Gauss' Divergence Thm

(3D Analog of Green's Theorem - Use for Flux over a 3D surface) Let: - $\vec{F}(x, y, z)$ be vector field continuously differentiable in solid $S$
S is a 3 D solid $\cdot \partial S$ boundary of S (A Surface)
. $\hat{n}$ unit outer normal to $\partial S$
Then,
$\iint_{\partial S} \vec{F}(x, y, z) \cdot \hat{n} d S=\iiint_{S} \nabla \cdot \vec{F} d V$
(dV $=$ dxdydz)

## Surface Integrals

Let
$R$ be closed, bounded region in xy-plane
-f be a fn with first order partia
derivatives on $R$
G be a surface over R given by
$z=f(x, y)$
Then,
$\iint_{G} g(x, y, z) d S=$
$\iint_{R} g(x, y, f(x, y)) d S$
where $d S=\sqrt{f_{x}^{2}+f_{y}^{2}+1} d y d x$
Flux of $\vec{F}$ across $G$
$\iint_{G} \vec{F} \cdot n d S=$
$\iint_{R}\left[-M f_{x}-N f_{y}+P\right] d x d y$
where:
$\vec{F}(x, y, z)=$
$M(x, y, z) \hat{i}+N(x, y, z) \hat{j}+P(x, y, z) \hat{k}$
G is surface $f(x, y)=z$
$\vec{n}$ is upward unit normal on $G$.
$\mathrm{f}(\mathrm{x}, \mathrm{y})$ has continuous $1^{\text {st }}$ order partial derivatives

## Unit Circle

(cos, sin)

## Other Information

$\frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}}$
Where a Cone is defined as $z=\sqrt{a\left(x^{2}+y^{2}\right)}$,
In Spherical Coordinates,
$\phi=\cos ^{-1}\left(\sqrt{\frac{a}{1+a}}\right)$
Right Circular Cylinder:
$V=\pi r^{2} h, S A=\pi r^{2}+\underset{m p}{2 \pi r h}$
$\lim _{n \rightarrow \inf }\left(1+\frac{m}{n}\right)^{p n}=e^{m p}$
Law of Cosines:
$a^{2}=b^{2}+c^{2}-2 b c(\cos (\theta))$

## Stokes Theorem

Let:
$\stackrel{S}{\vec{F}}$ be a 3D surface
$\vec{F}(x, y, z)=$
$M(x, y, z) \hat{i}+N(x, y, z) \hat{j}+P(x, y, z) \hat{l}$
$\mathrm{M}, \mathrm{N}, \mathrm{P}$ have continuous $1^{\text {st }}$ order partial derivatives
C is piece-wise smooth, simple, closed
curve, positively oriented
$T$ is unit tangent vector to C
Then,
$\oint \vec{F}_{c} \cdot \hat{T} d S=\iint_{s}(\nabla \times \vec{F}) \cdot \hat{n} d S=$
$\iint_{R}(\nabla \times \vec{F}) \cdot \vec{n} d x d y$
$\vec{F} \cdot \vec{T} d s$
$\oint \vec{F} \cdot \vec{T} d s=\int_{c}(M d x+N d y+P d z)$
$\left(-\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$ (-1, $\left.\frac{\sqrt{3}}{2}\right)$

