# Derivatives

 $D_x e^x = e^x$  $D_x \sin(x) = \cos(x)$  $D_x \cos(x) = -\sin(x)$  $D_x \tan(x) = \sec^2(x)$  $D_x \cot(x) = -\csc^2(x)$  $D_x \sec(x) = \sec(x) \tan(x)$  $D_x \csc(x) = -\csc(x)\cot(x)$  $D_x \sec(x) = -\csc(x) \cot(x)$   $D_x \sin^{-1} = \frac{1}{\sqrt{1-x^2}}, x \in [-1,1]$   $D_x \cos^{-1} = \frac{-1}{\sqrt{1-x^2}}, x \in [-1,1]$   $D_x \tan^{-1} = \frac{1}{1+x^2}, \frac{-\pi}{2} \le x \le \frac{\pi}{2}$   $D_x \sec^{-1} = \frac{1}{|x|\sqrt{x^2-1}}, |x| > 1$   $D_x \sin^{-1}(x) = \frac{1}{|x|\sqrt{x^2-1}}, |x| > 1$  $D_x \sinh(x) = \cosh(x)$  $D_x \cosh(x) = \sinh(x)$  $D_x \tanh(x) = \operatorname{sech}^2(x)$  $D_x \operatorname{coth}(x) = -\operatorname{csch}^2(x)$  $D_x sech(x) = -sech(x) \tanh(x)$  $D_x csch(x) = -csch(x) \coth(x)$ 
$$\begin{split} D_x csch(x) &= -csch(x) \coth(x) \\ D_x \sinh^{-1} &= \frac{1}{\sqrt{x^2 + 1}} \\ D_x \cosh^{-1} &= \frac{-1}{\sqrt{x^2 - 1}}, x > 1 \\ D_x \tanh^{-1} &= \frac{1}{1 - x^2} - 1 < x < 1 \\ D_x sech^{-1} &= \frac{1}{1 - \sqrt{1 - x^2}}, 0 < x < 1 \\ D_x \ln(x) &= \frac{1}{x} \end{split}$$

# Integrals

 $\int \frac{1}{x} dx = \ln |x| + c$  $\int e^x dx = e^x + c$  $\int a^x dx = \frac{1}{\ln a} a^x + c$  $\int e^{ax} dx = \frac{1}{a} e^{ax} + c$  $\int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1}(x) + c$  $\int \frac{1}{1+x^2} dx = \tan^{-1}(x) + c$  $\int \frac{1}{x\sqrt{x^2-1}} dx = \sec^{-1}(x) + c$  $\int \sinh(x)dx = \cosh(x) + c$  $\int \cosh(x) dx = \sinh(x) + c$  $\int \tanh(x) dx = \ln |\cosh(x)| + c$  $\int \tanh(x) \operatorname{sech}(x) dx = -\operatorname{sech}(x) + c$  $\int \operatorname{sech}^2(x) dx = \tanh(x) + c$  $\int \operatorname{csch}(x) \operatorname{coth}(x) dx = -\operatorname{csch}(x) + c$  $\int \tan(x) dx = -\ln|\cos(x)| + c$  $\int \cot(x) dx = \ln|\sin(x)| + c$  $\int \cos(x) dx = \sin(x) + c$  $\int \sin(x)dx = -\cos(x) + c$  $\int \frac{1}{\sqrt{a^2 - u^2}} dx = \sin^{-1}(\frac{u}{a}) + c$  $\int \frac{1}{a^2 + u^2} dx = \frac{1}{a} \tan^{-1} \frac{u}{a} + c$  $\int \ln(x) dx = (x \ln(x)) - x + c$ 

#### **U-Substitution**

Let u = f(x) (can be more than one variable). Determine:  $du = \frac{f(x)}{dx} dx$  and solve for dx. Then, if a definite integral, substitute the bounds for u = f(x) at each bounds Solve the integral using u.

Integration by Parts  $\int u dv = uv - \int v du$ 

# **Fns and Identities**

 $\sin(\cos^{-1}(x)) = \sqrt{1 - x^2}$  $\cos(\sin^{-1}(x)) = \sqrt{1 - x^2}$ 

 $\sec(\tan^{-1}(x)) = \sqrt{1+x^2}$  $\tan(\sec^{-1}(x))$  $=(\sqrt{x^2-1} \text{ if } x \ge 1)$  $=(-\sqrt{x^2-1} i f x < -1)$  $\sinh^{-1}(x) = \ln x + \sqrt{x^2 + 1}$  $\sinh^{-1}(x) = \ln x + \sqrt{x^2 - 1}, \ x \ge -1$  $\tanh^{-1}(x) = \frac{1}{2} \ln x + \frac{1+x}{1-x}, \ 1 < x < -1$  $sech^{-1}(x) = \ln[\frac{1+\sqrt{1-x^2}}{x}], \ 0 < x \le -1$  $\sinh(x) = \frac{e^x - e^{-x}}{2}$  $\cosh(x) = \frac{e^x + e^{-x}}{2}$ 

# **Trig Identities**

 $\sin^{2}(x) + \cos^{2}(x) = 1$ 1 + tan<sup>2</sup>(x) = sec<sup>2</sup>(x)  $1 + \cot^2(x) = \csc^2(x)$  $\sin(x \pm y) = \sin(x)\cos(y) \pm \cos(x)\sin(y)$  $\cos(x \pm y) = \cos(x)\cos(y) \pm \sin(x)\sin(y)$  $\tan(x \pm y) = \frac{\tan(x) \pm \tan(y)}{1 \mp \tan(x) \tan(y)}$  $\sin(2x) = 2\sin(x)\cos(x)$  $\cos(2x) = \cos^2(x) - \sin^2(x)$  $\cosh(n^2 x) - \sinh^2 x = 1$  $1 + \tan^2(x) = \sec^2(x)$  $1 + \cot^2(x) = \csc^2(x)$  $\sin^{2}(x) = \frac{1 - \cos(2x)}{2}$  $\cos^{2}(x) = \frac{1 + \cos(2x)}{2}$  $\tan^{2}(x) = \frac{1 - \cos(2x)}{1 + \cos(2x)}$  $\sin(-x) = -\sin(x)$  $\cos(-x) = \cos(x)$  $\tan(-x) = -\tan(x)$ 

# Calculus 3 Concepts

# Cartesian coords in 3D

given two points:  $(x_1, y_1, z_1)$  and  $(x_2, y_2, z_2)$ , Distance between them:  $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$ Midpoint:  $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}, \frac{z_1+z_2}{2}\right)$ Sphere with center (h,k,l) and radius r:  $(x-h)^{2} + (y-k)^{2} + (z-l)^{2} = r^{2}$ 

### Vectors

Vector:  $\vec{u}$ Unit Vector:  $\hat{u}$ Magnitude:  $||\vec{u}|| = \sqrt{u_1^2 + u_2^2 + u_3^2}$ Unit Vector:  $\hat{u} = \frac{\vec{u}}{||\vec{u}||}$ 

### Dot Product

 $\vec{u} \cdot \vec{v}$ Produces a Scalar (Geometrically, the dot product is a vector projection)  $\vec{u} = \langle u_1, u_2, u_3 \rangle$  $\vec{v} = \langle v_1, v_2, v_3 \rangle$  $\vec{u} \cdot \vec{v} = \vec{0}$  means the two vectors are Perpendicular  $\theta$  is the angle between them.  $\vec{u} \cdot \vec{v} = ||\vec{u}|| \, ||\vec{v}|| \cos(\theta)$  $\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + u_3 v_3$ NOTE:  $\hat{u} \cdot \hat{v} = \cos(\theta)$  $||\vec{u}||^2 = \vec{u} \cdot \vec{u}$  $\vec{u} \cdot \vec{v} = 0$  when  $\perp$ Angle Between  $\vec{u}$  and  $\vec{v}$ :  $\theta = \cos^{-1}(\frac{\vec{u} \cdot \vec{v}}{||\vec{u}|| ||\vec{v}||})$ 

Projection of  $\vec{u}$  onto  $\vec{v}$ :  $pr_{\vec{v}}\vec{u} = \left(\frac{\vec{u}\cdot\vec{v}}{||\vec{v}||^2}\right)\vec{v}$ 

#### **Cross Product** $\vec{u} \times \vec{v}$

Produces a Vector (Geometrically, the cross product is the area of a paralellogram with sides  $||\vec{u}||$ and  $||\vec{v}||$  $\vec{u} = \langle u_1, u_2, u_3 \rangle$  $\vec{v} = \langle v_1, v_2, v_3 \rangle$ 

$$ec{i} imes ec{v} = egin{bmatrix} i & j & k \ u_1 & u_2 & u_3 \ v_1 & v_2 & v_3 \end{bmatrix}$$

 $\vec{u}\times\vec{v}=\vec{0}$  means the vectors are paralell

# Lines and Planes

Equation of a Plane

 $(x_0, y_0, z_0)$  is a point on the plane and  $\langle A, B, C \rangle$  is a normal vector

 $A(x - x_0) + B(y - y_0) + C(z - z_0) = 0$  $< A, B, C > \cdot < x - x_0, y - y_0, z - z_0 > = 0$ Ax + By + Cz = D where  $D = Ax_0 + By_0 + Cz_0$ 

### Equation of a line

A line requires a Direction Vector  $\vec{u} = \langle u_1, u_2, u_3 \rangle$  and a point  $(x_1, y_1, z_1)$ then. a parameterization of a line could be:  $x = u_1 t + x_1$  $y = u_2 t + y_1$  $z = u_3 t + z_1$ 

#### Distance from a Point to a Plane

The distance from a point  $(x_0, y_0, z_0)$  to a plane Ax+By+Cz=D can be expressed by the formula:  $d = \frac{|Ax_0 + By_0 + Cz_0 - D|}{\sqrt{A^2 + B^2 + C^2}}$ 

# Coord Sys Conv

Cylindrical to Rectangular  $x = r\cos(\theta)$  $y = r \sin(\theta)$ z = zRectangular to Cylindrical  $r = \sqrt{x^2 + y^2} \\ \tan(\theta) = \frac{y}{x}$ z = zSpherical to Rectangular  $x = \rho \sin(\phi) \cos(\theta)$  $y = \rho \sin(\phi) \sin(\theta)$  $z = \rho \cos(\phi)$ **Rectangular** to Spherical  $\rho = \sqrt{x^2 + y^2 + z^2}$  $\tan(\theta) = \frac{y}{r}$  $\cos(\phi) = \frac{x}{\sqrt{x^2 + y^2 + z^2}}$ Spherical to Cylindrical  $r = \rho \sin(\phi)$  $\theta = \theta$  $z = \rho \cos(\phi)$ Cylindrical to Spherical  $\rho = \sqrt{r^2 + z^2}$  $\theta = \theta$ 

 $\cos(\phi) = \frac{z}{\sqrt{r^2 + z^2}}$ 

# Surfaces



Hyperboloid of One Sheet  $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$ (Major Axis: z because it follows - )



Hyperboloid of Two Sheets  $\frac{z^2}{c^2} - \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (Major Axis: Z because it is the one notsubtracted)



### Elliptic Paraboloid

 $z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ (Major Axis: z because it is the variable NOT squared)



#### Hyperbolic Paraboloid (Major Axis: Z axis because it is not squared) $z = \frac{y^2}{12} - \frac{x^2}{2}$



Elliptic Cone (Major Axis: Z axis because it's the only one being subtracted)  $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{a^2} = 0$ 



Cylinder 1 of the variables is missing OR.  $(x-a)^2 + (y-b^2) = c$ (Major Axis is missing variable)

# Partial Derivatives

Partial Derivatives are simply holding all other variables constant (and act like constants for the derivative) and only taking the derivative with respect to a given variable.

Given z=f(x,y), the partial derivative of z with respect to x is:  $\begin{aligned} & z \text{ with respect to X is} \\ & f_x(x,y) = z_x = \frac{\partial z}{\partial x} = \frac{\partial f(x,y)}{\partial x} \\ & \text{likewise for partial with respect to y:} \\ & f_y(x,y) = z_y = \frac{\partial z}{\partial y} = \frac{\partial f(x,y)}{\partial y} \end{aligned}$ Notation For  $f_{xyy}$ , work "inside to outside"  $f_x$ then  $f_{xy}$ , then  $f_{xyy}$  $f_{xyy} = \frac{\partial^3 f}{\partial^2 y \partial x}$ , For  $\frac{\partial^3 f}{\partial^2 y \partial x}$ , work right to left in the

# Gradients

The Gradient of a function in 2 variables is  $\nabla f = \langle f_x, f_y \rangle$ The Gradient of a function in 3 variables is  $\nabla f = \langle f_x, f_y, f_z \rangle$ 

# Chain Rule(s)

Take the Partial derivative with respect to the first-order variables of the function times the partial (or normal) derivative of the first-order variable to the ultimate variable you are looking for summed with the same process for other first-order variables this makes sense for. Example: let x = x(s,t), y = y(t) and z = z(x,y).

z then has first partial derivative:

 $\frac{\partial z}{\partial x}$  and  $\frac{\partial z}{\partial y}$ 

x has the partial derivatives:

 $\frac{\partial x}{\partial s}$  and  $\frac{\partial \hat{x}}{\partial t}$ and y has the derivative:

variable

In this case (with z containing x and y as well as x and y both containing s and t), the chain rule for  $\frac{\partial z}{\partial s}$  is  $\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s}$ The chain rule for  $\frac{\partial z}{\partial t}$  is  $\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{dy}{dt}$ Note: the use of "d" instead of " $\partial$ " with the function of only one independent

# Limits and Continuity

#### Limits in 2 or more variables

Limits taken over a vectorized limit just evaluate separately for each component of the limit.

Strategies to show limit exists

1. Plug in Numbers, Everything is Fine 2. Algebraic Manipulation -factoring/dividing out

-use trig identites

3. Change to polar coords

 $if(x,y) \rightarrow (0,0) \Leftrightarrow r \rightarrow 0$ 

Strategies to show limit DNE

1. Show limit is different if approached from different paths  $(x=y, x=y^2, etc.)$ 

2. Switch to Polar coords and show the

limit DNE.

Continunity

A fn, z = f(x, y), is continuous at (a,b) if

 $f(a,b) = \lim_{(x,y)\to(a,b)} f(x,y)$ Which means:

1. The limit exists 2. The fn value is defined

3. They are the same value

# **Directional Derivatives**

Let z=f(x,y) be a fuction, (a,b) ap point in the domain (a valid input point) and  $\hat{u}$  a unit vector (2D). The Directional Derivative is then the derivative at the point (a,b) in the direction of  $\hat{u}$  or:  $D_{a}f(a,b) = \hat{u} \cdot \nabla f(a,b)$ This will return a scalar. 4-D version:  $D_{a}f(a,b,c) = \hat{u} \cdot \nabla f(a,b,c)$ 

### **Tangent Planes**

 $\begin{array}{l} \text{let } \mathbf{F}(\mathbf{x},\!\mathbf{y}\!,\!\mathbf{z}) = \mathbf{k} \text{ be a surface and } \mathbf{P} = \\ (x_0,y_0,z_0) \text{ be a point on that surface.} \\ \text{Equation of a Tangent Plane:} \\ \nabla F(x_0,y_0,z_0) \cdot < x - x_0, y - y_0, z - z_0 > \end{array}$ 

### Approximations

let z = f(x, y) be a differentiable function total differential of f = dz $dz = \nabla f \cdot \langle dx, dy \rangle$ This is the *approximate* change in z The actual change in z is the difference in z values:  $\Delta z = z - z_1$ 

# Maxima and Minima

#### **Internal Points**

1. Take the Partial Derivatives with respect to X and Y ( $f_x$  and  $f_y$ ) (Can use gradient)

2. Set derivatives equal to 0 and use to solve system of equations for x and y 3. Plug back into original equation for z. Use Second Derivative Test for whether points are local max, min, or saddle

#### Second Partial Derivative Test

1. Find all (x,y) points such that  $\nabla f(x, y) = \vec{0}$ 2. Let  $D = f_{xx}(x, y)f_{yy}(x, y) - f_{xy}^2(x, y)$ IF (a) D > 0 AND  $f_{xx} < 0$ , f(x,y) is local max value (b) D > 0 AND  $f_{xx}(x, y) > 0$  f(x,y) is

local min value (c) D < 0, (x,y,f(x,y)) is a saddle point

(d) D = 0, test is inconclusive 3. Determine if any boundary point gives min or max. Typically, we have to parametrize boundary and then reduce to a Calc 1 type of min/max problem to solve.

# The following only apply only if a boundary is given

1. check the corner points 2. Check each line  $(0 \le x \le 5 \text{ would})$ 

give x=0 and x=5) On Bounded Equations, this is the global min and max...second derivative test is not needed.

# Lagrange Multipliers

Given a function f(x,y) with a constraint g(x,y), solve the following system of equations to find the max and min points on the constraint (NOTE: may need to also find internal points.):  $\nabla f = \lambda \nabla g$ g(x,y) = 0 (orkifgiven)

# Double Integrals

With Respect to the xy-axis, if taking an integral,  $\int \int dy dx$  is cutting in vertical rectangles,  $\int \int dx dy$  is cutting in horizontal rectangles

#### Polar Coordinates

When using polar coordinates,  $dA = rdrd\theta$ 

### Surface Area of a Curve

let z = f(x,y) be continuous over S (a closed Region in 2D domain) Then the surface area of z = f(x,y) over S is:  $SA = \int \int_S \sqrt{f_x^2 + f_y^2 + 1} dA$ 

### **Triple Integrals**

 $\begin{array}{l} \int \int \int_s f(x,y,z) dv = \\ \int_{a_1}^{a_2} \int_{\phi_1(x)}^{\phi_2(x)} \int_{\psi_1(x,y)}^{\psi_2(x,y)} f(x,y,z) dz dy dx \\ \text{Note: } dv \mbox{ can be exchanged for } dx dy dz \mbox{ in any order, but you must then choose} \\ \text{your limits of integration according to } that \mbox{ order} \end{array}$ 

### Jacobian Method

 $\int \int_G f(g(u,v), h(u,v)) |J(u,v)| du dv = \int \int_R f(x,y) dx dy$ 

$$J(u,v) = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}$$

Common Jacobians: Rect. to Cylindrical: rRect. to Spherical:  $\rho^2 \sin(\phi)$ 

### Vector Fields

 $\begin{array}{l} \operatorname{let} f(x,y,z) \mbox{ be a scalar field and } \vec{F}(x,y,z) = \\ M(x,y,z)\hat{i} + N(x,y,z)\hat{j} + P(x,y,z)\hat{k} \mbox{ be a vector field,} \\ \mbox{ Grandient of } f = \nabla f = < \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} > \\ \mbox{ Divergence of } \vec{F} : \\ \nabla \cdot \vec{F} = \frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} + \frac{\partial P}{\partial z} \\ \mbox{ Curl of } \vec{F} : \\ \nabla \times \vec{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial A}{\partial x} & \frac{\partial A}{\partial y} & \frac{\partial A}{\partial z} \\ M & N & P \end{vmatrix}$ 

### Line Integrals

$$\begin{split} & \text{C given by } x = x(t), y = y(t), t \in [a, b] \\ & \int_c f(x, y) ds = \int_a^b f(x(t), y(t)) ds \\ & \text{where } ds = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt \\ & \text{or } \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx \\ & \text{or } \sqrt{1 + \left(\frac{dy}{dy}\right)^2} dy \end{split}$$

To evaluate a Line Integral, • get a paramaterized version of the line (usually in terms of t, though in exclusive terms of x or y is ok) • evaluate for the derivatives needed (usually dy, dx, and/or dt) • plug in to original equation to get in terms of the independant variable • solve integral

### Work

Let  $\vec{F} = M\hat{i} + \hat{j} + \hat{k}$  (force) M = M(x, y, z), N = N(x, y, z), P = P(x, y, z)(Literally) $d\vec{r} = dx\hat{i} + dy\hat{j} + dz\hat{k}$ Work  $w = \int_{C} \vec{F} \cdot d\vec{r}$ (Work done by moving a particle over curve C with force  $\vec{F}$ )

# Independence of Path

**Fund Thm of Line Integrals** C is curve given by  $\vec{r}(t), t \in [a, b]$ ;  $\vec{r}'(t)$  exists. If  $f(\vec{r})$  is continuously differentiable on an open set containing

C, then  $\int_c \nabla f(\vec{r}) \cdot d\vec{r} = f(\vec{b}) - f(\vec{a})$ Equivalent Conditions

 $\vec{F}(\vec{r})$  continuous on open connected set D. Then,

 $\begin{array}{l} (a)\vec{F}=\nabla f \mbox{ for some fn f. (if } \vec{F} \mbox{ is conservative}) \\ \Leftrightarrow (b)\int_c \vec{F}(\vec{r})\cdot d\vec{r} \mbox{ is indep. of pathin} D \\ \Leftrightarrow (c)\int_c \vec{F}(\vec{r})\cdot d\vec{r}=0 \mbox{ for all closed paths} \\ \mbox{ in D. } \end{array}$ 

### Conservation Theorem

 $\vec{F} = M\hat{i} + N\hat{j} + P\hat{k}$  continuously differentiable on open, simply connected set D.

 $\vec{F}$  conservative  $\Leftrightarrow \nabla \times \vec{F} = \vec{0}$ (in 2D  $\nabla \times \vec{F} = \vec{0}$  iff  $M_y = N_x$ )

# Green's Theorem

(method of changing line integral for double integral - Use for Flux and Circulation across 2D curve and line integrals over a closed boundary)  $\oint Mdy - Ndx = \int \int_R (M_x + N_y) dxdy$  $\oint Mdx + Ndy = \int \int_R (N_x - M_y) dxdy$ Let: •R be a region in xy-plane •C is simple, closed curve enclosing R (w/ paramerization  $\vec{r}(t)$ ) • $\vec{F}(x, y) = M(x, y)\hat{i} + N(x, y)\hat{j}$  be continuously differentiable over RUC.

Form 1: Flux Across Boundary  $\vec{n} =$ unit normal vector to C  $\oint_c \vec{F} \cdot \vec{n} = \int \int_R \nabla \cdot \vec{F} dA$   $\Leftrightarrow \oint M dy - N dx = \int \int_R (M_x + N_y) dx dy$ Form 2: Circulation Along

Boundary  $\oint_c \vec{F} \cdot d\vec{r} = \int \int_R \nabla \times \vec{F} \cdot \hat{u} dA$   $\Leftrightarrow \oint M dx + N dy = \int \int_R (N_x - M_y) dx dy$ Area of R  $A = \oint (\frac{-1}{2} y dx + \frac{1}{2} x dy)$ 

# Gauss' Divergence Thm

(3D Analog of Green's Theorem - Use for Flux over a 3D surface) Let:  $\cdot \vec{F}(x, y, z)$  be vector field continuously differentiable in solid S  $\cdot S$  is a 3D solid  $\cdot \partial S$  boundary of S (A Surface)  $\cdot \hat{n}$ unit outer normal to  $\partial S$ Then,  $\int \int_{\partial S} \vec{F}(x, y, z) \cdot \hat{n} dS = \int \int \int_{S} \nabla \cdot \vec{F} dV$ (dV = dxdydz)

# Surface Integrals

Let •R be closed, bounded region in xy-plane •f be a fn with first order partial derivatives on R •G be a surface over R given by z = f(x, y)•g(x, y, z) = g(x, y, f(x, y)) is cont. on R Then,  $\int \int_G g(x, y, z) dS =$   $\int \int_R g(x, y, f(x, y)) dS$ where  $dS = \sqrt{f_x^2 + f_y^2 + 1} dy dx$ 

Flux of  $\vec{F}$  across G  $\int \int_{G} \vec{F} \cdot ndS = \int \int_{R} [-Mf_x - Nf_y + P] dxdy$ where:  $\cdot \vec{F}(x, y, z) = M(x, y, z)\hat{i} + N(x, y, z)\hat{j} + P(x, y, z)\hat{k}$   $\cdot G$  is surface f(x,y)=z $\cdot \vec{n}$  is upward unit normal on G.

 $f(\mathbf{x}, \mathbf{y})$  has continuous  $1^{st}$  order partial

# Unit Circle

 $(\cos, \sin)$ 

derivatives

# Other Information

 $\begin{array}{l} \frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}} \\ \text{Where a Cone is defined as} \\ z = \sqrt{a(x^2 + y^2)}, \\ \text{In Spherical Coordinates,} \\ \phi = \cos^{-1}(\sqrt{\frac{a}{1+a}}) \\ \text{Right Circular Cylinder:} \\ V = \pi r^2 h, SA = \pi r^2 + 2\pi r h \\ \lim_{n \to \inf} (1 + \frac{m}{n})^{pn} = e^{mp} \\ \text{Law of Cosines:} \\ a^2 = b^2 + c^2 - 2bc(\cos(\theta)) \end{array}$ 

### Stokes Theorem

Let: ·S be a 3D surface · $\vec{F}(x, y, z) =$   $M(x, y, z)\hat{i} + N(x, y, z)\hat{j} + P(x, y, z)\hat{l}$ ·M,N,P have continuous  $1^{st}$  order partial derivatives ·C is piece-wise smooth, simple, closed, curve, positively oriented · $\hat{T}$  is unit tangent vector to C. Then,  $\oint \vec{F}_c \cdot \hat{T} dS = \int \int_s (\nabla \times \vec{F}) \cdot \hat{n} dS =$   $\int \int_R (\nabla \times \vec{F}) \cdot \vec{n} dx dy$ Remember:  $\oint \vec{F} \cdot \vec{T} ds = \int_c (M dx + N dy + P dz)$ 



Source code available at https://github.com/keytotime/Calc3\_CheatSheet Thanks to Kelly Macarthur for Teaching and Providing Notes.