
14.1 Vector Fields

Gradient of 3d surface:

Divergence of a vector field:
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14.1 (continued)

Curl of a vector field:

Ex 1: Fill in the table.
Let f (x , y , z ) be a scalar field (i.e. it returns a scalar) and

F⃗ (x , y , z )=M ( x , y , z) î+N (x , y , z ) ĵ+P ( x , y , z) k̂ be a vector field (i.e. it returns a vector).

Notation Formula Input Output

Gradient of f

Divergence of F⃗

Curl of F⃗
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14.1 (continued)

Explanation of divergence and curl:
If F⃗ is a velocity field for a fluid, then 
1. divergence of F⃗ measures the tendency of the fluid to diverge away from a point ( div F⃗>0 ) 
or accumulate toward a point ( div F⃗<0 ).

2. Curl of F⃗ picks out the direction or axis about which the fluid rotates most rapidly with
∣∣curl F⃗∣∣ = speed of that rotation.

Ex 2: Sketch a sample of vectors for the given vector field F⃗ .

(a) F⃗ (x , y)= x î− y ĵ (b) F⃗ (x , y)=−2 ĵ

(c) F⃗ (x , y , z )=2 ĵ+z k̂ (try to draw vectors 
with starting points in xy, yz and xz-planes.
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14.1 (continued)

Ex 3: Let F⃗ (x , y , z )=x y z î+2 y2 ĵ−3 x2 z k̂ .
(a) Find div F⃗ .

(c) Find grad(div F⃗ ) .

(b) Find curl F⃗ . (d) Find div(curl F⃗ ) .
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14.2 Line Integrals

Line integral of a scalar field. If C is given by x=x ( t ) , y= y (t ) , t ∈[a , b] , 

then ∫
C

f ( x , y )ds=∫
a

b

f ( x (t ) , y (t ))ds

where

ds=√( dx
dt )

2

+( dy
dt )

2

dt .

What does this line integral measure?

We can think of it as the area of the curved 
vertical curtain along that curve under the 
surface z= f (x , y)

Let F⃗ (x , y , z )=M î+N ĵ+P k̂ where
M =M (x , y , z ) , N =N (x , y , z ) , and
P=P (x , y , z ) .

Then d r⃗=dx î+dy ĵ+dz k̂  and
W =∫

C

F⃗⋅d r⃗ calculates the work done in

 moving a particle over curve C with force
 F⃗ .
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14.2 (continued)

More cool pictures: In each example, the answer below the picture shows whether the line integral of 
each vector field (in blue) along the oriented path (in red) is positive, negative or zero.

Ex 1: Evaluate ∫
C

x e y ds where C is the line segment from (-1, 2) to (1, 1).
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14.2 (continued)

Ex 2: Evaluate ∫
C

( xz dx+( y+z )dy+ x dz ) where C is the curve x=e t  , y=e−t  , z=e2t for

t ∈[0,1]

Ex 3: Find the work done by the force field F⃗ (x , y , z )=(2 x− y) î+(2 z) ĵ+( y−z ) k̂ when moving
a particle along the line segment from (0, 0, 0) to (1, 4, 5).
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14.3 Independence of Path

Fundamental Theorem of Line Integrals
C is a curve given by r⃗ (t ) , t∈[a , b] . r⃗ ' (t )
exists. If f ( r⃗ ) is continuously differentiable on
an open set containing C, then

∫
C

∇ f ( r⃗ )⋅d r⃗= f ( b⃗)− f (a⃗) .

Ex 1: Answer these questions.
(a) What does it mean to be independent of path?

Equivalent Conditions:
If F⃗ ( r⃗ ) is continuous on an open connected set 
D, then the following conditions are equivalent.

• F⃗=∇ f for some function f (i.e. F⃗
is conservative).

• ∫
C

F⃗ ( r⃗ )⋅d r⃗ is independent of path in D.

• ∫
C

F⃗ ( r⃗ )⋅d r⃗=0  ∀ closed paths in D.

(b) If F⃗ is conservative, what is it conserving?

(c) Why does D need to be open and simply 
connected?

Theorem: 
If F⃗ (x , y , z )=M î+N ĵ+P k̂ is continuously 
differentiable on an open, simply connected set D,
then 

F⃗  conservative ⇔∇×F⃗ =0⃗ (3d)
(Note: In 2d, this becomes 

M y=N x⇔ ∇× F⃗=0⃗ .)

(d) Why didn't the Theorem get grouped with the 
equivalent conditions?
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14.3 (continued)

Conservative Vector Fields:
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14.3 (continued)

Ex 2: Determine if the given field is conservative. If so, find f such that F⃗=∇ f . 

(a) F⃗ (x , y)=(x+ 1
( x+ y )2 ) î+(3+ 1

(x+ y)2 ) ĵ
(b)

F⃗ (x , y)=(4 y2 cos( x y2)) î+(8 x cos (x y 2)) ĵ
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14.3 (continued)

Ex 3: Use  F⃗ (x , y)=(x+ 1
( x+ y )2 ) î+(3+ 1

(x+ y)2 ) ĵ  to answer the following questions.

(a) What is the largest open, connected set on which F⃗ (x , y) is continous?

(b) Evaluate ∫
C

F⃗ ( r⃗ )⋅d r⃗ using the Fundamental Theorem of Line Integrals., if C is the curve given 

by r⃗ =t2 î+2 t3 ĵ   , t∈[1,2] . (Why are we sure we can use FTLI?)

(c) How would you calculate ∫
C

F⃗ ( r⃗ )⋅d r⃗ without FTLI?
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14.3 (continued)

Ex 4: Show that the line integral is independent of path.

∫
(0,0,0 )

( π ,π ,0)

((cos x+2 y z )dx+(sin y+2 x z )dy+( z+2 x y )dz ) . Then evaluate it.
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14.4 Green's Theorem

Theorem:
Let R be a region in the xy-plane, C is a simple, 
closed curve enclosing R (with parameterization

r⃗ (t ) ), F⃗ (x , y)=M (x , y) î+N ( x , y ) ĵ be 
continuously differentiable over R∪C .

Form (1): (Flux across a boundary)

∮
C

F⃗⋅⃗nds=∬
R

∇⋅F⃗ dA

n⃗ = unit normal vector to C
⇔∮

C

(M dy−N dx )=∬
R

(M x+N y)dx dy

(Think of flux as flow.)

Idea of proof of Green's Theorem:

(1) Observation:

∫
(a ,b)

(c , d)

f ds  = − ∫
(c ,d )

(a ,b )

f ds

(2) Subdivide regions such that C=C 1∪C 2

⇒∮
C

f ds=∮
C

1
f ds+∮

C
2

f ds (because the 

integrals over the overlapping up and down curve 
piece above cancel each other out)

Form (2): (Circulation along a boundary)

∮
C

F⃗⋅d r⃗=∬
R

∇× F⃗⋅k̂ dA

⇔∮
C

(M dx+N dy )=∬
R

(N x−M y)dx dy

Big Idea:  We can exchange the line integral for a 
double integral.

(3) Subdivide into infinitely many subregions.

This means that the line integral becomes a double
integral over a closed 2d region. 
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14.4 (continued)

Ex 1: Given ∮
C

(√ y dx+√ x dy) where C is the closed curve formed by y=0 , x=2 , y=1
2

x2 ,

(a) Draw C.

(b) Calculate the integral using Green's Theorem.
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14.4 (continued)

Ex 2: Given the vector field F⃗ (x , y)= x î+2y ĵ and curve C given by
x=cos t  , y=sin t  , t ∈[0, 2 π ) .

(a) Draw the vector field, curve C and make predictions about the flux and circulation.

(b) Calculate ∮
C

F⃗⋅⃗nds  (flux across the 

boundary).

(c) Calculate ∮
C

F⃗⋅d r⃗ (circulation along the 

boundary).
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14.4 (continued)

Ex 3: Find the area (using Green's Theorem), 

between y=√x  and y= x
4

. Check your answer

with a different method.

Area of R: (Just another cool way to calculate the 
area of a closed region in xy-plane.)

A=1
2∮C

(−y dx+x dy )
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14.5 Surface Integrals

Ex 1: Evaluate the surface integral

∬
G

g (x , y , z )dS given g( x , y , z)= y

where G is the surface z=4− y 2 over the 
region {(x , y ):0≤x≤3 , 0≤ y≤2}

Theorem:
Let 

• R be a closed, bounded region in the xy-
plane

• z= f (x , y) be a function with continuous
first-order partial derivatives on R

• G be the surface over R given by
z= f (x , y)

• g( x , y , z)= g ( x , y , f (x , y)) be a 
continuous function on R.

Then the surface integral is given by

∬
G

g (x , y , z )dS

 = ∬
R

g ( x , y , f ( x , y ))√ f x
2+ f y

2+1dy dx
.

Note: dS=√ f x
2+ f y

2+1  dA .
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14.5 (continued)

Ex 2:  Evaluate ∬
G

3z dS where G is the top of the tetrahedron bounded by all three coordinate 

planes and the plane 2 x+6 y+3 z=6 .
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14.5 (continued)

Flux of F⃗ across G:

∬
G

F⃗⋅n̂dS =∬
R

(−M f x−N f y+ P)dx dy where

•
F⃗ (x , y , z )=M ( x , y , z ) î+N (x , y , z ) ĵ+P ( x , y , z ) k̂

• G is the surface z= f (x , y)
• n̂ is the upward unit normal on G.
• z= f (x , y) has continuous first order partial 

derivatives.

Ex 3: Evaluate the flux across G where F⃗ (x , y , z )=2 î+5 ĵ+3 k̂ , G is the part of the cone

z=√x
2+ y

2 outside the cylinder x2+ y2=1 and inside the cylinder x2+ y2=4 .
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14.6 Gauss' Divergence Theorem

Ex 1: Let F⃗ (x , y , z )=4z k̂ and S be the upper 
hemisphere with radius 3 and center (0, 0, 0).
(a) Calculate ∬

∂S

F⃗⋅n̂dS as a surface integral.

Theorem:
Let 

• F⃗ (x , y , z ) be a vector field 
continuously differential in solid S.

• S is a 3-d solid.
• ∂ S be the boundary of the solid S (i.e.

∂ S is a surface).
• n̂ be the unit outer normal vector to

∂ S .
Then 

∬
∂S

F⃗ (x , y , z )⋅n̂dS =∭
S

div F⃗ dV

(Note: Remember that dV =dx dy dz in some 
order.)

This is the 3d analog of Green's Theorem!! 

We can think of this integral as measuring the flux
across the boundary of the surface (as opposed to 
one form of Green's theorem that measured the 
flux across the boundary of a curve).

One big idea is that we can replace a surface 
integral with a regular triple integral.

(b) Calculate ∬
∂S

F⃗⋅n̂dS using Gauss' Theorem.
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14.6 (continued)

Ex 2: Calculate ∬
∂S

F⃗⋅n̂dS where F⃗ (x , y , z )=xy î+e x ĵ+z 3 k̂ over the box

{(x , y , z ) : x∈[0,3] , y∈[1,2] , z∈[0,1]} .

Ex 3: Calculate ∬
∂S

F⃗⋅n̂dS where F⃗ (x , y , z )=3 x î+2 ĵ+2 z 2 k̂ and S is the solid between the 

paraboloid z=4− x2− y2 , cylinder x2+ y2=1 and the xy-plane.
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14.7 Stokes Theorem

Ex 1: Use Stokes' Theorem to calculate

∬
S

(∇× F⃗ )⋅n̂dS where

F⃗ (x , y , z )=xy î+ yz ĵ+ xz k̂ , S is the 
triangular surface (part of a plane) with vertices 
(0,0,0), (1,0,0) and (0,2,1), and n̂ is an upper 
normal.

Stokes' Theorem:

Let
• S be a 3d surface.
• F⃗ (x , y , z )=M î+N ĵ+P k̂ where

M =M ( x , y , z) , N =N (x , y , z )
and P=P (x , y , z ) .

• M, N, and P have continuous first order 
partial derivatives.

• C is a piece-wise smooth, simple, closed 
curve, positively oriented.

• T̂ is a unit tangent vector to C.
Then,

∮
C

F⃗⋅T̂ ds=∬
S

(∇×F⃗ )⋅n̂dS

 = ∬
R

(∇× F⃗ )⋅⃗n dx dy

(This essentially says that the circulation along the
boundary surface is the same as the circulation on 
the boundary curve.)

Remember ∮
C

F⃗⋅T̂ ds=∫
C

(M dx+N dy+ P dz ) .
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14.7 (continued)

Ex 2: Use Stokes' Theorem to calculate ∬
S

(∇×F⃗ )⋅n̂dS where F⃗=〈 z− y , z+ x ,− x− y 〉 , S is 

the part of the paraboloid z=2−x 2− y2 above the z = 1 plane, and n̂ is the upward normal.

23



14.7 (continued)

Ex 3: Use Stokes' Theorem to calculate ∮
C

F⃗⋅T̂ ds where F⃗=( x2+ y2) î−x (x 2+ y2) ĵ+0 k̂ and C 

is the rectangular path from (0,0,0) to (1,0,0) to (1,1,1) to (0,1,1) to (0,0,0).
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