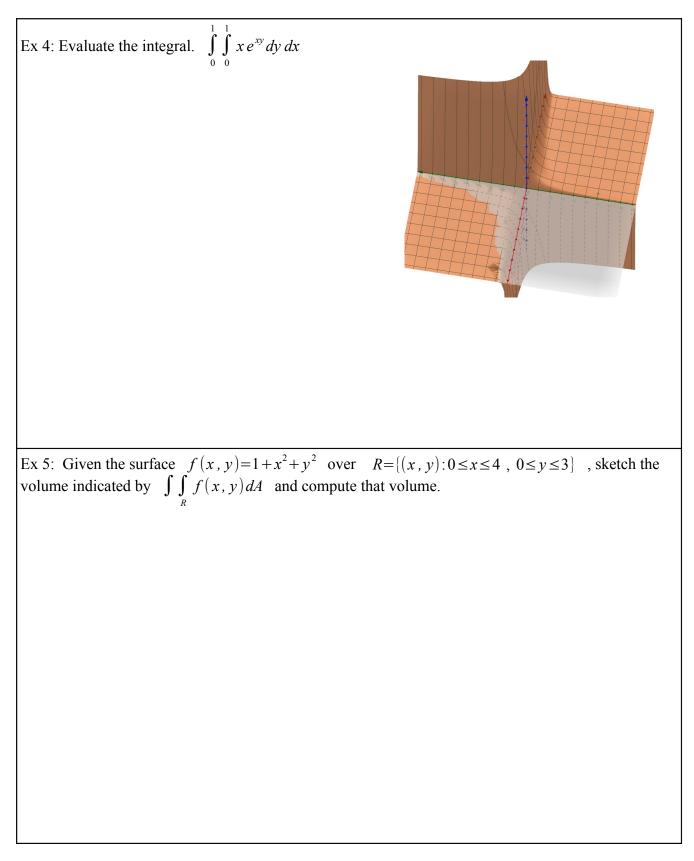
13.1 & 13.2 Double Integrals over Rectangles and Iterated Integration

Ex 1: Given the double integral	Calculating Signed Volume:
$\int_{R} \int_{R} (y - x + 4) dA \text{ where}$ $R = \{(x, y): 0 \le x \le 4, -4 \le y \le 0\}$ (a) Sketch the solid whose volume is given by this integral.	Question: What is signed volume?
(b) Calculate the approximate volume.	Let $R = \{(x, y) : a \le x \le b, c \le y \le d\}$. Draw R in 2d space.
(c) Calculate the exact volume.	For $f(x, y)$, which is continuous over R, the signed volume between the surface z=f(x, y) and the xy-plane (over R) is $\int \int_{R} f(x, y) dA = \int_{a}^{b} \int_{c}^{d} f(x, y) dy dx$ OR

Ex 2: Evaluate the integral $\int_{0}^{1} \int_{0}^{2} \frac{y}{1+x^{2}} dy dx$	Question: Can we separate this integral into the product of two single integrals? That is, is this a true or false statement? $\int_{0}^{1} \int_{0}^{2} \frac{y}{1+x^{2}} dy dx = \left(\int_{0}^{1} \frac{1}{1+x^{2}} dx\right) \cdot \left(\int_{0}^{2} y dy\right)$
Ex 3: Evaluate the integral $\int_{0}^{\ln 3} \int_{0}^{\ln 2} e^{x+y} dy dx$ In general, what conditions must be met in order for us to	Question: Can we separate this integral into the product of two single integrals? If so, how?

In general, what conditions must be met in order for us to split a double integral into a product of two single integrals?

13.1 & 13.2 (continued)



13.3 Double Integrals Over Non-rectangular Regions

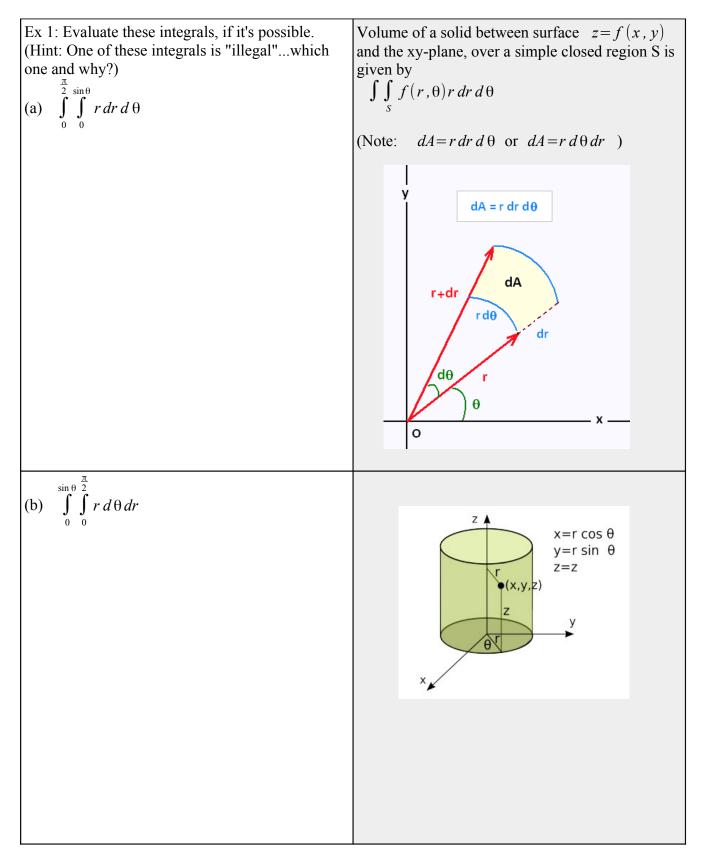
Ex 1: Evaluate the integral. $\int_{1}^{2} \int_{0}^{x^{2}} \frac{y^{2}}{x} dy dx$	$\int \int_{S} f(x, y) dA = \int_{a}^{b} \int_{\phi_{1}(x)}^{\phi_{2}(x)} f(x, y) dy dx$ OR $\int \int_{S} f(x, y) dA = \int_{c}^{d} \int_{\psi_{1}(y)}^{\psi_{2}(y)} f(x, y) dx dy$
Ex 2: Evaluate the integral. $\int_{1}^{5} \int_{0}^{x} \frac{3}{x^{2} + y^{2}} dy dx$	 S is a simple closed curve (not necessarily a rectangle) dA = dx dy or dy dx the limits of the innermost integral can be functions of x (or y) (whichever variable hasn't been integrated yet) Most likely, we can NOT separate the integrals into a product of two single integrals To switch the order of integration (from dx dy to dy dx, for example) requires some geometric thinkingit's NOT trivial.

13.3 (continued)

Ex 3: Let z=f(x, y)=x+y and S be the region below (a sector of a circle of radius 5). $\left(\frac{5\sqrt{3}}{2}, \frac{5}{2}\right) \approx (4.33, 2.5)$) (Note: (a) Determine the limits of integration of the double integral, to calculate the volume of the 3-d region between the surface and the xy-plane, over S. (0, 5) That is, find the limits of integration for $\int \int f(x, y) dA$. (Note: You must first decide if you want dA = dx dy or dA = dy dx.) (4.33, 2.5)2 0 ż 4 6 (b) Calculate the volume.

Ex 4: Sketch the solid in the first octant bounded by the coordinate planes, 2x+y-4=0 and 8x + y - 4z = 0. Then calculate its volume using iterated integration. Ex 5: For the triangular region in the xy-plane bounded by the vertices (1, 7), (4, 1) and (-2, 1), set up $\int \int_{S} f(x, y) dx dy$ and $\int \int_{S} f(x, y) dy dx$. (S is the inside of the triangle.)

13.4 Double Integrals in Polar Coordinates



13.4 (continued)

Ex 2: Sketch the region, convert to polar coordinates and evaluate the volume represented by this integral.

$$\int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}} (x^2 y^2 + y^4) dy dx$$

13.4 (continued)

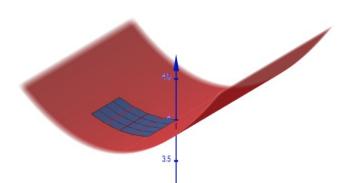
Ex 3: Consider the solid inside the paraboloid $z=4-x^2-y^2$, outside the cylinder $x^2+y^2=1$ and above the xy-plane. Sketch the solid and calculate the volume.

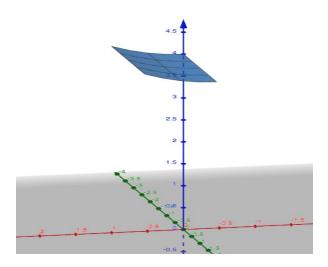
13.6 Surface Area

Ex 1: Make a sketch and find the area of the part of the surface $z=\sqrt{4-y^2}$ in Octant 1 that is directly above the circle $x^2+y^2=4$ in the xy-Given z = f(x, y) is a continuous surface/function over S (a closed region in the xy-plane), then the surface area of z=f(x, y)over S is plane. $SA = \int \int_{S} \sqrt{f_x^2 + f_y^2 + 1} \, dA$ z=f(x,y)

13.6 (continued)

Ex 2: Find the surface area of the surface $z = \frac{x^2}{4} + 4$ that is cut off by the planes x = 0, x = 1, y = 0and y = 2.



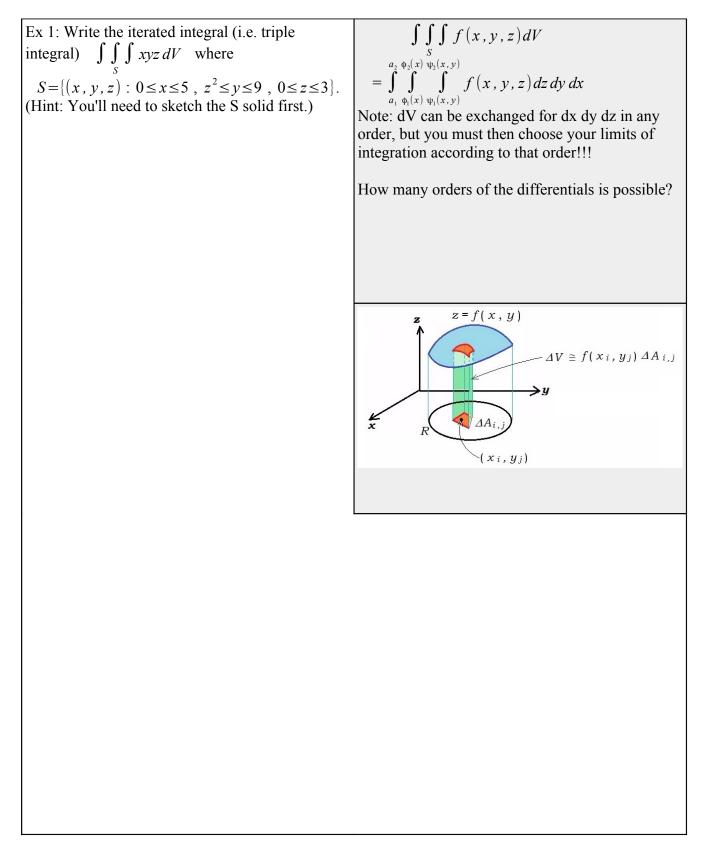


13.6 (continued)

Ex 3: Find the surface area for the surface that is part of the sphere $x^2 + y^2 + z^2 = a^2$ inside (or synonymously, cut off by) the cylinder $x^2 + y^2 = ay$ where a > 0 is fixed.

(Sketch the region first.)

13.7 Triple Integrals in Cartesian (Rectangular) Coordinates

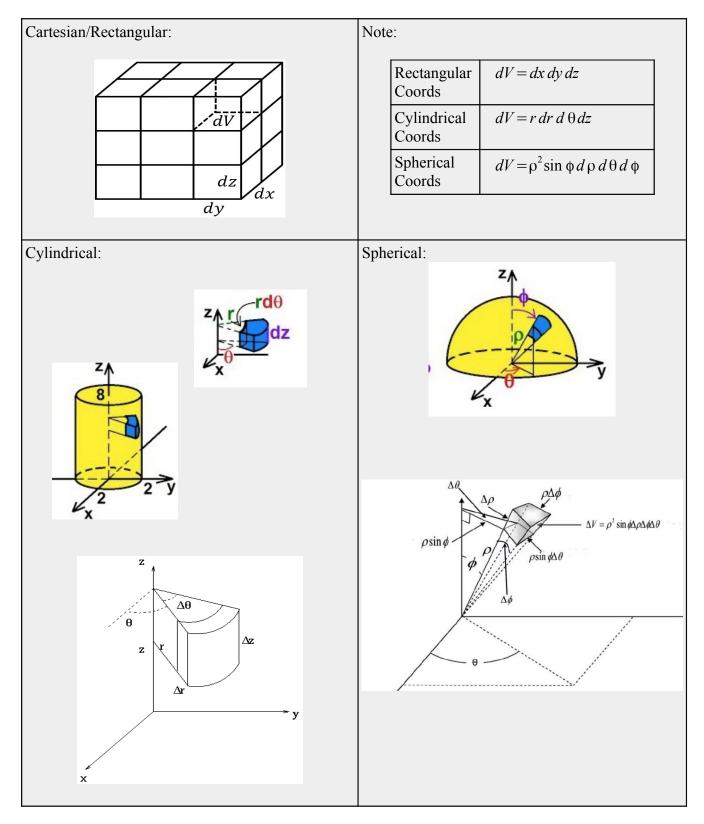


13.7 (continued)

Ex 2: Find the volume of the solid bounded by the cylinder $y=x^2+2$ and the planes y=4, z=0 and 3y-4z=0.

13.7 (continued)

Ex 3: Rewrite the integral $\int_{0}^{2} \int_{0}^{4-2y} \int_{0}^{4-2y-z} f(x, y, z) dx dz dy$ with order dy dx dz.



13.8 Triple Integrals in Cylindrical and Spherical Coordinates

Ex 1: Sketch the region of integration and evaluate the integral. $\int_{0}^{\pi} \int_{0}^{\sin\theta} \int_{0}^{2} r \, dz \, dr \, d\theta$ Ex 2: Sketch the region bounded above by the plane z = y + 4, below by the xy-plane, and laterally by the right circular cylinder having radius 4 and whose axis is the z-axis. Then, find its volume.

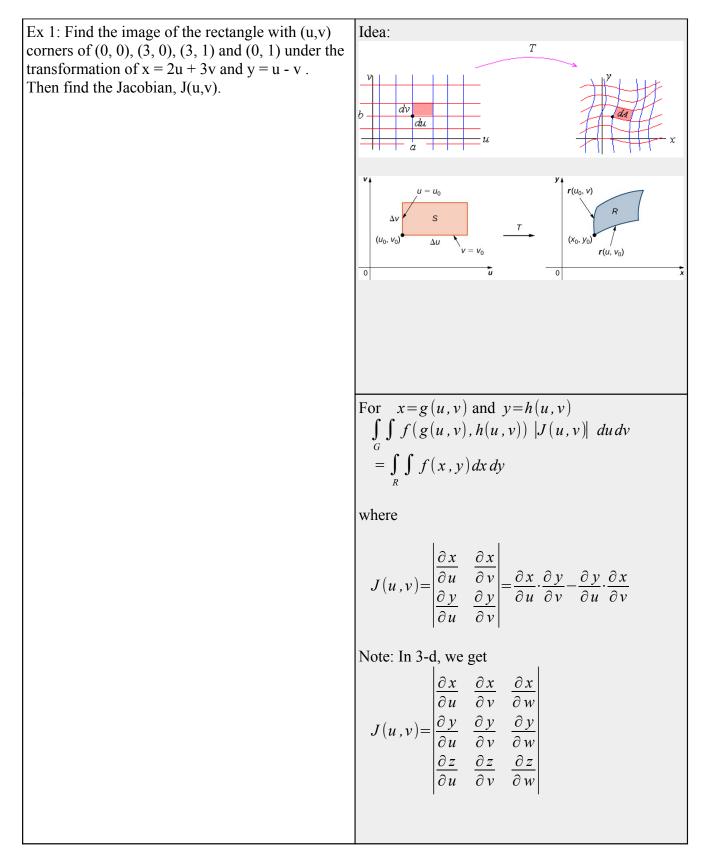
13.8 (continued)

Ex 3: Change this integral to spherical coordinates and evaluate that integral (Hint: You'll need to sketch the integration region first.)

sketch the integration region first.) $\int_{-3}^{3} \int_{0}^{\sqrt{9-x^{2}}\sqrt{9-x^{2}-y^{2}}} \int_{0}^{\sqrt{2}+y^{2}+z^{2}} dz \, dy \, dx$

Ex 4: The plane z = 1 divides the sphere $x^2 + y^2 + z^2 = 2$ into two parts. Use spherical coordinates to find the volume of the smaller part.

13.9 Change of Variables (Jacobi Method)



13.9 (continued)

Ex 2: Use a transformation to evaluate $\int_{R} \int (2x-y)\cos(y-2x) dA$ over R where R is the triangle with vertices (1, 0), (4, 0) and (4, 3).

13.9 (continued)

Ex 3: Find the area of the ellipse $x^2 + \frac{y^2}{36} = 1$ using a double integral (with a transformation).