12.1 Functions of Two or More Variables

Ex 1: Let $f(x, y, z) = \sqrt{x \cos y} + z^2$ (a) What is the domain of this function?	Note: y = f(x) is a function of one input variable and its graph lives in 2-d (one input + one output = 2-d) space
(b) What dimension space does the graph of this function live in?	z = f(x, y) is a function of two input variables and its graph lives in 3-d (two inputs + one output = 3-d) space
(c) Find $f(2, \frac{\pi}{3}, -1)$.	w = f(x, y, z) is a function of three input variables and its graph lives in 4-d (three inputs + one output = 4-d) space
Ex 2: Find the domain of the function $f(x, y, z) = z \ln y$	Domain still asks for the set of allowed variable values for the input variables.
Ex 3: Sketch the level curves for $z=f(x, y)=2-\frac{x^2}{4}-y^2$ for at least three z- values.	Ex 4: Sketch the graph of $z=f(x, y)=x^2+y^2-4$

12.2 Partial Derivatives

Ex 1: Find f_x and f_y given $f(x, y) = \ln(x^2 - y^2)$.	(Note: wrt means "with respect to".) Given $z = f(x, y)$ the partial derivative of z wrt x is $f_x(x, y) = z_x = \frac{\partial z}{\partial x} = \frac{\partial f(x, y)}{\partial x}$. Likewise for the partial derivative of z wrt y. $f_y(x, y) = z_y = \frac{\partial z}{\partial y} = \frac{\partial f(x, y)}{\partial y}$
Ex 2: Find the four second order partial derivatives for $f(x, y)=2x^3\cos(4y)$.	For f_{xyy} , work "inside to outside" (or left to right) for this notation, i.e. find f_x then differentiate wrt y $(f_x)_y = f_{xy}$ and then differentiate again wrt y $(f_{xy})_y = f_{xyy}$. Notation: $f_{xyy} = \frac{\partial^3 f}{\partial^2 y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) \right)$ In Leibniz notation, we read the partial derivative from right to left to enact it.

Ex 3: Imagine you are on the surface $z = \frac{5\sqrt{16-x^2}}{4}$ at point $\left(2,3,\frac{5\sqrt{3}}{2}\right)$. (a) Name and sketch the graph of this surface.	This shows a tangent line to a 3-d surface that's in the x-direction, i.e. a way to visualize the partial derivative wrt x.
(b) Find the slope of the tangent line to this point that lies in the $x = 2$ plane (i.e. tangent to the intersection curve of the surface with the $x = 2$ plane).	(c) Find the slope of the tangent line to this point that lies in the $y = 3$ plane (i.e. tangent to the intersection curve of the surface with the $y = 3$ plane).

12.3 Limits and Continuity

Ex 2: Find the limit or justify that it does not exist. $\lim_{(x,y)\to(0,0)} xy\left(\frac{x^2-y^2}{x^2+y^2}\right)$	Strategies to show the limit exists (in 3-d, i.e. for z=f(x, y)):
$(x, y) \to (0,0) \xrightarrow{xy} (x^2 + y^2)$	1. Case 1: Plug in numbers, and everything is fine, then you're done.
	2. Case 2: You get some indeterminate form.(a) Do algebraic manipulation, like factoring and dividing out or using trigonometric identities, etc.
	OR
	(b) Change to polar coordinates, if $(x, y) \rightarrow (0, 0)$ then we can replace that with $r \rightarrow 0$.
	Strategies to show the limit DNE (in 3-d, i.e. for $z = f(x, y)$):
	1. Show the limit yields different finite answers depending on how you approach the point. (That is, try two different approaches to the point and show you get different answers.)
	OR
	2. Switch to polar coordinates and show the limit DNE.
Ex 3: Describe the largest set S on which f is continuous.	
(a) $f(x, y) = \frac{1}{\sqrt{1 + x + y}}$	(b) $f(x, y, z) = \ln(4 - x^2 - y^2 - z^2)$

12.4 Differentiability

Ex 1: Find the gradient, ∇f , of $f(x, y) = 4x e^{9xy}$.	Let $z=f(x, y)$ be a function and (a, b) be a point in the domain of f. Gradient of f at point (a, b) : $\nabla f = \langle f_x(a, b), f_y(a, b) \rangle$ Important Note: The gradient is a vector (not a number). Symbol of Gradient Definition of Gradient $\nabla f = \frac{\partial f}{\partial x} \hat{i} + \frac{\partial f}{\partial y} \hat{j}$ Scalar Vector
Ex 2: Find the gradient of $f(x, y) = \frac{x^2}{y}$ at input point (2, -1).	The result is a Vector The gradient points in the direction of steepest ascent on the surface at that point. The opposite of the gradient points in the direction of the steepest descent. $\int_{x}^{z} \int_{x}^{z} \int_{y}^{y} \frac{1}{grad f} f$

Questions:

1. Does the gradient always exist for any surface? 2. Does the tangent plane at a point on the surface always exist?

3. How is the gradient related to differentiability?

Ex 4: Find the equation of the tangent "hyperplane" to $w = f(x, y, z) = 2y \cos(2\pi x) + 4x \cos(\pi y) + xz$ at input point (1, 1/2, 3).

12.5 Directional Derivatives

Ex 2: Find a unit vector in the direction in which $f(x, y, z) = 4x y z^2$ decreases most rapidly at the point (2, -1, 1). What is the rate of change in that direction?	Theorem: At the input point (a, b) , the function z=f(x, y) increases most rapidly in the direction of the gradient, at a rate of $\ \nabla f(a, b)\ $, and decreases most rapidly in the direction of the opposite of the gradient, at a rate of $-\ \nabla f(a, b)\ $.
Ex 3: Find the directional derivative of $f(x, y) = e^{-x} \cos y$ at the input point $\left(0, \frac{\pi}{3}\right)$ in the direction toward the origin.	

12.6 Chain Rule(s)

Ex 1: Find $\frac{dw}{dt}$ using a chain rule. w = xy + yz + xz and $x = t^2$, $y = 1 - t^2$, $z = 1 - t$	Let $z=f(x, y)$ and $x=x(s,t)$, y=y(s,t) with first partial derivatives at (x(s,t), y(s,t)). Then z has first partial derivatives given by $\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \left(- \right) + \frac{\partial z}{\partial y} \left(- \right)$ and $\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \left(- \right) + \frac{\partial z}{\partial y} \left(- \right)$
	Flow chart for this chain rule: $ \begin{array}{c} $
Ex 2: Find $\frac{\partial w}{\partial t}$ using a chain rule. $w = x^2 - y \ln x$ $x = \frac{s}{t}$, $y^2 = s^2 t$	Question: If the flow chart is given as follows x y zr z t
	then find the following: $\frac{\partial w}{\partial r} =$
	$\frac{\partial w}{\partial s} =$
	$\frac{\partial w}{\partial t} =$

```
Ex 3: If w = x^2 y + z^2, x = \rho \cos \theta \sin \phi,
y = \rho \sin \theta \sin \phi, z = \rho \cos \phi
find \frac{\partial w}{\partial \theta}\Big|_{\theta=2, \theta=\pi, \phi=\frac{\pi}{2}}.
Ex 4: Airplanes A and B depart from point P at the same time. Plane A flies due east and plane B flies
  N50^{\circ}E . At a certain time, plane A is 200 miles from P flying 450 mph and plane B is 150 miles
from P flying 400 mph. How fast are they separating at that instant?
```

12.7 Tangent Planes

Ex 1: Find the equation of the tangent plane to $x^2+y^2-z^2=4$ at the point (2, 1, 1).	Definition: Let $F(x, y, z) = k$ be a surface in 3-d (k is a constant) and $P_0 = (x_0, y_0, z_0)$ be a point on that surface.
	If F is differentiable AND $\nabla F(x_0, y_0, z_0) \neq \vec{0}$, then the tangent plane to F at P_0 exists. It is the plane orthogonal to $\nabla F(x_0, y_0, z_0)$ that passes through the point P_0 .
	Equation of the Tangent Plane to F at P_0 : $\nabla F(x_0, y_0, z_0) \cdot \langle x - x_0, y - y_0, z - z_0 \rangle = 0$ (Think about what the equation of a tangent plane says: the vector normal to the surface at P_0 is orthogonal to any vector in the plane.)
2-d gradient of an explicit function $z=f(x, y)$ is orthogonal to the level curves of the surface	3-d gradient of an implicit (or explicit) function F(x, y, z) = k is orthogonal to the surface.
$y \qquad \nabla f(x_0, y_0)$ $P(x_0, y_0)$	$\nabla F(x_0, y_0, z_0)$ tangent plane 0 S C y

Ex 2: Find a point on the surface $z=2x^2+3y^2$ where the tangent plane is parallel to the plane 8x-3y-z=0.	Differentials: Let $z = f(x, y)$ be a differentiable function. The total differential of f is dz . $dz = \nabla f \cdot \langle dx, dy \rangle$ (This dz is the approximate change in z .) The actual change in z is given by $\Delta z = z_2 - z_1$ (i.e. the difference in the z-values).
Ex 3: Use differentials to approximate the change in $z = \tan^{-1}(xy)$ from P(2, -0.5) to Q(-2.03, -0.51). Then find Δz (the actual change).	Ex 4: An object's weight in air is 36 lbs = A and its weight in water is W = 20 lbs, with a possible error in each measurement of 0.02 lbs. Find (by approximating) the maximum possible error in calculating its specific gravity from $S(A, W) = \frac{A}{A - W}$.

12.8 Maxima and Minima

12.8 (continued)

12.8 (continued)

Ex 3: Find the min and max values of $z=y^2-x^2$ (hyperbolic paraboloid...a Pringles chip) on the closed triangle with vertices (0, 0), (1, 2) and (2, -2).

(z = blue, x = red, y = green axes)

12.8 (continued)

Ex 4: Find the point on the plane x + 2y + 3z = 12 that is closest to the origin. What is that minimum distance? (You might want to set up this problem and then take it home to solve.)

12.9 Lagrange Multipliers

Ex 1: Find the minimum of	Using Lagrange Multipliers
$f(x, y) = x^{2} + 4xy + y^{2}$ subject to the constraint x - y - 6 = 0.	Setup (i.e. when to use Lagrange Multipliers method): Given $z = f(x, y)$, we want points that produce a global min/max AND satisfy an
	additional constraint/boundary given by g(x, y)=0. To find these max/min points:
	Solve (a) $\nabla f = \lambda \nabla g$ AND (b) $g(x, y) = 0$ simultaneously.
	Note: We can easily expand this to functions of more variables than two.

12.9 (continued)

Ex 2: Use Lagrange Multipliers method to find the min and max values for $f(x, y) = x^2 - y^2 - 1$ on $S = \{(x, y) \mid x^2 + y^2 \le 1\}$. (Question: can we use only Lagrange method here? Why or why not?)

12.9 (continued)

Ex 3: Find the 3-d vector of length 9 with the largest possible sum of its components.

12.9 (continued)

Ex 4: Find the point on the plane x + 2y + 3z = 12 that is closest to the origin. (This is the same problem as 12.8 Ex 4, but this time, see how much faster it is to solve with Lagrange multipliers.)