
12.1 Functions of Two or More Variables

Ex 1: Let f (x , y , z )=√ x cos y+ z2

(a) What is the domain of this function?

(b) What dimension space does the graph of this 
function live in?

(c) Find f (2,  π
3

,  −1) .

Note:

y= f ( x) is a function of one input variable 
and its graph lives in 2-d (one input + one output 
= 2-d) space

z= f (x , y) is a function of two input 
variables and its graph lives in 3-d  (two inputs +
one output = 3-d) space

w= f (x , y , z ) is a function of three input 
variables and its graph lives in 4-d  (three inputs 
+ one output = 4-d) space

Ex 2: Find the domain of the function
f (x , y , z )=z ln y

Domain still asks for the set of allowed variable 
values for the input variables.

Ex 3: Sketch the level curves for

z= f (x , y)=2− x2

4
− y2 for at least three z-

values.

Ex 4: Sketch the graph of
z= f (x , y)=x 2+ y2−4
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12.2 Partial Derivatives

Ex 1: Find f x  and f y given

f (x , y )=ln (x2− y 2) .

(Note: wrt means "with respect to".)

Given z= f (x , y) the partial derivative of z 

wrt x is f x( x , y )=z x=
∂ z
∂ x

=∂ f (x , y)
∂ x

. 

Likewise for the partial derivative of z wrt y.

f y (x , y)=z y=
∂ z
∂ y

=∂ f (x , y)
∂ y

Ex 2: Find the four second order partial 
derivatives for f (x , y )=2 x3 cos (4y ) .

For f xyy , work "inside to outside" (or left to 
right) for this notation, i.e. find f x then 
differentiate wrt y ( f x)y= f xy and then 
differentiate again wrt y ( f xy)y= f xyy . 

Notation:

f xyy=
∂3 f

∂2 y ∂ x
= ∂

∂ y ( ∂
∂ y (∂ f

∂ x )) In Leibniz 

notation, we read the partial derivative from right 
to left to enact it.
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12.2 (continued)

Ex 3: Imagine you are on the surface

z=5√16− x
2

4
at point (2,3, 5√3

2 ) . 

(a) Name and sketch the graph of this surface.

This shows a tangent line to a 3-d surface that's in 
the x-direction, i.e. a way to visualize the partial 
derivative wrt x.

(b) Find the slope of the tangent line to this point 
that lies in the x = 2 plane (i.e. tangent to the 
intersection curve of the surface with the x = 2 
plane). 

(c) Find the slope of the tangent line to this point 
that lies in the y = 3 plane (i.e. tangent to the 
intersection curve of the surface with the y = 3 
plane). 
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12.3 Limits and Continuity

Ex 1: Find the limit or justify that it does not exist.

(a) lim
(x , y)→(0,0 )

x4− y4

x2+ y2

(b) lim
( x , y)→(0,0 )

x y2

x2+ y4

2-d Limits:

To decide if lim
x→c

f ( x) exists, we have to only 

check both the right and left-hand limits, because 
we can only approach c from two sides (since x is 
1-d).

3-d Limits:

To decide if lim
(x , y)→(c , d)

f (x , y ) exists, it's 

infinitely harder, because we can approach the 
point (x, y) from infinitely many directions, not 
just two. So we cannot exhaustively check all 
those infinitely many directions, like we can for 
the 2-d case.

A function z= f (x , y) is continuous at (a, b) if
f (a ,b)= lim

(x , y)→(a ,b)
f ( x , y ) , that is if 

(1) the limit exists, and 
(2) the function value is defined and 
(3) they are the same.
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12.3 (continued)

Ex 2: Find the limit or justify that it does not exist.

lim
(x , y )→(0,0 )

xy( x2− y2

x2+ y2 )
Strategies to show the limit exists (in 3-d, i.e. for

z= f (x , y) ):

1. Case 1: Plug in numbers, and everything is fine,
then you're done.

2. Case 2: You get some indeterminate form.
(a) Do algebraic manipulation, like factoring and 
dividing out or using trigonometric identities, etc.

OR

(b) Change to polar coordinates, if
( x , y )→(0,0) then we can replace that with
r →0 . 

Strategies to show the limit DNE (in 3-d, i.e. for
z= f (x , y) ):

1. Show the limit yields different finite answers 
depending on how you approach the point. (That 
is, try two different approaches to the point and 
show you get different answers.)

OR

2. Switch to polar coordinates and show the limit 
DNE.

Ex 3: Describe the largest set S on which f is 
continuous.

(a) f (x , y )= 1

√1+x+ y
(b) f (x , y , z )=ln(4−x2− y2− z2)
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12.4 Differentiability

Ex 1: Find the gradient, ∇ f , of
f (x , y )=4x e9xy .

Ex 2: Find the gradient of f (x , y )= x2

y
 at 

input point (2, -1). 

Let z= f (x , y) be a function and (a , b) be a 
point in the domain of f. 

Gradient of f at point (a , b) :
∇ f =< f x(a , b) , f y (a ,b)>

Important Note: The gradient is a vector (not a 
number). 

The gradient points in the direction of steepest 
ascent on the surface at that point. The opposite of
the gradient points in the direction of the steepest 
descent.
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12.4 (continued)

Ex 3: For the gradient and function in Ex 2, find 
the equation of the tangent plane at the given 
point.

f (x , y )= x2

y
at (2, -1)

Tangent plane to z= f (x , y) at point (a , b) :
z= f (a , b)+∇ f (a , b)⋅< x−a , y−b>

Questions:
1. Does the gradient always exist for any surface?

3. How is the gradient related to differentiability?

 
2. Does the tangent plane at a point on the surface 
always exist?
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12.4 (continued)

Ex 4: Find the equation of the tangent "hyperplane" to
w= f (x , y , z )=2y cos (2 π x )+4x cos (π y )+ xz at input point (1, 1/2, 3).
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12.5 Directional Derivatives

Ex 1: Find the directional derivative of
f (x , y )=e−xy at the input point (1, -1) in the 

direction of u⃗=− î+√3 ĵ .
(Hint: Is u⃗ a unit vector?)

Let z= f (x , y) be a function, (a , b) an input
point in the domain of f, and û a unit vector (2-
d).

Theorem: If f is differentiable, then f has a 
directional derivative at (a , b) in the direction 
of û=u1 î+u2 ĵ .

The directional derivative is given by
D u⃗ f (a , b)=û⋅∇ f (a , b)

= 〈u1, u2 〉⋅〈 f x (a ,b ) , f y (a ,b) 〉
= u1 f x(a , b)+u2 f y (a , b)

Note: This returns a number/scalar. It represents 
the slope of the surface in the direction of û .

4-d version (and from there we can continue to 
extrapolate):

Du⃗ f (a ,b , c)=û⋅∇ f (a , b , c)
 = 〈u1, u2, u3 〉⋅〈 f x (a , b , c ) , f y (a ,b ,c ) , f z(a , b , c)〉

9



12.5 (continued)

Ex 2: Find a unit vector in the direction in which
f (x , y , z )=4x y z2 decreases most rapidly at the 

point (2, -1, 1). What is the rate of change in that 
direction?

Theorem:
At the input point (a , b) , the function

z= f (x , y) increases most rapidly in the 
direction of the gradient, at a rate of
∣∣∇ f (a , b)∣∣ ,

and decreases most rapidly in the direction 
of the opposite of the gradient, at a rate of
−∣∣∇ f (a , b)∣∣ .

Ex 3: Find the directional derivative of
f (x , y )=e−x cos y at the input point (0 , π

3 ) in the 

direction toward the origin.
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12.6 Chain Rule(s)

Ex 1: Find 
dw
dt

using a chain rule.

w= xy+ yz+ xz and
x=t 2  , y=1−t 2  , z=1−t

Let z= f (x , y) and x=x (s ,t ) ,
y= y (s , t ) with first partial derivatives at
( x (s , t ) , y (s , t )) . Then z has first partial 

derivatives given by 

∂ z
∂ s

=∂ z
∂ x (     )+ ∂ z

∂ y (    ) and

∂ z
∂ t

=∂ z
∂ x (     )+ ∂ z

∂ y (    )
Flow chart for this chain rule:

Ex 2: Find 
∂ w
∂ t

using a chain rule.

w= x2− y ln x

x= s
t

 , y2=s2 t

Question: If the flow chart is given as follows

then find the following:

∂ w
∂ r

 = ________________________________

∂ w
∂ s

 = ________________________________

∂ w
∂ t

 = ________________________________
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12.6 (continued)

Ex 3: If w= x2 y+z2 , x=ρcosθsin ϕ , 
y=ρsin θsin ϕ , z=ρcosϕ

find 
∂w
∂θ ∣ρ=2  , θ=π  , ϕ=π

2
. 

Ex 4: Airplanes A and B depart from point P at the same time. Plane A flies due east and plane B flies
N 50o E . At a certain time, plane A is 200 miles from P flying 450 mph and plane B is 150 miles 

from P flying 400 mph. How fast are they separating at that instant?

12



12.7 Tangent Planes

Ex 1: Find the equation of the tangent plane to
x2+ y2−z 2=4 at the point (2, 1, 1).

Definition:
Let F (x , y , z )=k be a surface in 3-d (k is a 
constant) and P0=( x0, y0, z0) be a point on that 
surface.

If F is differentiable AND 
∇ F (x0, y0, z0)≠ 0⃗ , then the tangent plane to F

at P0 exists.
It is the plane orthogonal to ∇ F (x0, y0, z0) that 
passes through the point P0 .

Equation of the Tangent Plane to F at P0 :
∇ F (x0, y0, z0)⋅〈 x− x0 , y− y0 , z−z0〉=0

(Think about what the equation of a tangent plane 
says: the vector normal to the surface at P0 is 
orthogonal to any vector in the plane.)

2-d gradient of an explicit function z= f (x , y)
is orthogonal to the level curves of the surface

3-d gradient of an implicit (or explicit) function
F (x , y , z )=k is orthogonal to the surface.
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12.7 (continued)

Ex 2: Find a point on the surface z=2 x2+3 y2

where the tangent plane is parallel to the plane
8 x−3 y− z=0 .

Differentials:

Let z= f (x , y) be a differentiable function. 
The total differential of f  is dz. 

dz=∇ f⋅〈dx , dy 〉
(This dz is the approximate change in z.)

The actual change in z is given by
Δ z=z2−z1

(i.e. the difference in the z-values).

Ex 3: Use differentials to approximate the change 
in z= tan−1( xy) from P(2, -0.5) to 
Q(-2.03, -0.51). Then find Δ z (the actual 
change).

Ex 4: An object's weight in air is 36 lbs = A and 
its weight in water is W = 20 lbs, with a possible 
error in each measurement of 0.02 lbs. Find (by 
approximating) the maximum possible error in 
calculating its specific gravity from

S ( A ,W )= A
A−W

.
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12.8 Maxima and Minima

Ex 1: Draw the domain given by
{(x , y ):1< x≤4} .

Types of critical points:
1. Stationary points (surface has a tangent plane 
parallel to xy-plane)

2. Singular points (surface is continuous but not 
differentiable)

3. Boundary points (from given boundary)

(Notice that these are basically the same as we 
saw for 2-d curves.)

Min/Max:

Saddle:

Vocabulary:

For z= f (x , y) ,

1. Global max

2. Global min

3. Local max

4. Local min

5. Saddle point
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12.8 (continued)

Ex 2: For
f (x , y )=x2+a2−2 a x cos y  , y∈[−π ,π]

find all critical points. Determine if they are min, 
max or saddle points. (Assume a is fixed.) 

Strategy to find max/min & saddle points for
z= f (x , y) :

1. Find all (x, y) points such that
∇ f (x , y )= 0⃗ .

2. Let D= f xx( x , y ) f yy( x , y )− f xy
2 ( x , y ) .

(a) If D>0 AND f xx(x , y)<0 , then
f (x , y ) is a local maximum value.

(b) If  D>0 AND f xx(x , y)>0 , then
f (x , y ) is a local minimum value.

(c) If D<0 , then the point ( x , y , f (x , y ))
is a saddle point.

(d) If D=0 , then the test is inconclusive.

3. Determine if any boundary point gives a min or 
max z-value. (To do this, typically we have to 
parameterize the boundary and then reduce it to a 
Calc 1 type of min/max problem to solve.)
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12.8 (continued)

Ex 3: Find the min and max values of z= y2− x2 (hyperbolic paraboloid...a Pringles chip) on the 
closed triangle with vertices (0, 0), (1, 2) and (2, -2). 

(z = blue, x = red, y = green axes)
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12.8 (continued)

Ex 4: Find the point on the plane x + 2y + 3z = 12 that is closest to the origin. What is that minimum 
distance?  (You might want to set up this problem and then take it home to solve.)
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12.9 Lagrange Multipliers

Ex 1: Find the minimum of
f (x , y )=x2+4xy+ y2 subject to the constraint
x− y−6=0 .

Using Lagrange Multipliers

Setup (i.e. when to use Lagrange Multipliers 
method):
Given z= f (x , y) , we want points that 
produce a global min/max AND satisfy an 
additional constraint/boundary given by

g ( x , y )=0 .

To find these max/min points:
Solve (a) ∇ f =λ ∇ g  AND
(b) g ( x , y )=0 simultaneously.

Note: We can easily expand this to functions of 
more variables than two.
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12.9 (continued)

Ex 2: Use Lagrange Multipliers method to find the min and max values for f (x , y )=x2− y2−1 on
S={(x , y)  ∣ x 2+ y2≤1} . (Question: can we use only Lagrange method here? Why or why not?)
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12.9 (continued)

Ex 3: Find the 3-d vector of length 9 with the largest possible sum of its components.

21



12.9 (continued)

Ex 4: Find the point on the plane  x + 2y + 3z = 12  that is closest to the origin. (This is the same 
problem as 12.8 Ex 4, but this time, see how much faster it is to solve with Lagrange multipliers.)
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