#### 5.1 Area of Plane Region



Ex 2: Find the area between these curves. x = (3-y)(y+1), x = 0Ex 3: Find the area between these curves. y = (x-3)(x-1), y = xEx 4: Find the area between these curves.  $x = 4y^4$ ,  $x = 8 - 4y^2$ 



#### 5.2 & 5.3 Volumes of Solids of Revolution

| Ex 1: Find the volume of the solid generated by the indicated                                       | Disk Method                                                                |
|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| region being revolved about the given axis.<br>(a) $v = r^{2/3}$ $v = 0$ $r = -2$ $r = 3$ about the | b                                                                          |
| (a) $y = x$ , $y = 0$ , $x = 2$ , $x = 5$ about the x-axis                                          | $V = \pi \int r^2 dx$ (or dy) where                                        |
|                                                                                                     | r = radius of disk                                                         |
|                                                                                                     |                                                                            |
|                                                                                                     |                                                                            |
|                                                                                                     | Washer Method                                                              |
|                                                                                                     | Ь                                                                          |
|                                                                                                     | $V = \pi \int \left( r_{outer}^2 - r_{inner}^2 \right) dx \text{ (or dy)}$ |
|                                                                                                     | where                                                                      |
|                                                                                                     | $r_{outer}$ = outer radius of washer and                                   |
|                                                                                                     | $r_{inner}$ – Inner radius of washer                                       |
|                                                                                                     |                                                                            |
|                                                                                                     |                                                                            |
| (b) $y=x^{2/3}$ , $y=0$ , $x=-2$ , $x=3$ about the line                                             | Shell Method                                                               |
| y=-1                                                                                                | b                                                                          |
|                                                                                                     | $V = 2\pi \int_{a}^{b} r h dx$ (or dy) where                               |
|                                                                                                     | r = radius of shell and                                                    |
|                                                                                                     | h = height of shell                                                        |
|                                                                                                     |                                                                            |
|                                                                                                     |                                                                            |
| (c) $y=x^{2/3}$ , $y=0$ , $x=-2$ , $x=3$ about the line $y=-4$                                      | When to use dx or dy?                                                      |
|                                                                                                     | rotate about rotate about<br>horizontal line vertical line                 |
|                                                                                                     | dx dy washer/disk                                                          |
|                                                                                                     | dy dx shell                                                                |
|                                                                                                     |                                                                            |
|                                                                                                     |                                                                            |
|                                                                                                     |                                                                            |
|                                                                                                     |                                                                            |
|                                                                                                     |                                                                            |

# 5.2 & 5.3 (continued)

| Ex 2: Set up the volume integrals for the region<br>bounded by the curves<br>$x^2+y^2=4$ , $y=0$ , $x=0$ , $x=1$ | Ex 3: Set up the volume integrals for the region<br>bounded by the curves<br>$y=-2x^2+4x+3$ , $y=3$ |
|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
|                                                                                                                  |                                                                                                     |
| (a) rotated about the x-axis.                                                                                    | (a) rotated about the y-axis.                                                                       |
| (b) rotated about the y-axis.                                                                                    | (b) rotated about the x-axis.                                                                       |
| (c) rotated about the line x = 2.                                                                                | (c) rotated about the line y = -1.                                                                  |

# 5.2 & 5.3 (continued)

Ex 4: (#19 from book) A round hole of radius a is drilled through the center of a solid sphere of radius b (such that b > a). Find the volume of the remaining solid.

| Ex 1: Find the length of the indicated curve.                                                                  | L = arc length                                                                    |  |
|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|
| (a) $30x y^3 - y^8 = 15$ between $y=1$ and $y=3$                                                               |                                                                                   |  |
|                                                                                                                | In general,                                                                       |  |
|                                                                                                                | $L = \int ds$ where ds = a little bit of arc length                               |  |
|                                                                                                                | a                                                                                 |  |
|                                                                                                                | (1) $ds = \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$                             |  |
|                                                                                                                | $\begin{pmatrix} 1 \end{pmatrix}  us = \sqrt{1 + \left(\frac{dx}{dx}\right)}  ux$ |  |
|                                                                                                                | OR                                                                                |  |
|                                                                                                                | (2) $ds = \sqrt{1 + \left(\frac{dx}{dy}\right)^2} dy$                             |  |
|                                                                                                                | OR                                                                                |  |
|                                                                                                                | (3) $ds = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$  |  |
|                                                                                                                | $\langle (ai) \rangle \langle ai \rangle$                                         |  |
|                                                                                                                |                                                                                   |  |
|                                                                                                                |                                                                                   |  |
|                                                                                                                |                                                                                   |  |
|                                                                                                                |                                                                                   |  |
|                                                                                                                |                                                                                   |  |
|                                                                                                                |                                                                                   |  |
| (b) $x=a\cos t + at\sin t$<br>and $y=a\sin t - at\cos t$ , $t \in [-1, 1]$<br>(Assume <i>a</i> is a constant.) |                                                                                   |  |
|                                                                                                                |                                                                                   |  |
|                                                                                                                |                                                                                   |  |
|                                                                                                                |                                                                                   |  |
|                                                                                                                |                                                                                   |  |
|                                                                                                                |                                                                                   |  |
|                                                                                                                |                                                                                   |  |
|                                                                                                                |                                                                                   |  |
|                                                                                                                |                                                                                   |  |
|                                                                                                                |                                                                                   |  |
|                                                                                                                |                                                                                   |  |
|                                                                                                                |                                                                                   |  |

# 5.4 (continued)

| Ex 2: Find the surface area of the surface created                                                                                                             | Surface Area:                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| when you revolve $y = \frac{x^{\circ} + 2}{8x^2}$ , $x \in [1, 3]$ about                                                                                       | The surface area of the surface created by rotating |
| the x-axis.                                                                                                                                                    | the curve $y=f(x)$ about the x-axis is given by     |
|                                                                                                                                                                | $SA = \int_{a} 2\pi f(x) ds$                        |
|                                                                                                                                                                | where $ds = \sqrt{1 + (f'(x))^2} dx$ .              |
|                                                                                                                                                                |                                                     |
|                                                                                                                                                                |                                                     |
|                                                                                                                                                                |                                                     |
|                                                                                                                                                                |                                                     |
|                                                                                                                                                                |                                                     |
|                                                                                                                                                                |                                                     |
|                                                                                                                                                                |                                                     |
| Ex 3: Show that the area of the part of the surface<br>of a sphere of radius <i>a</i> between two parallel<br>planes h units apart ( $h < 2a$ ) is $2\pi ah$ . |                                                     |

## 5.5 Work

| Ex 1: For a certain type of nonlinear spring, the force required to     | Work:                            |
|-------------------------------------------------------------------------|----------------------------------|
| keep the spring stretched a distance x is given by $F(x) = k x^{4/3}$ . | <i>k</i>                         |
| If the force required to keep it stretched 8 inches is 2 pounds, how    | $W = \int_{0}^{b} F(x) dx$ where |
| much work is done in stretching this spring 27 inches?                  |                                  |
|                                                                         | F(x) is a force.                 |
|                                                                         |                                  |
|                                                                         |                                  |
|                                                                         |                                  |
|                                                                         |                                  |
|                                                                         |                                  |
|                                                                         |                                  |
|                                                                         |                                  |
|                                                                         |                                  |
|                                                                         |                                  |
|                                                                         |                                  |
| Ex 2: A 10-pound monkey hangs at the end of a 20-foot chain that        |                                  |
| weighs 0.5 pound/foot. How much work does it do in climbing the         |                                  |
| chain to the top? (Assume the end of the chain is attached to the       |                                  |
| monkey.)                                                                |                                  |
|                                                                         |                                  |
|                                                                         |                                  |
|                                                                         |                                  |
|                                                                         |                                  |
|                                                                         |                                  |
|                                                                         |                                  |
|                                                                         |                                  |
|                                                                         |                                  |
|                                                                         |                                  |
|                                                                         |                                  |
|                                                                         |                                  |
|                                                                         |                                  |
|                                                                         |                                  |
|                                                                         |                                  |
|                                                                         |                                  |
|                                                                         |                                  |
|                                                                         |                                  |

## 5.6 Moments and Center of Mass

| Ex 1: Find the centroid of the region bounded by the given curves. | mass $m = \delta \int_{a}^{b} (f(x) - g(x)) dx$                                   |
|--------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| (a) $y = x^2$ , $y = 2x + 3$                                       | $M_{y} = \delta \int_{a}^{b} x(f(x) - g(x)) dx$                                   |
|                                                                    | $M_{x} = \frac{\delta}{2} \int_{a}^{b} \left( (f(x))^{2} - (g(x))^{2} \right) dx$ |
|                                                                    | $\overline{x} = \frac{M_y}{m}, \ \overline{y} = \frac{M_x}{m} \text{ where}$      |
| 2                                                                  | for a homogeneous lamina                                                          |
| (b) $y = x^2$ , $y = 4x$                                           |                                                                                   |
|                                                                    |                                                                                   |
|                                                                    |                                                                                   |
|                                                                    |                                                                                   |
|                                                                    |                                                                                   |