4.1 Introduction to Area

Ex 1: Write in sigma (summation) notation. (a) $a_1-a_2+a_3-a_4+a_5$	(b) $\frac{1}{3} + \frac{2}{4} + \frac{3}{5} + \frac{4}{6} + \frac{5}{7} + \dots$
Ex 2: Find the sum (using the special sum formula(s)) $\sum_{k=1}^{20} (2k^2 - 3)$	Special Sum Formulas: 1. $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ 2. $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$ 3. $\sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2$

4.1 (continued)

Ex 3: Find the sum (using the special sum formula(s))

 $\sum_{j=1}^n (3j+1)^2$

4.2 Definite Integral

Ex 1: Using the definition of the definite integral,	(One) Definition of the definite integral:
calculate $\int_{0}^{1} (2x+5) dx$.	$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x$ If we choose right-hand x-values for each rectangle, of uniform width, then we have the following formulas. b-a
	$\Delta x = \frac{b-a}{n}$ and $x_i = a + i(\Delta x)$
	f(x) y $+$ b x

4.2 (continued)

Ex 2: Using the definition of the definite integral, calculate $\int_{-1}^{2} (3x^2+4) dx$.

4.3 First Fundamental Theorem of Calculus

4.4 Second Fundamental Theorem of Calculus

Ex 1: Evaluate the following integrals, using the Second FTC. (a) $\int_{1}^{3} \frac{x^4 - 5}{x^2} dx$	Second Fundamental Theorem of Calculus: If $f(x)$ is continuous on $[a, b]$, and $F(x)$ is any antiderivative, then $\int_{a}^{b} f(x) dx = F(b) - F(a) .$
(b) $\int_{0}^{1} (x^{4/3} - 2x^{1/3}) dx$	The definite integral is also a linear operator. You list the two properties it must meet then. (a) $\int_{a}^{b} (f(x)+g(x))dx$ =AND (b) $\int_{a}^{b} k f(x)dx$ =for any constant k.

4.4 (continued)

Ex 2: Evaluate the following integrals (some are indefinite, and others are definite integrals).

Ex 2: Evaluate the following integrals (some are i	
(a) $\int x^3 \cos(x^4 + 1) dx$	(b) $\int x^{-3} \sec(x^{-2}-3) \tan(x^{-2}-3) \sqrt[6]{\sec(x^{-2}-3)} dx$
2 3.2	
(c) $\int_{1}^{2} \frac{x^{3}+2}{\sqrt{x^{4}+8x}} dx$	(d) $\int_{1}^{4} \frac{(\sqrt{x}-1)^{3}}{\sqrt{x}} dx$
$\int_{1}^{3} \sqrt{x^4 + 8x}$	$\int_{1}^{1} \sqrt{x}$

4.5 Mean Value Theorem for Integrals

Ex 1: Find the average value of the function $f(x) = \sin^2 x \cos x$ on the interval $[0, \frac{\pi}{2}]$.	<u>MVTI</u> : If $f(x)$ is continuous on [a, b], then there is some $c \in (a, b)$ such that $f(c) = \frac{1}{b-a} \int_{a}^{b} f(t) dt$. In other words, there is some x-value in (a, b) (which we call c) such that the area of the rectangle with height $f(c)$ and width of $(b - a)$ is the same as the area under the curve from a to b . f(c) is called the average value of the function on that interval. And, c is the x-value where that average value occurs.
Ex 2: Find all values of c guaranteed by the MVTI for $f(x)=x^3$ on the interval [0, 2].	y = f(x)

4.5 (continued)

Ex 2: Use symmetry and geometrical reasoning to help evaluate the following definite integrals.

Ex 2: Use symmetry and geometrical reasoning	to help evaluate the following definite integrals.
(a) $\int_{\frac{-\pi}{4}}^{\frac{\pi}{4}} (x \sin^3 x + x^2 \tan x) dx$	(b) $\int_{-3}^{3} (\sin x - \cos x)^2 dx$
4	