4.1 Introduction to Area

Ex 1: Write in sigma (summation) notation. (a) $a_{1}-a_{2}+a_{3}-a_{4}+a_{5}-\ldots$	(b) $\frac{1}{3}+\frac{2}{4}+\frac{3}{5}+\frac{4}{6}+\frac{5}{7}+\ldots$

4.1 (continued)

Ex 3: Find the sum (using the special sum formula(s))

$$
\sum_{j=1}^{n}(3 \mathrm{j}+1)^{2}
$$

4.2 Definite Integral

Ex 1: Using the definition of the definite integral,	
calculate $\int_{0}^{1}(2 \mathrm{x}+5) d x$.	(One) Definition of the definite integral: $\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x$ If we choose right-hand x-values for each rectangle, of uniform width, then we have the following formulas. $\Delta x=\frac{b-a}{n}$ and $x_{i}=a+i(\Delta x)$

4.2 (continued)

Ex 2: Using the definition of the definite integral, calculate $\int_{-1}^{2}\left(3 \mathrm{x}^{2}+4\right) d x$.

4.3 First Fundamental Theorem of Calculus

Ex 1: Find the formula for the accumulation function $A(x)$ to represent the area as shown.	First FTC: Given that $f(x)$ is continuous on the interval $[\mathrm{c}, \mathrm{d}]$ such that $a, x \in(c, d)$, $D_{x}\left(\int_{a}^{x} f(t) d t\right)=f(x) \quad$ where $a=$ any constant.
Ex 2: Find $G^{\prime}(x)$. (a) $G(x)=\int_{x}^{1} \sqrt{t^{2}+1} d t$	(b) $\quad G(x)=\int_{2}^{\tan x} e^{-t^{2}} d t$

4.3 (continued)

Ex 4: Given f is an odd function, g is an even function and $\int_{0}^{1}|f(x)| d x=\int_{0}^{1} g(x) d x=3$, use geometric reasoning to evaluate the following integrals.

(a) $\int_{-1}^{1} f(x) d x$	(b) $\int_{-1}^{1} g(x) d x$
(c) $\int_{-1}^{1}\|f(x)\| d x$	(d) $\int_{-1}^{1} f^{3}(x) g(x) d x$

4.4 Second Fundamental Theorem of Calculus

Ex 1: Evaluate the following integrals, using the Second FTC. (a) $\int_{1}^{3} \frac{x^{4}-5}{x^{2}} d x$	Second Fundamental Theorem of Calculus: If $f(x)$ is continuous on $[a, b]$, and $F(x)$ is any antiderivative, then $\int_{a}^{b} f(x) d x=F(b)-F(a)$
(b) $\int_{0}^{1}\left(x^{4 / 3}-2 x^{1 / 3}\right) d x$	The definite integral is also a linear operator. You list the two properties it must meet then. (a) $\int_{a}^{b}(f(x)+g(x)) d x$ $=$ \qquad AND (b) $\int_{a}^{b} k f(x) d x=$ \qquad for any constant k .

4.4 (continued)

Ex 2: Evaluate the following integrals (some are indefinite, and others are definite integrals).

| (a) $\int x^{3} \cos \left(x^{4}+1\right) d x$ | (b) $\int x^{-3} \sec \left(x^{-2}-3\right) \tan \left(x^{-2}-3\right) \sqrt[6]{\sec \left(x^{-2}-3\right)} d x$ |
| :--- | :--- | :--- |
| (c) $\int_{1}^{2} \frac{x^{3}+2}{\sqrt{x^{4}+8 x}} d x$ | |
| | |

4.5 Mean Value Theorem for Integrals

Ex 1: Find the average value of the function $f(x)=\sin ^{2} x \cos x$ on the interval $\left[0, \frac{\pi}{2}\right]$	MVTI: If $f(x)$ is continuous on [a, b], then there is some $c \in(a, b)$ such that $f(c)=\frac{1}{b-a} \int_{a}^{b} f(t) d t$ In other words, there is some x -value in (a, b) (which we call c) such that the area of the rectangle with height $f(c)$ and width of $(b-a)$ is the same as the area under the curve from a to b. $f(c)$ is called the average value of the function on that interval. And, c is the x -value where that average value occurs.
Ex 2: Find all values of c guaranteed by the MVTI for $f(x)=x^{3}$ on the interval $[0,2]$.	

4.5 (continued)

Ex 2: Use symmetry and geometrical reasoning to help evaluate the following definite integrals.

(a) $\int_{\frac{-\pi}{4}}^{\frac{\pi}{4}}\left(\|x\| \sin ^{3} x+x^{2} \tan x\right) d x$	(b) $\int_{-3}^{3}(\sin x-\cos x)^{2} d x$

