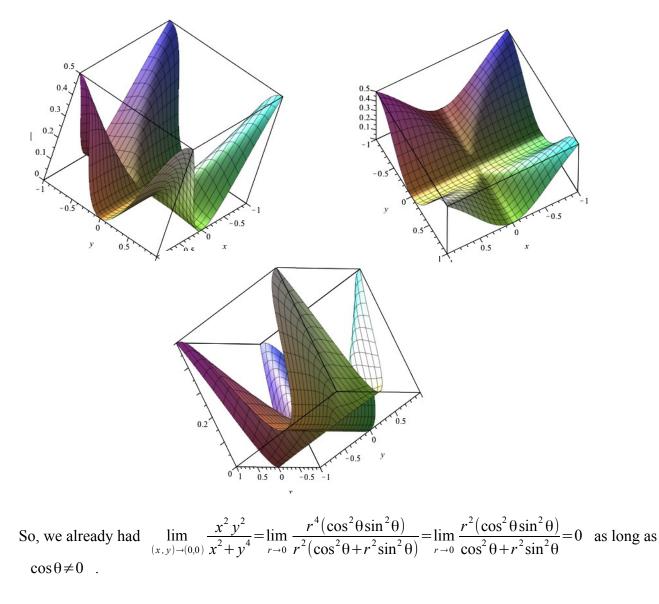
Graph of surface $z = \frac{x^2 y^2}{x^2 + y^4}$ (from several perspectives). You can see from the generated graph that it goes through the origin, so the point is well-defined there.



And, if $\cos\theta=0$, that's equivalent to $\theta=\frac{(2n+1)\pi}{2}$, $n\in\mathbb{Z}$. So, we can figure out what happens as $\theta \rightarrow \frac{(2n+1)\pi}{2}$. $\lim_{\theta \rightarrow \frac{(2n+1)\pi}{2}} \frac{r^2(\cos^2\theta \sin^2\theta)}{\cos^2\theta + r^2\sin^2\theta}$ is the 0/0 case, so we can use L'Hopital's Rule to get $=\lim_{\theta \rightarrow \frac{(2n+1)\pi}{2}} \frac{-2r^2\sin^2\theta + 2r^2\cos^2\theta}{-2 + 4r^2\sin^2\theta}$ (after simplifying) $= \frac{-2r^2}{-2 + 4r^2} = \frac{r^2}{1 - 2r^2}$ and as r goes to

zero here, we still get 0. This completes the proof that the limit exists and goes to 0.