Math2210 Midterm 3 (12.9, 13.1-13.4, 13.6-13.9)
uid number:
 Instructions:

Special number: \qquad
Spring, 2015 Instructor: Kelly MacArthur

- Please show all of your work as partial credit will be given where appropriate, and there may be no credit given for problems where there is no work shown.
- All answers should be completely simplified, unless otherwise stated.
- There are no calculators or any sort of electronics allowed on this exam. Make sure all cell phones are put away and out of sight. If you have a cell phone out at any point, for any reason, you will receive a zero on this exam.
- You will be given an opportunity to ask clarifying questions about the instructions at exactly 8:40 a.m. (for a couple minutes). The questions will be answered for the entire class. After that, no further questions will be allowed, for any reason.
- You must show us your U of U student ID card when finished with the exam.
- The exam key will be posted on Canvas by noon.
- You may ask for scratch paper. You may use NO other scratch paper. Please transfer all finished work onto the proper page in the test for us to grade there. We will not grade the work on the scratch page.
- You are allowed to use one 8.5×11 inch piece of paper with notes for your reference during the exam.
(This exam totals 70 points, not including the extra credit problem.)
STUDENT-PLEASE DO NOT WRITE BELOW THIS LINE. THIS TABLE IS TO BE USED FOR GRADING.

Problem	Score
1	
2	
3	
4	
5	
6	
EC (from	
Canvas)	

Raw total (out of 70):
Total Percentage:

1. True or False questions.
(a) (1pt) $\quad \int_{a}^{b} \int_{c}^{d} g(x, y) d x d y=\left(\int_{a}^{b} g(x, y) d x\right)\left(\int_{c}^{d} g(x, y) d y\right) \quad$ T or Fircle one)
(b) (1 pt) $\int_{a}^{b} \int_{c}^{d} g(x) h(y) d y d j=\left(\int_{a}^{b} g(x) d x\right)\left(\int_{c}^{d} h(y) d y\right) \quad$ or \quad F \quad (circle one)
(c) (1 pt) $\left\{(\rho, \phi, \theta): \phi=\frac{\pi}{2}\right\}=\{(r, \theta, z): z=0\}=\{(x, y, z): z=0\}$ (circle one) these areal different ways to represent x-plemen
(d) (2 pts) $\int_{0}^{2} \int_{-1}^{1} \sin \left(x^{3} y^{3}\right) d x d y=0$

T or F (circle one)

Explain your reasoning:
$\sin \left(x^{3} y^{3}\right)$ is an odd function in x $s_{1} \int_{-1}^{1} \sin \left(x^{3} y^{3}\right) d x=0$
(e) (2 pts) $\int_{-1}^{1} \int_{-1}^{1} e^{x^{2}+2 y^{2}} d y d x=4 \int_{0}^{1} \int_{0}^{1} e^{x^{2}+2 y^{2}} d y d x$

$$
\begin{aligned}
& \iint_{-1} e^{x^{2}+2 y^{2}} d y d x=4 \iint_{0} e^{x^{2}+2 y^{2}} d y d x \quad 1 \quad \text { or } \mathrm{F} \text { (circle one) } \\
& S=\int_{-1}^{1} \int_{-1}^{1} e^{x^{2}} e^{2 y^{2}} d y d x=\left(\int_{-1}^{1} e^{x^{2}} d x\right)\left(\int_{-1}^{1} e^{2 y^{2}} d y\right)=\left(2 \int_{-2}^{1} e^{x^{2}} d x\right)\left(2 \int_{a}^{1} e^{2 y^{2}} d y\right) \\
&=4 \int_{0}^{1} e^{x^{2}} e^{2 y^{2}} d x d y \text { since } e^{x^{2}} \text { and }
\end{aligned}
$$

Explain your reasoning: $\quad=4 \int_{0}^{1} \int_{0}^{1} e^{x^{2}} e^{2 y^{2}} d x d y \operatorname{since} e^{x^{2}}$ and since $e^{x^{2}}$ and
$e^{2 y^{2}}$ are both
(f) (2 pts) $\int_{-1}^{1} \int_{-1}^{1} e^{x+2 y} d y d x=4 \int_{0}^{1} \int_{0}^{1} e^{x+2 y} d y d x$ even functions T or F (circle one)

Explain your reasoning: because $e^{x+2 y}=e^{x} e^{2 y}$ and $e^{\text {another nor } e^{2 y} \text { are }}$ even functions
\qquad Explain your reasoning: because $e^{x+2 y}=e^{x e^{2 y} \text { and } e^{x} \text { nor } e^{2 y} \text { are }}$ lien functions
(g) (1 pt) $\int_{a}^{b} \int_{a}^{b} f(x) f(y) d x d y=\left(\int_{a}^{b} f(x) d x\right)^{2}$
(I) or F (circle one)

$$
G=\left(\int_{a}^{b} f(x) d x\right)\left(\int_{a}^{b} f(y) d y\right)=\left(\int_{a}^{b} f(x) d x\right)^{2}
$$

2. (10 pts) Setup the integral to determine the volume of the solid bounded by the plane $z=2$ and the surface $(x-1)^{2}+y^{2}=13-z$. (I want the solid that's above the plane and below the paraboloid.) (Do not evaluate.)

$$
\begin{aligned}
& 2=13-(x-1)^{2}-y^{2} \\
& (x-1)^{2}+y^{2}=11 \Rightarrow y=\sqrt[\pm]{11-(x-1)^{2}} \\
& -\sqrt{11-(x-1)^{2}} \leq y \leq \sqrt{11-(x-1)^{2}} \\
& 1-\sqrt{11} \leq x \leq 1+\sqrt{11}
\end{aligned}
$$

(Do NOT evaluate/compute the integral. Just set it up.)

$$
x=\sqrt{12-z-y^{2}}
$$

3. For the integral $V=\int_{0}^{3} \int_{3}^{12-y^{2}} \int_{0}^{\sqrt{12-z-y^{2}}} f(x, y, z) d x d z d y$, do the following. $\Rightarrow x^{2}+y^{2}=12-z$
(a) (10 pts) Rewrite it, changing the order of integration to $d z d y d x$.
(Hint: Drawing the solid will be very useful here.)

$$
\begin{aligned}
& 0 \leq x \leq \sqrt{12-z-y^{2}} \\
& 3 \leq z \leq 12-y^{2} \\
& 0 \leq y \leq 3
\end{aligned}
$$

$$
3 \leq z \leq 12-\left(x^{2}+y^{2}\right)
$$

$$
0 \leq y \leq \sqrt{9-x^{2}}
$$

$$
0 \leq x \leq 3
$$

$$
\begin{gathered}
\text { when } z=3: 3=12-y^{2} \\
z=12-y^{2} \Rightarrow 3=9 \\
y= \pm 3 \\
z=3 ; \quad 3=12-\left(x^{2}+y^{2}\right) \\
x^{2}+y^{2}=9
\end{gathered}
$$

here's
the solid we want

Answer (a): $\int_{0}^{3} \int_{0}^{\sqrt{4-x^{2}}} \int_{3}^{12-\left(x^{2}+y^{2}\right)} f(x, y, z) d z d y d x$
(b) (10 pts) Rewrite it using cylindrical coordinates.

$$
\begin{aligned}
& 3 \leq z \leq 12-r^{2} \\
& 0 \leq r \leq 3 \\
& 0 \leq \theta \leq \pi / 2
\end{aligned}
$$

$$
0 \leqslant r \leq 3
$$

$$
0 \leq \theta \leq \pi / 2
$$

Answer (b):

$$
\int_{0}^{\pi / 2} \int_{0}^{3} \int_{3}^{12-r^{2}} f(r \cos \theta, r \sin \theta, z) r d z d r d \theta
$$

4. (10 pts) Use a triple integral in spherical coordinates to find the volume of the solid inside the sphere $x^{2}+y^{2}+z^{2}=25$ and outside the cone $z=\sqrt{3\left(x^{2}+y^{2}\right)}$ and above the $x y$ plane.

Sphere: $p=5$
care: $l=\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)=\tan ^{-1}\left(\frac{1 / 2}{\sqrt{3} / 2}\right)$

$$
\Rightarrow \varphi=\frac{\pi}{6}
$$

$$
\begin{aligned}
& 0 \leq \rho \leq 5 \\
& \frac{\pi}{6} \leq \varphi \leq \frac{\pi}{2} \\
& 0 \leq \theta \leq 2 \pi \\
& V=\int_{0}^{2 \pi} \int_{\pi / 6}^{\pi / 2} \int_{0}^{5} \rho^{2} \sin \varphi d \rho d \varphi d \theta \\
& = \\
& 2 \pi\left(\int_{\pi / 6}^{\pi / 2} \sin \varphi d \varphi\right)\left(\left.\frac{\rho^{3}}{3}\right|_{0} ^{5}\right) \\
& = \\
& \quad 2 \pi\left(\frac{125}{3}\right)\left(-\left.\cos \varphi\right|_{\pi / 6} ^{\pi / 2}\right)=\frac{250 \pi}{3}\left(-\cos \frac{\pi}{2}-\left(-\cos \frac{\pi}{6}\right)\right) \\
&
\end{aligned}
$$

Answer: \qquad

$$
\frac{125 \pi \sqrt{3}}{3}
$$

5. (10 pts) Find the surface area of the surface $z=x^{2}+y^{2}$ that is cut by the plane $z=4$. (Note: Pay attention. Don't give me volume. Give me surface area!)

$$
\begin{aligned}
& f(x, y)=x^{2}+y^{2} \quad f_{x}=2 x \quad f_{y}=2 y \\
& \sqrt{f_{x}^{2}+f_{y}^{2}+1}=\sqrt{4 x^{2}+4 y^{2}+1}
\end{aligned}
$$

$$
S A=\iint_{S} \sqrt{4 x^{2}+4 y^{2}+1} d y d x
$$

5 :

$$
x^{2}+y^{2}=4
$$

switch to polar cords

$$
\begin{aligned}
& 0 \leq r \leq 2 \\
& 0 \leq \theta \leq 2 \pi \\
& \Rightarrow S A= \int_{0}^{2 \pi} \int_{0}^{2} \sqrt{4 r^{2}+1} r d r d \theta \\
& u=4 r^{2}+1 \\
& d u=8 r d r \\
& \frac{1}{8} d u=r d r \\
&=\frac{2 \pi}{8} \int_{1}^{17} \sqrt{u} d u \\
& r=0, u=1 \\
& r=2, u=4(u)+1=17
\end{aligned} \quad=\left.\frac{\pi}{4}\left(\frac{2}{3} u^{3 / 2}\right)\right|_{1} ^{17}, ~=\frac{\pi}{6}(17 \sqrt{17}-1)
$$

6. (10 pts) A right circular cylindrical can is to hold 4π cubic inches of frozen orange juice. The cost per square inch of constructing the metal top and bottom is 10 cents and the cost per square inch of constructing the cardboard side is 5 cents. What are the dimensions of the least expensive can? How do you know it's the minimum cost and not the maximum cost? (Hint: This is the Lagrange multiplier problem.
Ask yourself: (1) What are you trying to minimize? Find a function for that. That's your f. (2) What is the constraint that you must satisfy. Write an equation for that. That's your g. You should get two functions in terms of r and h. .)

$$
\begin{aligned}
& V=4 \pi i^{3} \quad(\text { fixed }) \\
& 4 \pi=\pi r^{2} h \quad \Leftrightarrow \quad 4=r^{2} \\
& \text { ont fin (i ncents) } \\
& C(r, h)=10\left(2 \pi r^{2}\right)+5(2 \pi h) \\
& =20 \pi r^{2}+10 \pi h
\end{aligned}
$$

$$
\begin{aligned}
& (\text { fixed) } \\
& \Leftrightarrow \quad 4=r^{2} h \quad\left(m y " g(r, h)^{\prime \prime}\right)
\end{aligned}
$$

we want to

$$
m y^{"} \xrightarrow[f(r, h)]{ }
$$ minimize C.

\[

\]

(1) $40 \pi r+10 \pi h=2 \lambda r h$
(2)

$$
10 \pi r=\lambda r^{2}
$$

$$
\begin{gathered}
40 \pi r+10 \pi h=2\left(\frac{10 \pi}{r}\right) \pi h \\
20 \pi r+5 \pi h=10 \pi h \\
4 r+h=2 h \\
4 r=h
\end{gathered}
$$

(3) $4=r^{2} h$

$$
10 \pi=\lambda r
$$ (since $r>0$)

$$
\lambda=\frac{10 \pi}{r}
$$

$$
\begin{gathered}
\Rightarrow h=4(1)=4 \\
\lambda=\frac{10 \pi}{1}=10 \pi \\
\Rightarrow c(1,4)=20 \pi(1) \\
\\
\\
=60 \pi
\end{gathered}
$$

How do I know it's min (not max)? try: $h=1$, then $4=r^{2}(1) \Rightarrow r=2$

$$
\begin{aligned}
& h=1 \text {, then } \\
& C(2,1)=20 \pi\left(2^{2}\right)+10 \pi(2)(1)=100 \pi \\
& \Rightarrow \text { we found min. }
\end{aligned}
$$ $100 \pi>60 \pi \Rightarrow$ we found min . C-value

$$
\text { Answer: dimensions: } \begin{aligned}
& r=1 \mathrm{in} \\
& h=4 \text { in }
\end{aligned}
$$

