Math1210 Midterm 3 Extra Review Key

1. Evaluate
(a) $\int\left(2 \mathrm{x}^{4}\left(x^{5}-1\right)^{-2 / 3}\right) d x=\frac{6}{5}\left(x^{5}-1\right)^{1 / 3}+C$
(b) $\int\left(3 \sqrt[5]{t}-\frac{4}{t^{2}}+2 \mathrm{t}^{3}-\sin t+10\right) d t=\frac{5}{2} t^{6 / 5}+\frac{4}{t}+\frac{1}{2} t^{4}+\cos t+10 \mathrm{t}+C$
(c) $\int \frac{(2 \mathrm{x}+3)^{2}}{\sqrt{x}} d x=\frac{8}{5} x^{5 / 2}+8 x^{3 / 2}+18 \sqrt{x}+C$
(d) $\int\left(4 x^{5}-\cos x+\sqrt[3]{x^{2}}\right) d x=\frac{2}{3} x^{6}-\sin x+\frac{3}{5} x^{5 / 3}+C$
(e) $\int \frac{4 \mathrm{x}}{\sqrt{x^{2}-3}} d x=4 \sqrt{x^{2}-3}+C$
(f) $\int\left(2 x^{3} \sqrt{2 \mathrm{x}^{4}+3}\right) d x=\frac{1}{6}\left(2 \mathrm{x}^{4}+3\right)^{3 / 2}+C$
2. Solve the following differential equation.

$$
\frac{d y}{d x}=\frac{4 \mathrm{x}^{3}+\frac{1}{x^{2}}}{3 \mathrm{y}^{4}} \text { such that } \quad y=-1 \text { when } x=1
$$

Answer: $\quad y=\sqrt[5]{\frac{5}{3} x^{4}-\frac{5}{3 \mathrm{x}}-1}$
3. For the function $f(x)=\frac{3 x-2}{x-5}$ on the closed interval [1, 4], decide whether or not the Mean Value Theorem for Derivatives applies. If it does, find all possible values of c. If not, then state the reason.

Answer: Yes MVT applies because the function is continuous and differentiable on [1, 4].
$\mathrm{c}=3$
4. Solve $x^{4}-53=0$ using Newton's Method, accurate to four decimal places.

Use $\quad x_{n+1}=x_{n}-\frac{x_{n}^{4}-53}{4 \mathrm{x}_{n}^{3}}=\frac{4 x_{n}^{4}-x_{n}^{4}+53}{4 \mathrm{x}_{n}^{3}}=\frac{3 \mathrm{x}_{n}^{4}+53}{4 \mathrm{x}_{n}^{3}}$. If you start with $x_{1}=2.5$ (why? Because I
know that $2^{4}=16$ and $3^{4}=81$ and 53 is somewhere between 16 and 81), then you'll get these values out: $2.5,2.723,2.698505497,2.69816794$, and 2.698167876 . So the answer is approximately 2.6982 to four decimal places.
5. For $f(x)=3 \mathrm{x}^{2}+4 \mathrm{x}-1$ on $[0,2]$, decide whether or not the Mean Value Theorem (for Derivatives) applies. If it does, find all possible values of c . If not, then state the reason.

Answer: Yes MVT applies because the function is continuous and differentiable everywhere. $\mathrm{c}=1$
6. Solve this equation using (A) the Bisection Method and (B) Newton's Method to three decimal places.

$$
f(x)=2 \mathrm{x}^{3}-4 \mathrm{x}+1=0 \quad \text { On }[0,1]
$$

Answer: should get (A) the midpoint of the interval from 0.2578125 to 0.26171875 which would be 0.259765625 which is about 0.2598 and (B) 0.2586
7. Solve this differential equation. $\frac{d y}{d x}=\frac{x+3 \mathrm{x}^{2}}{y^{2}}$ and $y=2$ when $x=0$

Answer: $\quad y=\sqrt[3]{\frac{3}{2} x^{2}+3 x^{3}+8}$
8. Evaluate $\sum_{i=1}^{10}[(i-2)(2 i+5)]=725$
9. Evaluate the definite integral using the definition (the tedious way).

$$
\begin{aligned}
& \qquad \int_{-1}^{2}(5 \mathrm{x}-1) d x . \text { (Note: Here is the definition. } \quad \int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x \text {) } \\
& \text { Answer: } \Delta x=\frac{3}{n}, \quad x_{i}=-1+\frac{3 \mathrm{i}}{n}, \quad \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=\sum_{i=1}^{n}\left(\frac{-18}{n}+\frac{45 \mathrm{i}}{n^{2}}\right), \quad \int_{-1}^{2}(5 \mathrm{x}-1) d x=4.5
\end{aligned}
$$

10. Evaluate $\sum_{i=1}^{10}[(3 \mathrm{i}-4)(i+5)]=1640$
11. Evaluate the definite integral using the definition (the tedious way). $\int_{0}^{3}\left(4 \mathrm{x}^{2}-1\right) d x$. Answer: $\quad \Delta x=\frac{3}{n}, x_{i}=\frac{3 \mathrm{i}}{n}, \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=\sum_{i=1}^{n}\left(\frac{108 \mathrm{i}^{2}}{n^{3}}-\frac{3}{n}\right), \int_{0}^{3}\left(4 \mathrm{x}^{2}-1\right) d x=33$
