Math1210 Midterm 3 Extra Review Key

1. Evaluate

(a)
$$\int (2x^4(x^5-1)^{-2/3})dx = \frac{6}{5}(x^5-1)^{1/3} + C$$

(b)
$$\int \left(3\sqrt[5]{t} - \frac{4}{t^2} + 2t^3 - \sin t + 10\right) dt = \frac{5}{2}t^{6/5} + \frac{4}{t} + \frac{1}{2}t^4 + \cos t + 10t + C$$

(c)
$$\int \frac{(2x+3)^2}{\sqrt{x}} dx = \frac{8}{5} x^{5/2} + 8x^{3/2} + 18\sqrt{x} + C$$

(d)
$$\int (4x^5 - \cos x + \sqrt[3]{x^2}) dx = \frac{2}{3}x^6 - \sin x + \frac{3}{5}x^{5/3} + C$$

(e)
$$\int \frac{4x}{\sqrt{x^2-3}} dx = 4\sqrt{x^2-3} + C$$

(f)
$$\int (2x^3\sqrt{2x^4+3}) dx = \frac{1}{6}(2x^4+3)^{3/2} + C$$

2. Solve the following differential equation.

$$\frac{dy}{dx} = \frac{4x^3 + \frac{1}{x^2}}{3y^4} \quad \text{such that} \quad y = -1 \quad \text{when} \quad x = 1$$
Answer: $y = \sqrt[5]{\frac{5}{3}x^4 - \frac{5}{3x} - 1}$

3. For the function $f(x) = \frac{3x-2}{x-5}$ on the closed interval [1, 4], decide whether or not the Mean Value

Theorem for Derivatives applies. If it does, find all possible values of c. If not, then state the reason.

Answer: Yes MVT applies because the function is continuous and differentiable on [1, 4].

c = 3

4. Solve $x^4 - 53 = 0$ using Newton's Method, accurate to four decimal places.

Use
$$x_{n+1} = x_n - \frac{x_n^4 - 53}{4x_n^3} = \frac{4x_n^4 - x_n^4 + 53}{4x_n^3} = \frac{3x_n^4 + 53}{4x_n^3}$$
. If you start with $x_1 = 2.5$ (why? Because I

know that 2^4 =16 and 3^4 =81 and 53 is somewhere between 16 and 81), then you'll get these values out: 2.5, 2.723, 2.698505497, 2.69816794, and 2.698167876. So the answer is approximately 2.6982 to four decimal places.

5. For $f(x)=3x^2+4x-1$ on [0, 2], decide whether or not the Mean Value Theorem (for Derivatives) applies. If it does, find all possible values of c. If not, then state the reason.

Answer: Yes MVT applies because the function is continuous and differentiable everywhere. c = 1

6. Solve this equation using (A) the Bisection Method <u>and</u> (B) Newton's Method to three decimal places. $f(x) = 2x^3 - 4x + 1 = 0$ On [0, 1]

Answer: should get (A) the midpoint of the interval from 0.2578125 to 0.26171875 which would be 0.259765625 which is about 0.2598 and (B) 0.2586

7. Solve this differential equation.
$$\frac{dy}{dx} = \frac{x + 3x^2}{y^2}$$
 and $y = 2$ when $x = 0$

Answer:
$$y = \sqrt[3]{\frac{3}{2}x^2 + 3x^3 + 8}$$

8. Evaluate
$$\sum_{i=1}^{10} [(i-2)(2i+5)] = 725$$

9. Evaluate the definite integral using the definition (the tedious way).
$$\int_{-1}^{2} (5x-1) dx$$
. (Note: Here is the definition.
$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x$$
)

Answer:
$$\Delta x = \frac{3}{n}$$
, $x_i = -1 + \frac{3i}{n}$, $\sum_{i=1}^{n} f(x_i) \Delta x = \sum_{i=1}^{n} \left(\frac{-18}{n} + \frac{45i}{n^2} \right)$, $\int_{-1}^{2} (5x-1) dx = 4.5$

10. Evaluate
$$\sum_{i=1}^{10} [(3i-4)(i+5)] = 1640$$

11. Evaluate the definite integral using the definition (the tedious way).
$$\int_{0}^{3} (4x^{2}-1) dx$$
.

Answer:
$$\Delta x = \frac{3}{n}$$
, $x_i = \frac{3i}{n}$, $\sum_{i=1}^{n} f(x_i) \Delta x = \sum_{i=1}^{n} \left(\frac{108i^2}{n^3} - \frac{3}{n} \right)$, $\int_{0}^{3} (4x^2 - 1) dx = 33$