Visualizing the Linear Programming Problems from 7.6 in 3-d.

When thinking about the problems from 7.6, I find it useful to have a 3-d picture in my head. In my picture, I see the x-y plane below (as if it were parallel to the earth) and another plane above it. This plane is not parallel with the earth. Instead it varies in height at different places and the height gives the z -value of the (x, y) point below it.

This is probably easiest to see as a problem with pictures:
Suppose we have the region:

$$
\begin{gathered}
0 \leq y \\
x \leq 4 \\
y \leq \frac{3}{2} x
\end{gathered}
$$

Graphically, it looks like this:

It has corner points $(0,0),(4,6)$, and $(4,0)$.
Now we consider the function: $z=\frac{3}{4} x-\frac{1}{2} y$. Z is a function of two variables, x and y . It is linear because there both the x and y terms are first degree polynomials. This means that it is a plane. I imagine it a bit like a "tent" or "canopy" above the bounded region. The goal of this problem is to find where the canopy is lowest and highest.

On the next page, you can see a 3-d picture of this problem.

This link lets you model linear programming problems in 3-d. It took me a few minutes to figure out how to change the equations, but once I got the hang of it, I really appreciated "seeing" the picture behind the problem.
http://www.teacherlink.org/content/math/interactive/flash/linearprogramming/linearprogrammin g.html

