Solutions for practice in 5.5 Applications of determinants.

1. This is a good time to demonstrate the many ways we have found in this chapter to solve a set of linear equations. Given this system:

$$
\begin{aligned}
& 2 x-4 y=18 \\
& 3 x+y=9
\end{aligned}
$$

$$
\begin{aligned}
& \text { a. Solve using Gaussian Elimination. } \\
& {\left[\begin{array}{cc|c}
2 & -4 & 18 \\
3 & 1 & 9
\end{array}\right] \sim\left[\begin{array}{cc|c}
1 & -2 & 9 \\
3 & 1 & 9
\end{array}\right] \sim\left[\begin{array}{cc|c}
1 & -2 & 9 \\
0 & 7 & -18
\end{array}\right] \sim} \\
& \sim\left[\begin{array}{cc|c}
1 & -2 & 9 \\
0 & 1 & -18 / 7
\end{array}\right] \sim\left[\begin{array}{cc|c}
1 & 0 & 27 / 7 \\
0 & 1 & -18 / 7
\end{array}\right]
\end{aligned}
$$

b. Solve by finding the inverse of the matrix of coefficients and using matrix algebra.

$$
\begin{aligned}
& {\left[\begin{array}{cc|cc}
2 & -4 & 1 & 0 \\
3 & 1 & 0 & 1
\end{array}\right] \sim\left[\begin{array}{cc|cc}
1 & -2 & 1 / 2 & 0 \\
3 & 1 & 0 & 1
\end{array}\right] \sim\left[\begin{array}{cc|cc}
1 & -2 & \frac{1}{2} & 0 \\
0 & 7 & -3 / 2 & 1
\end{array}\right] \sim} \\
& \sim\left[\begin{array}{cc|cc}
1 & -2 & 1 / 2 & 0 \\
0 & 1 & -3 / 14 & 1 / 7
\end{array}\right] \sim\left[\begin{array}{ll|ll}
1 & 0 & 1 / 14 & 2 / 7 \\
0 & 1 & -3 / 14 & 1 / 7
\end{array}\right] \\
& {\left[\begin{array}{cc}
\frac{1}{14} & \frac{2}{7} \\
-\frac{3}{14} & \frac{1}{x}
\end{array}\right]\left[\begin{array}{c}
18 \\
9
\end{array}\right]=\left[\begin{array}{l}
\frac{1}{4 x} \cdot 18+\frac{2}{7} \cdot 9 \\
-\frac{3}{14 x_{7}} \cdot 18+\frac{1}{7} \cdot 9
\end{array}\right]=\left[\begin{array}{c}
\frac{27}{7} \\
-\frac{18}{7}
\end{array}\right] \quad \begin{array}{l}
x=\frac{27}{7} \\
y=-\frac{18}{7}
\end{array}}
\end{aligned}
$$

c. Solve using Cramer's rule: $2 \mathrm{x}-4 \mathrm{y}=18$

$$
\begin{aligned}
& x=\frac{D_{y}}{D}=\frac{\left|\begin{array}{cc}
18 & -4 \\
9 & 1
\end{array}\right|}{\left|\begin{array}{cc}
2 & -4 \\
3 & 1
\end{array}\right|}=\frac{18+4 \cdot 9}{2+4.3}=\frac{2(9+18)}{2(1+6)}=\frac{27}{7} \\
& y=\frac{D_{y}}{D}=\frac{\left|\begin{array}{cc}
2 & 18 \\
3 & 9
\end{array}\right|}{\left|\begin{array}{cc}
2 & -4 \\
3 & 1
\end{array}\right|}=\frac{18-3.18}{2.7}=\frac{-2.18}{2.7}=-\frac{18}{7}
\end{aligned}
$$

d. Solve by graphing

e. Solve by substitution

$$
\begin{aligned}
& 2 x-4 y=18 \\
& 3 x+y=9 \\
& x-2 y=9 \\
& 3 x+y=9
\end{aligned}
$$

$$
\begin{aligned}
& x=9+2 y \\
& x=9+2 \cdot \frac{-18}{7}= \\
& 3(9+2 y)+y=9 \\
& 27+6 y+y=9 \\
& =\frac{63-36}{7}=\frac{27}{7} \\
& 7 y=-18 \\
& y=-\frac{18}{7} \\
& x=\frac{27}{7}
\end{aligned}
$$

1. Use determinants to determine whether these three points are the vertices of a triangle. If they are, find the area of the triangle. If they are not, use determinants to write an equation of the line containing the three points.

$$
\begin{gathered}
\begin{array}{ccc}
A(-2,9) & B(2,1) & C(4,-3) \\
D=\left|\begin{array}{ccc}
-2 & 9 & 1 \\
2 & 1 & 1 \\
4 & -3 & 1
\end{array}\right|=-2-6+36-4-6-18= \\
-2 & 9 & 1 \\
2 & 1 & 1
\end{array}
\end{gathered}
$$

These points are collinear:

$$
\begin{gathered}
\left|\begin{array}{ccc}
-2 & 9 & 1 \\
2 & 1 & 1 \\
x & y & 1
\end{array}\right|=-2+2 y+9 x-x+2 y-18=0 \\
-2 \\
2
\end{gathered} 1 \quad 1 \quad \frac{8 x+4 y-20=0}{2} 1 \begin{gathered}
4 x+2 y-10=0
\end{gathered}
$$

