Solutions for practice in 7.5 Systems of Inequalities

Sketch the graph, label the vertices and shade in the appropriate area. These will be the constraints for 7.6 problems.

1. $x-2 y<-6$
$5 x-3 y>-9$

$$
\text { 2. } \begin{gathered}
x^{2}+y^{2} \leq 25 \\
4 x-3 y \leq 0
\end{gathered}
$$

$(1,0):$

$$
4 \cdot 1-3 \cdot 0=4>0
$$

We want the side that dols NOT include (1,0)
$(0,0): \quad 0+0=0<25$
everything in the interior of the

$$
\begin{aligned}
& x^{2}+y^{2}=25 \\
& 4 x-3 y=0 \Rightarrow 4 x=3 y \Rightarrow x=\frac{3 y}{4} \\
& \left(\frac{3 y}{4}\right)^{2}+y^{2}=25 \\
& \frac{9 y^{2}}{16}+y^{2}=25 \\
& 9 y^{2}+16 y^{2}=25.16 \\
& \begin{aligned}
25 y^{2} & =25 \cdot 16 \\
y^{2} & =16
\end{aligned} \\
& \begin{aligned}
25 y^{2} & =25 \cdot 16 \\
y^{2} & =16
\end{aligned} \\
& \text { circle a circle self }
\end{aligned}
$$

3. A toy shop produces widgets and gizmos. It takes 1 hour to make a widget and 4 hours to paint it. It takes 3 hours to make a gizmo and 1 hour to paint it. There are 15 hours available for construction and 16 for painting. The company must produce at least one of each toy.
x is number of widgets y is number of gizmos
well check $(0,0)$ for
the first two elutions
$y \geqslant 1$

$$
\begin{aligned}
& x+3 y \leq 15 \\
& (0,0): 0+0=0 \leq k \\
& 4 x+y \leq 16 \\
& (0,0): 0+0=0 \leq 16
\end{aligned}
$$

4. The concert (from lecture)

For a concert event, there are $\$ 30$ reserved seat tickets, and $\$ 20$ general admission tickets. There are 2000 reserved sets available and the fire regulations limit the number of paid ticket holders to 3000 . The promoter must take in $\$ 75,000$ in ticket sales. Find and graph the system of inequalities describing the different number of tickets that can be sold.
\# reserved tickets x

* general admission tickets y

$$
\begin{aligned}
& x \geqslant 0 \\
& y \geqslant 0 \\
& x \leqslant 2000 \\
& x+y \leqslant 3000 \\
& 30 x+20 y \geqslant 75000
\end{aligned}
$$

A.

$$
\begin{aligned}
& x=2000 \\
& \begin{array}{l}
3 x+2 y=7500 \\
6000+2 y=7500 \\
2 y=1500 \\
y=750 \\
(2000,750)
\end{array}
\end{aligned}
$$

わ

$$
\begin{aligned}
& x=2000 \\
& x+y=3000 \\
& y=1000 \\
& (2000,1000)
\end{aligned}
$$

$$
\left.c: \begin{array}{rl}
x+y & =3000 \\
3 x+2 y & =7500 \\
-y & =-1500
\end{array}\right\}+\begin{aligned}
& y=1500 \\
& x=1500 \\
& (1500,150
\end{aligned}
$$

