Practice for section 2.5 Zeros of Polynomial functions

1. Determine all roots (real and complex) and write in factored form each of these polynomials:
a. $3 x^{3}-4 x^{2}+8 x+8$

Notice that the usual suspects, $-1,0,1$, do not work. Our possibilities for the hots are

$$
\begin{aligned}
& \frac{b}{c} ; \quad b|8 ; c| 3 \text {, so: } \\
& \frac{1}{3},-\frac{1}{3}, \frac{2}{3},-\frac{2}{3}, \frac{4}{3}, \frac{-4}{3}, \frac{8}{3}, \frac{-8}{3} \\
& -\frac{1}{3}: 3\left(-\frac{1}{3}\right)^{3}-4 \cdot\left(-\frac{1}{3}\right)^{2}+8\left(-\frac{1}{3}\right)+8=-\frac{1}{9}-\frac{4}{9}-\frac{8}{3}+8>0 \\
& \frac{1}{3}: \quad 3 \cdot \frac{1}{3^{32}}-4 \cdot \frac{1}{3^{2}}+8 \frac{1}{3}+8=-3 \frac{1}{3^{2}}+8 \frac{1}{3}+8=\frac{7}{3}+8>0 \\
& -\frac{2}{3}: 3 \cdot\left(-\frac{2}{3}\right)^{3}-4\left(-\frac{2}{3}\right)^{2}+8\left(-\frac{2}{3}\right)+8=-\frac{8}{9}-\frac{16}{9}-\frac{16 \cdot 3}{3 \cdot 3}+8=\frac{-24-48}{9}+8= \\
& =-\frac{72}{9}+8=-8+8=0 \\
& \begin{array}{l}
3 x^{3}-4 x^{2}+8 x+8 \div\left(x+\frac{2}{3}\right)=3 x^{2}-6 x+12 \\
3 x^{3}+2 x^{2}
\end{array} \\
& \frac{-3 x^{3}+2 x^{2}}{-6 x^{2}+8 x} \\
& \begin{array}{r}
\begin{array}{r}
6 x^{2}-4 x \\
+6 x \\
12 x+8 \\
12 x+8
\end{array}
\end{array} \\
& 3 x^{3}-4 x^{2}+8 x+8=\left(x+\frac{2}{3}\right)\left(3 x^{2}-6 x+12\right) \\
& =3\left(x+\frac{2}{3}\right)\left(x^{2}-2 x+4\right)
\end{aligned}
$$

We find roots of $x^{2}-2 x+4$:

$$
\begin{aligned}
x_{1 / 2} & =\frac{2 \pm \sqrt{4-4 \cdot 4}}{2}=\frac{2 \pm \sqrt{4-16}}{2}=\frac{2 \pm \sqrt{-12}}{2}= \\
& =\frac{2 \pm i 2 \sqrt{3}}{2}=1 \pm i \sqrt{3}
\end{aligned}
$$

So roofs are: $-\frac{2}{3}, 1+i \sqrt{3}, 1-i \sqrt{3}$

$$
3 x^{3}-4 x^{2}+8 x+8=3\left(x+\frac{2}{3}\right)(x-1-i \sqrt{3})(x-1+i \sqrt{3})
$$

b. $12 z^{3}-4 z^{2}-27 \mathrm{z}+9$

This can be factored:

$$
\begin{aligned}
& 12 z^{3}-4 z^{2}-27 z+9=4 z^{2}(3 z-1)-9(3 z-1)= \\
& =(3 z-1)\left(4 z^{2}-9\right)=(3 z-1)(2 z-3)(2 z+3)
\end{aligned}
$$

so roots are

$$
\frac{1}{3}, \frac{3}{2},-\frac{3}{2}
$$

c. $5 \mathrm{x}^{4}+9 \mathrm{x}^{3}-7 \mathrm{x}^{2}-9 \mathrm{x}+2$

Lees check

$$
\begin{aligned}
& 1: \quad 5+9-7-9+2=7+9-7-9=0 \\
& -1: \quad=7+9(-1)-7(1)-9(-1)+2= \\
& =7-9-7+9=0
\end{aligned}
$$

So $(x-1)$ and $(x+1)$ are both factors of our polynomial

$$
\begin{aligned}
& 5 x^{4}+9 x^{3}-7 x^{2}-9 x+2=(x-1)(x+1) g(x) \\
& 5 x^{4}+9 x^{3}-7 x^{2}-9 x+2=\left(x^{2}-1\right) g(x)
\end{aligned}
$$

$$
\begin{aligned}
& 5 x^{4}+9 x^{3}-7 x^{2}-9 x+2 \div x^{2}-1=5 x^{2}+9 x-2 \\
& \frac{-5 x^{4} \mp 5 x^{2}}{9 x^{3}-2 x^{2}} \\
& \frac{-9 x^{3}+9 x}{0-2 x^{2}+2} \\
& -\frac{2 x^{2} \pm 2}{0} \\
& 5 x^{4}+9 x^{3}-7 x^{2}-9 x+2=(x-1)(x+1)\left(5 x^{2}+9 x-2\right)= \\
& =(x-1)(x+1)\left(5 x^{2}+10 x-x-2\right)= \\
& =(x-1)(x+1)(5 x(x+2)-(x+2))= \\
& =(x-1)(x+1)(x+2)(5 x-1)
\end{aligned}
$$

Roots are $-2,-1,1, \frac{1}{5}$
2. Write a polynomial function which has $-2 \mathrm{i}, 3$, and -1 as roots.

$$
\begin{aligned}
f(x) & =(x+1)(x-3)(x+2 i)(x-2 i)= \\
& =(x+1)(x-3)\left(x^{2}+4\right)
\end{aligned}
$$

This is only one of many possible answers. of $f(x)$ is also a fine solution, for any $k \in \mathbb{R} \backslash\{0\}$

