Practice for section 2.3 Synthetic division

1. Divide each of these using synthetic division if practical:

$$
\begin{array}{ll}
\left(x^{4}-3 x^{2}+x-2\right) \div\left(x^{2}+1\right) & \left(x^{5}-1\right) \div(x-1) \\
\left(3 x^{3}+x-1\right) \div(x+2) & \left(3 x^{3}+x-2\right) \div(x-2)
\end{array}
$$

a)

$$
\begin{aligned}
& \left(x^{4}-3 x^{2}+x-2\right) \div\left(x^{2}+1\right)=x^{2}-4 \\
& =\frac{x^{4}+x^{2}}{-4 x^{2}+x} \\
& \frac{-4 x^{2}-4}{x+4}-2 \\
& \frac{x+21}{x+2}
\end{aligned}
$$

$$
\text { b) }\left(x^{5}-1\right) \quad \div(x-1)=x^{4}+x^{3}+x^{2}+x+1
$$

$$
\frac{-x^{5}+x^{4}}{x^{4}}
$$

$$
-\frac{x^{x^{4}}+x^{3}}{x^{3}}
$$

You can use synthetic division here
c)

$$
3 x^{3}+x-1 \quad \div(x+2)=3 x^{2}-6 x+13
$$

$$
\begin{array}{ll}
\begin{array}{l}
3 x^{3}+6 x^{2} \\
-\quad-6 x^{2}+x
\end{array} & 13 x-1 \\
-6 x^{2}+12 x & -\frac{13 x+26}{1-27}
\end{array}
$$

You can use synthetic division here
d)

$$
3 x^{3}+x-2 \quad \div \quad(x-2)=3 x^{2}+6 x+13
$$

$$
\begin{aligned}
& -\frac{3 x^{3}+6 x^{2}}{6 x^{2}+x} \\
& -\frac{6 x^{2}+12 x}{13 x-2} \\
& -\frac{13 x-26}{24}
\end{aligned}
$$

You can use synthetic division here
2. For this function $\mathrm{f}(\mathrm{x})=x^{3}-7 x+6$

Divide by (x-2) find $f(2)=2^{3}-7 \cdot 2+6=8-14+6=0$

$$
\begin{array}{lr}
\begin{array}{ll}
x^{3}-7 x+6 & \div-2=x^{2}+2 x-3 \\
-\frac{x^{3}+2 x^{2}}{2 x^{2}-7 x} & f(x)=x^{3}-7 x+6=(x-2)\left(x^{2}+2 x-3\right) \\
-\frac{2 x^{2}-4 x}{-3 x+6} & f(2)=0
\end{array} & f
\end{array}
$$

$$
\frac{-3 x+6}{0}
$$

Divide by ($\mathrm{x}+1$)

$$
\text { find } f(-1)=(-1)^{3}-7(-1)+6=-1+7+6=12
$$

$$
\begin{array}{ll}
\begin{array}{l}
\frac{x^{3}-7 x+6}{-x^{3} \pm x^{2}} \\
\frac{-x^{2}-7 x}{ \pm x^{2}-x} \\
\frac{-6 x+6}{}
\end{array} & f(x)=x^{2}-x-6 \\
\frac{+6 x+6}{12} & f(-1)=12
\end{array}
$$

Divide by ($\mathrm{x}+2$)

$$
\begin{gathered}
f(-2)=(-2)^{3}-7(-2)+6=-8+14+6=12 \\
\div \quad x+2=x^{2}-2 x-3 \\
f(x)=x^{3}-7 x+6=(x+2)\left(x^{2}-2 x-3\right)+12 \\
f(-2)=12
\end{gathered}
$$

$$
x^{3}-7 x+6 \quad \div \quad x+2=x^{2}-2 x-3
$$

$$
\begin{aligned}
& \frac{x^{3}+2 x^{2}}{-2 x^{2}-7 x} \\
& \frac{-2 x^{2}+4 x}{-3 x+6} \\
& \frac{-3 x-6}{12}
\end{aligned}
$$

Divide by ($\mathrm{x}+3$)
-

$$
\text { find } f(-3)=(-3)^{3}-7 \cdot(-3)+6=-27+21+6=0
$$

$$
x^{3}-7 x+6 \quad \div \quad x+3=x^{2}-3 x+2
$$

$$
\frac{-x^{3}+3 x^{2}}{-3 x^{2}-7 x}
$$

$$
f(x)=x^{3}-7 x+6=(x+3)\left(x^{2}-3 x+2\right)
$$

$$
f(-3)=0
$$

$$
\begin{array}{r}
2 x+6 \\
-\quad 2 x+6 \\
\hline
\end{array}
$$

What can you conclude?
If $(x-k)$ divides a polynomial $f(x)$ then k is the root of $f \quad(f(k)=0)$ and we can write $f(x)=(x-k) g(x)$, where $g(x)$ is a polynomial whose degree is smaller than degree of f.

