Solutions for practice in 2.1 Quadratic functions and models

1. Write an equations of the quadratic function with a vertex at $(2,-3)$ which passes $y=a(x-2)^{2}-3$
$(4,1):$

$$
\begin{aligned}
& 1=a(4-2)^{2}-3 \\
& 1=a 4-3 \\
& 4=4 a \\
& 1=a
\end{aligned}
$$

$$
y=(x-2)^{2}-3
$$

2. Find the x and y intercepts and the vertex of this quadratic function: $y=x^{2}-2 x-3$.

$$
\begin{aligned}
y \text {-intercept } & x=0 \\
y & =0^{2}-20-3=-3 \\
x \text {-intercept } y & =0: \\
0 & =x^{2}-2 x-3 \\
0 & =x-3 x+x-3 \\
0 & =x(x-3)+(x-3) \\
0 & =(x-3)(x+1) \\
x & =3 \text { or } x=-1
\end{aligned}
$$

3. Find the x and y intercepts and the vertex of this quadratic function: $y=-2 x^{2}+8 x+2$
y-intercept $x=0: \quad y=2$
x-intercept $y=0: \begin{array}{r}-2 x^{2}+8 x+2=0 / \div(-2) \\ x^{2}-4 x-1=0\end{array}$

$$
\begin{aligned}
& x^{2}-4 x-1=0 \\
& x_{1 / 2}=\frac{4 \pm \sqrt{16+4}}{2}=\frac{4 \pm \sqrt{20}}{2}= \\
& =\frac{\frac{4 \pm 2 \sqrt{5}}{2}=\frac{2 \pm \sqrt{5}}{(2+\sqrt{5}, 0)}}{(2-\sqrt{5}, 0)}
\end{aligned}
$$

$$
\begin{array}{rl|l}
y & =-2 x^{2}+8 x+2= \\
& =-2\left(x^{2}-4 x\right)+2= & 2 \\
& (2+\sqrt{5}, 0) \\
(2-\sqrt{5}, 0)
\end{array}
$$

$$
=-2\left(x^{2}-4 x+4-4\right)+2
$$

$$
\begin{aligned}
& =-2\left(x^{2}-4 x+4\right)+8+2 \\
& =-9(x-2)^{2}+10
\end{aligned}
$$

$$
\begin{aligned}
& =-2\left(x^{2}-4 x+4\right)+8+2 \\
& =-2(x-2)^{2}+10
\end{aligned} \Rightarrow \operatorname{vertex}(2,10)
$$

4. If the height of a ball thrown up in the air is given by this equation:

$$
\mathrm{h}(\mathrm{t})=-16 \mathrm{t}^{2}+48 \mathrm{t}+160
$$

When does it hit the ground?
How high does it go?
When does it reach the highest point?

$$
\begin{aligned}
h(t) & =-16 t^{2}+48 t+160=-16\left(t^{2}-3 t\right)+160= \\
& =-16\left(t^{2}-3 t+\left(\frac{3}{2}\right)^{2}-\left(\frac{3}{2}\right)^{2}\right)+160= \\
& =-16\left(\left(t-\frac{3}{2}\right)^{2}-\frac{9}{4}\right)+160= \\
& =-16\left(t-\frac{3}{2}\right)^{2}-16 \cdot\left(-\frac{9}{4}\right)+160= \\
& =-16\left(t-\frac{3}{2}\right)^{2}+36+160= \\
& =-16\left(t-\frac{3}{2}\right)^{2}+196
\end{aligned}
$$

The vertex is at $\left(\frac{3}{2}, 196\right)$ so the highest point it gets to is at 196 meters, and it gets there after 1.5 seconds. To find when it hits the ground we have to find the roots:

$$
\begin{gathered}
-16 t^{2}+48 t+160=0 \\
t^{2}-3 t-10=0 \\
t^{2}-5 t+2 t-10=0 \\
t(t-5)+2(t-5)=0 \\
(t-5)(t+2)=0 \\
t=-2, t=5
\end{gathered}
$$

So the ball hits
the ground offer 5 seconds
5. If the area of a rectangle is 75 and the height is 10 more than the width, what are the dimensions of the rectangle?

$$
\begin{aligned}
& A=w \cdot h=75 \\
& w \cdot(10+w)=75 \\
& 10 w+w^{2}=75 \\
& w^{2}+10 w-75=0 \\
& (w+15)(w-5)=0 \\
& w-15, w=5 \\
& h=10+5=15
\end{aligned}
$$

Width is not negative

$$
\begin{aligned}
& w=5 \\
& h=15
\end{aligned}
$$

