Things you should already know

Every problem contains a link to the page containing its solution. Some items may have further explanation which you will find by clicking on the button next to it.

Evaluate these and place the letter corresponding to each on the number line below. Place a dot on the number line and the letter above it!

A.
$$-\sqrt{2}$$

B.
$$-2^{4}$$

$$C.$$
 5°

$$D$$
. $\pi-1$

$$F. \quad .\overline{3}$$

G.
$$\sqrt{3-7}$$

$$H.$$
 |3-5|

$$I. \qquad \frac{|x|}{x}, \text{ if } x > 0$$

$$J. \qquad \frac{|x|}{x}, \text{ if } x < 0$$

L. additive inverse of
$$\frac{3}{4}$$

N. multiplicative inverse of
$$-\frac{3}{4}$$

$$O.$$
 $\frac{0}{4}$

$$P.$$
 $\frac{2}{6}$

$$Q.$$
 $\frac{Q}{Q}$

$$R.$$
 $.\overline{9}$

For the points A-O in the previous problem decide to which of these sets they belong:

- ▶ Set of real numbers, R
- Set of rational numbers, Q
- Set of irrational numbers, I
- ▶ Set of integers, Z
- ▶ Set of whole numbers, N

List all integers in each of the given intervals

(-2,4]

[2,5]

 $(1,\infty)$

 $(-\infty,1]$

(3,4)

Write an example of each of the terms below using $5x^3 - 2x + 4 = 0$

- Equation
- Expression
- Term
- Factor
- Constant
- Coefficient
- Exponent

Order of operations: please evaluate the following expressions

$$3 \cdot 2 - 6 \div 4 + 3$$

$$4 + 3 \cdot 2^3 \div 4 - 2$$

$$2x^3 - \frac{x}{y} \cdot z + y$$
 if $x = -2$, $y = 3$, $z = -6$:

Evaluate the following exponents

 2^3

 -2^{3}

 $(-2)^3$

24

 -2^{4}

 $(-2)^4$

Evaluate the following powers – it will be to your advantage to be able to quickly recall and recognize these powers

$$2^{0}$$
 2^{1} 2^{2} 2^{3} 2^{4} 2^{5} ... 2^{10}

$$3^{\circ}$$
 3° 3° 3° 3° 3°

$$4^0$$
 4^1 4^2 4^3 4^4

$$5^{\circ}$$
 5° 5° 5° 5°

Evaluate roots:

 $\sqrt{64}$

 $\sqrt[3]{64}$

 $\sqrt[6]{64}$

 $\sqrt{-64}$

 $\sqrt[3]{-64}$

 $\sqrt[6]{-64}$

More exponents

 $64^{2/3}$

 $64^{3/2}$

 $64^{-2/3}$

 $64^{-3/2}$

 $-64^{3/2}$

 $(-64)^{2/3}$

Rationalize the following expressions

$$\frac{5}{\sqrt{10}}$$

$$\frac{3}{\sqrt{5}-2}$$

$$\frac{\sqrt{2x^3}}{\sqrt{8x^6}}$$

Rewrite the expressions so that they contain only positive rational exponents

$$\frac{5^{-1/2} \cdot 5x^{5/2}}{(5x)^{3/2}}$$

$$\sqrt[3]{\sqrt{8x^3y^6}}$$

$$\frac{32 \cdot 8 \cdot 2^4}{64 \cdot 16 \cdot 2^{-3}} = 2^n \qquad \text{then} \qquad n = ?$$

Convert repeating decimals into fractions.

 $.\bar{3}$ and $.\bar{9}$

Know terminology and division rules for 0

Define:

- Additive identity
- Additive inverse
- Multiplicative identity
- Multiplicative inverse

Which is defined:

- 0÷4
- ► 4÷0

