2.1 Quadratic Equations

Quadratic Eqn: \(ax^2 + bx + c = 0 \) \(a \neq 0 \)

Zero Product Property

For \(a, b \in \mathbb{R}, ab = 0 \Rightarrow a = 0 \) or \(b = 0 \),
or \(a = b = 0 \).

4 ways to solve quadratic eqns

1. Square root technique (only works if \(b = 0 \))
2. Factoring
3. Completing the square
4. Quadratic formula: \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)

Derive quadratic formula:)

\(ax^2 + bx + c = 0 \)
Ex 1 Solve

(a) $25x^2 - 49 = 0$

(b) $x^2 - 4x = 3x^2$
Ex. 2

(a) \(x^2 + 17x = 8x - 14 \)

(b) \(x^2 + 2x + 4 = 0 \)

(c) \((x+1)^2 = 2 \)
Ex 3 Solve.

(a) \((y - 2)^2 - 5(y - 2) - 24 = 0\)

(b) \[\frac{5}{t + 4} - \frac{3}{t - 2} = 4\]
2.2 Quadratic Functions: Parabolas

Quadratic Fn => \(y = f(x) = ax^2 + bx + c \)
(a quadratic eqn in two variables)
when we graph all the solutions to this, the points form a parabola.

For \(y = ax^2 + bx + c \),
if \(a > 0 \), \(\cup \) concave up
if \(a < 0 \), \(\cap \) concave down

axis of symmetry

Let's figure out where the vertex is.
(algebraically) so we can always find it.

if we plug in \(x = 0 \) we get pt on y-axis =
\(x = 0 \Rightarrow y = a(0^2) + b(0) + c \) (= \(y = c \)), i.e. parabola
goes thru \((0, c)\)

We can see, by symmetry of parabola, that there is another pt whose y-value is c.
2.2 (cont)

\[C = ax^2 + bx + c \quad (\Rightarrow) \quad 0 = ax^2 + bx \]

\[0 = x(ax + b) \]

\[x = 0, \quad \text{or} \quad ax + b = 0 \]

\[ax = -b \]

\[x = -\frac{b}{a} \]

You can see (from symmetry) that the x-value of the vertex is halfway between 0 and \(-\frac{b}{a}\), i.e. \[x = -\frac{b}{2a} \].

\[\text{vertex at } \left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right) \]

\[\text{Axis of Symmetry} \]

\[x = -\frac{b}{2a} \]

Ex 1 For \(y = -2x^2 - 4x + 6 \)

(a) Find vertex

(b) Is the vertex a min or max pt?
2.2 (Cont.)

Ex 2 For \(y = x^2 - 6x + 9 \),

(a) find vertex.
(b) Is it a min or max pt?
(c) find zeroes of graph.
(d) Sketch the graph.
Ex 3. Describe shifting for $y = (x-10)^2 + 1$.

Ex 4. Find the average rate of change of $y = \frac{1}{2}x^2 + 3x + 8$ between $x=2$ and $x=4$.
Ex 5 If 100 ft of fencing is used to enclose a rectangular yard, then the resulting area is given by \(A = x(50-x) \). Graph this equation and give the length and width that maximize area.
Supply Demand + Market Equilibrium

Ex 1. If the supply function for a commodity is \(p = q^2 + 8q + 20 \) and the demand function is \(p = 100 - 4q - q^2 \), find the equilibrium quantity and equilibrium price. (Sketch both curves.)
2.3 (cont)

Ex 2 For the last example, if an 8 tax is placed on production & passed through the suppliers, find the new equilibrium pt.
Break-Even Points and Maximization

Ex 3 If a company has total costs $C(x) = 1600 + 1500x$ and total revenue is $R(x) = (1600 - x)x$, find the break even pts.

Break Even pts occur when $R(x) = C(x)$

$\Rightarrow P(x) = 0$
2.3 (cont.)

Ex 4 Find maximum revenue given
\[R(x) = 1600x - x^2. \]

Ex 5 Suppose a company has fixed costs of $300
and variable costs of \(\frac{3}{4}x + 1440 \) dollars per unit,
where \(x \) = total # units produced. Suppose further
that its selling price is \(1500 - \frac{1}{4}x \) dollars per unit.
(a) Find break even pts.
(b) Find max revenue

(c) Find max profit, and price that yields it.
2.4 Special Functions and Their Graphs

Polynomials

\[y = mx + b \]

\[y = ax^2 + bx + c \]

\[y = ax^3 + bx^2 + cx + d \]

Radical

\[y = \sqrt{x} \]

\[y = \sqrt[3]{x} \]

Powers

\[y = x^b \]

\[y = x^1 \]

\[y = x^b \]

\(0 < b < 1\)
2.4 (cont)

Shifting Graphs

\[y = f(x+h) + k \]
(assume \(h, k > 0 \))
shifts up by \(k \) units
and left by \(h \) units

Ex 1 Describe shifting of \(f(x) = (x-2)^2 + 3 \)
compared to base graph \(y = x^2 \).

Piecewise Functions

\[f(x) = |x| = \begin{cases}
 x & \text{if } x \geq 0 \\
 -x & \text{if } x < 0
\end{cases} \]

Ex 2 Graph
\[f(x) = \begin{cases}
 x^2 + 5 & \text{if } x \geq 2 \\
 x + 3 & \text{if } 0 \leq x < 2 \\
 -x - 1 & \text{if } x < 0
\end{cases} \]
2.4 (cont)

Rational Functions =) \[\frac{f(x)}{g(x)} \]
where \(f(x) \) and \(g(x) \) are both polynomials.

Asymptotes

\(1 \) vertical \(\Rightarrow \) "restriction" of what \(x \)-values graph cannot have (comes from domain)

\(2 \) horizontal \(\Rightarrow \) "description" of what happens to graph as \(x \to \pm \infty \)

Ex 3 Graph \(f(x) = \frac{x-3}{x+2} \)
Ex 4 Given function \[y = \begin{cases} \frac{1}{2}x + 4 & x < 0 \\ 4 - x & 0 \leq x < 4 \\ 0 & x \geq 4 \end{cases} \]

(a) find \(y (1) \)

(b) find \(y (3.9) \)

(c) find \(y (-4) \)

Ex 5 Graph \[y = (x+2)^3 - 3 \]
2.6 Composite and Inverse Functions

Composite Functions

Given $f(x)$ and $g(x)$,
$$ (f \circ g)(x) = f(g(x)) $$

Example 1

Given $f(x) = 2x + 8$,
$$ g(x) = \frac{1}{x^3} $$

(a) find $(f \circ g)(x)$.

(b) find $(g \circ f)(x)$.

Example 2

Find for $f(x)$ and $g(x)$,
$$ (f \circ g)(x) = \frac{1}{5x^3 + 4} $$
Inverse Functions

An inverse function basically "undoes" what original function did to input notation: \(f^{-1}(x) \) (read "f inverse of x")

\[
= f(f^{-1}(x)) = x = f^{-1}(f(x))
\]

Ex 3 Are \(f(x) = 5x - 1 \) and \(g(x) = \frac{x + 1}{5} \) inverse functions?

Finding an inverse function \(f^{-1} \) the operations basically you need to undo the operations in the opposite order to how they were done.
2.6 (cont)

Ex 4: Find the inverse function for

\[y = \frac{(x-2)^3}{4} + 5 \]

Does every function have an inverse?

A function has an inverse if it passes the horizontal line test! (i.e., if it is one-to-one → every input has exactly one output & every output has also only one input.)
2.6 (cont)

inverse pts are mirror images across line \(y = x \).

Ex 5 Does \(y = x^2 \) have inverse function?

Ex 6 Is function defined by \(\{(1,3), (6,2), (4,3)\} \) one-to-one?

Ex 7 To convert from Celsius to Fahrenheit, you can use \(F = \frac{9}{5}C + 32 \). Change this formula to allow you to convert from °F to °C.