3.1 Maxima + Minima

Defn Let \(S \), the domain of \(f \), contain the point \(c \).

Then (i) \(f(c) \) is a **max. value** of \(f \) on \(S \) if \(f(c) \geq f(x) \) \(\forall x \in S \).

(ii) \(f(c) \) is a **min. value** of \(f \) on \(S \) if \(f(c) \leq f(x) \) \(\forall x \in S \).

(iii) \(f(c) \) is a **extreme value** of \(f \) on \(S \) if it is either a maximum or minimum value.

(iv) the function we want to maximize or minimize is called the **objective function**.

How do we know extreme values exist for a function?

Max-Min Existence Theorem

If \(f \) is continuous on a closed interval \([a, b]\), then \(f \) attains both a max + min value on that interval.

*We need (1) \(f \) continuous + (2) a **closed** interval!*

We can have max + min pts occur in one of 3 ways:

1. endpoints of the closed interval
2. stationary pts (where \(f'(x) = 0 \))
3. singular pts (where derivative DNE)
3.1 (continued)

Critical Pt Thm

Let \(f \) be defined on a closed interval \(I \) containing point \(c \). If \(f(c) \) is an extreme value, then \(c \) is called a **critical pt**.

\(c \) is either:
1. an endpt of \(I \).
2. a stationary pt of \(f \), i.e. \(f'(c) = 0 \).
3. a singular pt of \(f \), i.e. \(f'(c) \) DNE.

Ex 1 Find min + max values of

\[f(x) = -2x^3 + 3x^2 \text{ on } [-1, 3] \]
Ex 2 Find the min & max points for
\[f(x) = x^{3/5} \] on \([-1, 32]\).

Ex 3 Show that for a rectangle \(R \) with perimeter 30 inches, it has maximum area when it is a square.
3.1 (continued)

Ex 4. Identify critical points and specify min and max values.

\[f(x) = x - 2 \sin x \quad \text{on} \quad [-2\pi, 2\pi] \]

Ex 5. Sketch the graph of a function that is

1. Continuous, but not necessarily differentiable.
2. Has domain \([0, b]\).
3. Reaches a max of 4 (at \(x = 4\)).
4. Reaches a min of 2 (at \(x = 2\)).
5. And has no stationary points.
3.2 Monotonicity + Concavity

Defn let f be defined on an interval I (open, closed or neither), we say that:

1. f is **increasing on** I if $\forall x_1, x_2 \in I$, $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$.
2. f is **decreasing on** I if $\forall x_1, x_2 \in I$, $x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$.
3. f is **strictly monotonic on** I if it is either increasing or decreasing on I.

Monotonicity Theor

Let f be continuous on I + differentiable at every interior pt of I.

- if $f'(x) > 0 \; \forall x \in I$, then f is increasing on I.
- if $f'(x) < 0 \; \forall x \in I$, then f is decreasing on I.

Ex 1 For $f(x) = x^3 + 3x^2 - 12$, find where f is increasing and decreasing.
Ex 2. Determine where \(f(x) = \frac{x-1}{x^2} \) is increasing and decreasing.

Ex 3. Where is \(f(x) = \cos^2 x \) increasing and decreasing?
3.2 (continued)

Definition Let f be differentiable on an open interval I. f is concave up on I if $f'(x)$ is increasing on I. f is concave down on I if $f'(x)$ is decreasing on I.

![Concave up](image1)
![Concave down](image2)
![Concave up](image3)

Concavity Test
Let f be twice differentiable on an open interval I.
1. If $f''(x) > 0 \forall x \in I$, f is concave up on I.
2. If $f''(x) < 0 \forall x \in I$, f is concave down on I.

Example 4 Where is $f(x) = 4x^3 - 3x^2 - 6x + 12$ increasing, decreasing, concave up, and concave down?
3.2 (Continued)

Ex 5. For \(f(x) = 8x^{\frac{1}{3}} + x^{\frac{4}{3}} \), find where it's increasing, decreasing, concave up, concave down. Then, use this info to sketch the graph.
3.2 (continued)

Inflection Point
Let f be continuous at c. We call $(c, f(c))$ an inflection pt of f if f is concave up on one side of c and concave down on the other side of c.

We can find inflection pts by taking the second derivative. The x-values that make $f''(x) = 0$ or $f''(x)$ undefined are the possible x-values for the inflection pts. You need to check out these possibilities.

E.g. $f(x) = x^6$
3.2 (continued)

Ex. 6 Find all pts of inflection for
\[f(x) = 2x^{\frac{1}{3}} - 1 \]
3.3 Local Maxima and Minima (and Extreme on Open Intervals)

Definition

Let $S = \text{domain of } f \ni c \in S$.

Then
1. $f(c)$ is a local max value of f if $\exists (a, b)$ containing $c \ni f(c)$ is max value of f on $(a, b) \cap S$.
2. $f(c)$ is a local min value of f if $\exists (a, b)$ containing $c \ni f(c)$ is a min value of f on $(a, b) \cap S$.
3. $f(c)$ is a local extreme value of f if it is either a local min or local max.

How do we find the local extrema?

First Derivative Test

Let f be continuous on an open interval (a, b) that contains a critical pt c.

1. If $f'(x) > 0 \forall x \in (a, c) \land f'(x) < 0 \forall x \in (c, b)$, then $f(c)$ is a local max.
2. If $f'(x) < 0 \forall x \in (a, c) \land f'(x) > 0 \forall x \in (c, b)$, then $f(c)$ is a local min.
3. If $f'(x)$ has same sign on both sides of c, then it's not a max nor a min.
3.3 (continued)

Ex 1. Find local min + max pts for \(f(x) = 2x^2 - 5x + 3 \).

Ex 2. Find local min + max pts for \(f(x) = \frac{1}{2}x + 5\sin x \) for \(0 < x < 2\pi \).
3.3 (continued)

Ex. 3 Find all extreme values for \(f(x) = x^4 + x^2 + 3 \)

Thm: Second Derivative Test

Let \(f' \) and \(f'' \) exist at every point \(c \) in \((a, b) \) containing \(c \), and \(f'(c) = 0 \).

1. If \(f''(c) < 0 \), \(f(c) \) is local max.
2. If \(f''(c) > 0 \), \(f(c) \) is local min.
Ex 4. Find all critical pts for \(y = (x-2)^5 + \) sketch the graph.

Ex 5. Find all min, max \(x \)-values for \(y = x^2 + \frac{1}{x^2} \).
3.3 (continued)

Ex 6 (#29) Let \(f \) be continuous and \(f' \) has the following graph.

Try to sketch a graph of \(f(x) \) and answer these questions.

(a) Where is \(f \) increasing? Decreasing?
(b) Where is \(f \) concave up? Down?
(c) Where does \(f \) attain a local max? min?
(d) Where are the inflection pts?
For what # does the principal square root exceed 8 times the # by the largest amount?

Let x = the #. Then we want to maximize $y = \sqrt{x} - 8x$.

Steps

1. Draw a picture or list info given.
2. Write down what needs to be maximized or minimized.
3. If have more than 2 variables, find eqn to eliminate one.
4. Differentiate fn.
5. Set derivative = 0 (or find where it = 0)
6. Solve, (i.e. find critical pts)
7. Check to make sure you found the max or min that you want.
Ex 2. Find 2 #s whose product is -12 + sum of whose squares is a minimum.

Let \(x + y \) be the #s.

We know \(xy = -12 \) + we want to minimize
Show that the rectangle of max perimeter that can be inscribed in a circle is a square.

Let r be the radius of the circle and it's fixed.

What do we want to maximize?

What do we know (about relating $x+y$)?
3.4 (continued)

Ex 4. A flower bed will be in the shape of a sector of a circle (a pre-shaped region) of radius r and vertex angle θ. Find r and θ if its area is a constant A and the perimeter is a minimum.
Ex 5 (A true classic!) Find the volume of the largest open box that can be made from a piece of cardboard that is 24" by 9". You'll form the box by cutting out identical squares from the 4 corners and turning up the sides. Also, find the dimensions of the box that yields the max volume.
Ex 6 A farmer has 80 ft of fence. He needs to enclose three identical pens along one side of his barn (the side along the barn needs no fence). What dimensions for the total enclosure make the area of the pens as large as possible?
3.5 Graphing Functions Using Calculus

Ex1) Sketch the graph of \(f(x) = x^2(x^2-1) \).

(1) domain:
range:

(2) symmetry:

(3) x-intercepts:

(4) First Derivative info (increasing/decreasing):

(5) Second Derivative info (concavity/inflection points):

(6) asymptotes:

(7) Sketch graph
Ex 2. Sketch the graph of \(f(x) = \frac{4x^4 - 8x^2 - 12}{3} \)
3.5 (continued)

Ex 3 Sketch graph of \(f(x) = \frac{(x-3)^2}{x} \)
3.5 (continued)

Ex. 4 Sketch the graph of \(f(x) = |x|^3 \)

Since \(|x| = \begin{cases} x & \text{if } x \geq 0 \\ -x & \text{if } x < 0 \end{cases} \),

\[
\frac{d}{dx} |x| = \begin{cases} 1 & \text{if } x > 0 \\ -1 & \text{if } x < 0 \end{cases}
\]

or we can say \(\frac{d}{dx} |x| = \frac{x}{|x|} \) which covers it all.
3.6 The Mean Value Theorem for Derivatives

Mean Value Theorem for Derivatives

If a function f is continuous on $[a,b]$ and differentiable on (a,b), then there exists at least one $c \in (a,b)$ such that

$$\frac{f(b) - f(a)}{b - a} = f'(c)$$

$$\implies f(b) - f(a) = f'(c)(b - a)$$

i.e., if $f(x)$ has non-vertical tangent lines everywhere in (a,b), then there's at least one pt where the tangent line is parallel to the secant line connecting the endpoints.

Example 1
Find the c guaranteed by MVT for $g(x) = (x+1)^3$ on $[-1,1]$.

Is $g(x)$ continuous on $[-1,1]$?
Is $g(x)$ differentiable on $(-1,1)$?
3.6 (continued)

Ex 2 For \(g(x) = \frac{x-4}{x-3} \), decide if we can use the MVT in (a) \([0, 5]\) or (b) \([4, 6]\). If so, use it to find the value of \(c \) from the MVT. If not, state the reason why.
Ex 3: For \(f(x) = \csc x \) on \([\pi, \pi]\), use MVT to find \(c \).

Thm B

If \(f'(x) = g'(x) \) \(\forall x \in (a, b) \), then \(\exists c \in (a, b) \) such that \(f(x) = g(x) + C \) \(\forall x \in (a, b) \).